
1105130516, Ed Lycklama 1

Does Java ™ Technology
Have Memory Leaks?

Ed Lycklama
Chief Technology Officer, KL Group Inc.



1105130516, Ed Lycklama 2

Overview

• Garbage collection review

• What is a memory leak?

• Common patterns

• Tools & Demo

• Q&A

• Wrap-up



1105130516, Ed Lycklama 3

Garbage Collection in
Java ™  Technolo gy

• As objects created, stored in Java heap
– Set of allocated objects forms a directed graph
– Nodes are objects, edges are references

• GC: remove objects no longer needed
– Undecidable in general; use approximation

• Remove objects no longer reachable
– Start search at roots

• Locals on thread stack

• Static fields



1105130516, Ed Lycklama 4

Simple GC Example

Public void useless() {

MyObject m1 = new MyObject();

MyObject m2 = new MyObject();

m1.ref = m2;

global.ref = m2;

return;

}

m1 m2

“global”

now unreachable



1105130516, Ed Lycklama 5

Garbage Collection M yths

• GC doesn’t handle reference cycles
– Not based on reference counting (e.g. COM)

• Finalizer is like a destructor
– Called when about to be collected

• Never call it directly
– May never be called

• Depends on free memory, GC implementation
– Finalizer may “resurrect” object!

• Another object makes reference to it



1105130516, Ed Lycklama 6

What Is a Memor y Leak?

• Allocated
– Exists on the heap

• Reachable
– A path exists from some root to it

• Live
– Program may use it along some future

execution path



1105130516, Ed Lycklama 7

allocated

reachable

live

Memory leak
in Java

Memory leak in
C/C++

What Is a Memor y Leak?



1105130516, Ed Lycklama 8

C++ vs. The Java
Programmin g Language

• Memory leak in C++
– Object allocated but not reachable

• Malloc/new, forgot about free/delete
– Once unreachable, leak can’t be fixed

• Memory leak in the Java programming
language
– Object reachable, but not live

• Reference set, forgot to clear it
– Object reachable, but code to fix leak may not be

• e.g. private field



1105130516, Ed Lycklama 9

Nodes vs. Ed ges

• C++, manage nodes and edges
– Explicitly add/remove nodes and edges
– Dangling edges corrupt memory
– Dangling node is a memory leak

• The Java programming language,
manage the edges
– Explicitly add nodes/edges, remove edges only
– Nodes won’t go away unless it’s cut-off

from graph



1105130516, Ed Lycklama 10

Less Common, More Severe

• Rarer than in C++ ...
– GC does most of the work

• … but impact more severe
– Rarely a single object, but a whole sub-graph
– e.g. in Project Swing technology, path from any UI

component to another (parent/child relationship)
– Typically subclass, add other references
– Single lingering reference can have massive

memory impact



1105130516, Ed Lycklama 11

Need a New Term

• Loiterer

• Object remains past its usefulness

• Distinct from memory leaks in C++

• Some of the native Java libraries have
conventional memory leaks
– Programmers using Java technology can’t

fix them



1105130516, Ed Lycklama 12

Lexicon of Loiterers

• Four main patterns of loitering
– Lapsed listener
– Lingerer
– Laggard
– Limbo



1105130516, Ed Lycklama 13

Lapsed Listener

• Object added to collection, not removed
– e.g. event listener, observer
– Collection size can grow without bound
– Iteration over “dead” objects degrades

performance

• Most frequent loitering pattern
– Swing and AWT have had many
– Occurs easily in any large framework

• C++: small loiterer or dangling pointer



1105130516, Ed Lycklama 14

Lapsed Listener Example

• Java 2 platform, desktop properties
– awt.Toolkit.addPropertyChangeListener()
– Toolkit is a singleton
– Listeners will usually be shorter lifespan
– Listener must call

removePropertyChangeListener() when
it is “being destroyed”



1105130516, Ed Lycklama 15

Lapsed Listener Strate gies

• Ensure add/remove calls are paired

• Pay attention to object lifecycles

• Consider implementing a listener registry

• Beware of framework that claims to
handle cleanup automatically
– Understand assumptions made



1105130516, Ed Lycklama 16

Lin gerer

• Reference used transiently by
long-term object
– Reference always reset on next use

• e.g. associations with menu items

• e.g. global action or service

• Not a problem in C++
– Benign dangling reference



1105130516, Ed Lycklama 17

Lin gerer Example

• Print action as singleton
– Printable target;
– call target.doPrint();
– Target not set to null on completion
– Target is a lingering reference

• Target cannot be GC’ed until next print



1105130516, Ed Lycklama 18

Lin gerer Strate gies

• Don’t use a set of fields to maintain state
– Enclose in object

• Easier to maintain

• One reference to clean up

• Draw state diagram
– Quiescent state=no outgoing references

• Early exit methods or multi-stage process
– Setup; process; cleanup



1105130516, Ed Lycklama 19

Laggard

• Object changes state, some references
still refer to previous state
– Also a hard-to-find bug

• Common culprits
– Changing life-cycle of class (e.g. into a singleton)

• Constructor sets up state

• Caches expensive-to-determine object

• State changes, cache not maintained

• C++: dangling pointer



1105130516, Ed Lycklama 20

Laggard Example

• List of files in directory
– Maintains several metrics

• Largest, smallest, most complex file
– Change to new directory
– Only largest and smallest updated
– Reference to most complex is a laggard

• Won’t notice unless code is coverage tested

• Memory debugging would uncover it



1105130516, Ed Lycklama 21

Laggard Strate gies

• Cache cautiously
– Only expensive, frequently used calculations

• Use a profiler to guide you

• Encapsulate in a single method
– Do all calculations in one spot



1105130516, Ed Lycklama 22

Limbo

• Reference pinned by long-running thread
– References on stack
– GC doesn’t do local liveness analysis

• Common culprits
– Thread stall
– Expensive setup calls long-running analysis

• C++: placement of destructors



1105130516, Ed Lycklama 23

Void method() {

  Biggie big =
   readIt();

  Item item =
   findIt(big);

  parseIt(item);

}

  big = null;

Limbo Example

• Read file using std.
parser

• Big consumes a lot
of memory

• Item condenses it

• Iterate over elements
of item

• Big can’t be GC’ed
until method returns



1105130516, Ed Lycklama 24

Limbo Strate gy

• Be aware of long-running methods
– Profilers can help

• Pay attention to large allocations that
precede it
– Use a memory debugger to help find them
– Add explicit null assignments to assist GC

• Blocked threads can also be a problem
– Use a thread-analysis tool



1105130516, Ed Lycklama 25

Tools and Techniques

• ObjectTracker
– Lightweight instance tracking infrastructure
– Invasive: requires code modification
– Find loiterers of a particular class

• You decide which classes to track

• Won’t tell you why it loiters
– Relies on unique hashcode

• Will not work in the Java 2 virtual machine

• May not work in other VM’s



1105130516, Ed Lycklama 26

Tools and Techniques

• Memory Debugger
– No code modification required
– Monitor overall heap usage
– Understand allocation activity by class
– Pinpoint excessive object allocation
– Identify memory leaks (loiterers)



1105130516, Ed Lycklama 27

Tools and Techniques

• Finding Loiterers in a Memory Debugger
– Track all instances of all classes
– Each instance:

• Time allocation occurred

• References (incoming and outgoing)

• Stack back-trace of allocation
– Visualize reference graph back to roots
– Checkpoint creation times



1105130516, Ed Lycklama 28

Demo



1105130516, Ed Lycklama 29

Questions?



1105130516, Ed Lycklama 30

Wrap-Up

• Most non-trivial Java technology-based
programs have loiterers
– GC is not a silver bullet
– Manage the edges, not the nodes

• Loiterers different than memory leaks
– Harder to find
– Less frequent, but generally much larger



1105130516, Ed Lycklama 31

Wrap-Up

• Object lifecycles are key

• Build memory-management framework
into your development practices

• Tools are indispensable for finding out
why loiterers are occurring



1105130516, Ed Lycklama 32

Contact Info

• These slides and ObjectTracker at:
http://www.klgroup.com/javaone

• See JProbe at KL Group’s booth #727

• Contact me: eal@klgroup.com



1105130516, Ed Lycklama 33


