Advanced & Distributed Databases - Assessment Criteria and Feedback Sheet

Name: J.Peters

Mark: 70

Higher levels of achievement are described on the RHS of the grid. Each level subsumes the previous level. Each of the three
criteria below contributes a third to the overall mark.

|Primari|y, Analysis & Design and Learning Outcome CS2

Does not reach
required
threshold.

Analysis and design
artefacts meet
most scenario
requirements, but
with some
deficiences.

Described analysis
and design artefact
meet scenario
requirements and
using appropriate
tools and methods.

Rationale for
design decisions
explained (inc.
most higher-level
requirements).

Comprehensive, fully
justified and
documented analysis
and design artefacts
meet all requirements
in full.

Primarily, Impleme

ntation and Learning Outcome P&PS4

Does not reach
required
threshold.

Implementation
artefacts meet
most scenario
requirements, but
with some
deficiences.

Documented
implementation
and test artefacts
meet scenario
requirements.

Discussion of
encountered
implementation
issues and
solutions (inc.
most higher-level

requirements).

Comprehensive and
fully documented
implementation and
test artefacts meet all
requirements in full.

|Primari|y, Evaluation Report and Learning Outcomes CS2,

K&U1 and P&PS3

Does not reach Evaluation report ||Richer and Well written Comprehensive and
required meets most referenced evaluation report ||critical evaluation
threshold. requirements but ||evaluation against ||against full set of ||report addressing all
with some some appropriate ||criteria and full requirements, and
deficiences. criteria. Some set of based on extensive
Evidence that logical recommendations ||research.
relevant recommendations ||developed.
background developed. Most higher-level
reading has been requirements
undertaken. addressed.
References clearly
underpin the
evaluation
throughout.
Notes :

1. Normally, artefacts for all of the 5 themes must be submitted and reach the required threshold.
2. Each of the activities indicates work which could contribute to higher-level achievement.

Additional Comments (particularly for borderline and exception cases)

A well written and comprehensive report.

Evaluation Report

BSc (Hons) Software Engineering
Author: Jan David Peters

Unit Leader: Alastair Monger
Advanced and Distributed Databases

30" April 2010

Southampton Solent University
Faculty of Technology

Jan David Peters Advanced and Distributed Databases 30/04/2010

Table of Contents

Table Of CONTENES ...cviiiiiiiiiiirece ettt ere e st e et e s te e s e bt e s e bee e s araaessaesnnnnas 1
1. Exploiting DBMS Data Models and Server Functionalitycccccceevcveeriieeeiieencineeccieeennne 3
1.1. Task 1) Development of Product and Price Information.........cccceccveeeirieeevvicccieecnen, 3
1.2. Task 2) External Availability of Product and Price information.......c.c.ccccevvvvnvreveennnens. 4
1.3. Evaluation of Technologies, Tools and Methodsccccceeeiiiiericciiere v, 8
1.3.1. Price History and Database Triggersccovuuiiieiiiierivereeecireeeeesrerescseineesevennnne 8
1.3.2. OFaCIe SOL/XIML ettt eeeeeeeeeeeeeeeeseenesesesseeesanaeeeeaanenesesasneeessasssnsssananses 8
1.3.3. Oracle XIMLTYPE ..cevviieiieiirieeeeccceeree e veseraeesesceessreteeresesnsnstrasenesesesssosennresrennssens 8
1.3.4. SQL DEVERIOPETeeterieeeieceieiiieeee s iitereeeeresistetessaeesesnsaneresesesesssssssesssssssessasssntonssnns 9

1.4, RO EIENCES .. ittt ettt eeste e s s cer e e s e rae e e et ae e e s baaesssnanadeeensneseaennesneenaan 9

2. Accessing and Manipulating Data in Applicationscccecviveeiriiiericciee e, 10
2.1. Design, implement and test a transaction processing programccccceeeevvvveeeennne 10
2.1.1. SOTtWAre DESIGN ..ueeiieireeeeiieeeereitteercere s e ctare e s areeees sttt e e s srenasesernreseeasannneeessennsnaens 10
2.1.2. IMPIEMENTAtION. ... e s s r e s s s e s s nanes 12
2.1.3. SOUICE COUE ..eiuriiiiiirciiritrercre et ssitee e sttt sereseses ettt s sbeesastassavasssssssssnssessssnseranes 13

D T = OO P TP P UPUPRR 19

2.2. Evaluation of Technologies, Tools and Methodsccccccevieiviiieiieeenieeeeeee e 20
2,20, JAVA O PL/SOL ettt ettt eeeeeeeeaenes e seseenmeaeeeeeaesaeeasneeereseresassannnnnee 20
2.2.2. JDBC and Prepared Statementsccccievevireiirereieeerrerncernrer s sssiesessenesesssesensanes 21
2.2.3. ECHPSE IDE .oeeeeieeeeeecieeeectreee ettt eee s esasae s e nte e esansaresesbasese s asberesessnnanesene 21
2.2.4. Oracle Application EXpress (APEX)ccoceeciieeeiveeirereieeenieeesiesesseeossvneseseesnnns 21

2.3, REFEIENCES ..vecvvieerieciesc ettt sttt s b e re e see e sae s se s e e e e s st e st e e btaeataeenneassnesans 22
3. Improving Data Access by Data Distribution and Replicationcccccceeeiiiieiiiccviieeennnnne 23
3.1. Task 2) Creation and Testing 0f @ SQL VIEWcoviiicrieeiiriciccee et 23
3.2. Task 3) Production of a Distributed Database Design Solutionc.c.ccevvvveverenennne 26
3.3. Evaluation of Technologies, Tools and Methodsccccccoveveerircieinicccieir e, 27
3.3.1. Concept of Distributed Databases and Replicationc..cccccecveeiiurennnrereceneen. 27
3.3.2. Database Design and Effort.......cccceviieiiiiiiiciinnierce e e ssee e e 28
3.3.3. APPlICability iN Praxis ...ccccveerueeeerireeiiceriiieieeeiesniieeesrrereesersrresesresesessssnsesssnsaseness 29

3.4, RETEIENCESeecuiiiiiirreriee ettt et sa e et e e st et s esanesnaeeenneansenenn 29
4. Multi-Dimensional Modelling and Analysis for Decision SUPPOrtcccceeccveeeiieeeirneenn. 30
4.1. Task 1) Implementation of Analysing Data for Decision SUPPOrtcccvevevvveeennen. 30
4.1.1. Preparing the Data using Microsoft EXCel.......cccoveereeiiiiiiiiieenncceee e 33
4.1.2. Preparing the Data using Oracle SQL statements.......ccccceeeccivrviniveeeerecnvenienenn, 34
4.1.3. Evaluate Data and Derive Decision SUPPOItccccvvvrrirercrieeeiee e eeeeeeeen 36

4.2. Task 2) Development of a Dimension Model for the HR Databasec.couveeneen. 38
4.3. Evaluation of Technologies, Tools and Methodscccocceveieeciiiiiieirecceecee s 41
4.3.1. Online Analytical Processing (OLAP)cccueceivievtiernireeerreeecneeeetee e cesanesesreee s 41
4.3.2. OLAP with Microsoft Excel and Oracle SQL.........cccoeiirieeriernreecirereeceeesecereees 41

1

Jan David Peters Advanced and Distributed Databases 30/04/2010
4.3.3. MySQLWOrkbench 5. 1.ttt s e nre e s 42
Q4. RETEIENCES ..cciieiieeeiiteiirer ettt ettt e e s eae e s s e e s et s eesssteasesansnanessesssensesanans 42
Mining Databases for Decision SUPPOIt.........oi et ee e 43
5.1. Task 1) Design and Implementation of an example Market Basket Analysis 43
5.1.1. Choice of Data Mining Tools and Techniqueccccccverreciiieececrere e 43
5.1.2. Background Discussion (- Business / Data Understanding)..........cc.cccvervrerenne 43
5.1.3. Preparation of required Data (= Data Preparation}.......ccccceevvvrceerereresrercreennnns 44
5.1.4. Performing the Analysis using WEKA Data Mining Tool (= Modelling)............ 47
5.1.5. Significance of discovered Rules for Decision Support (= Evaluation)............. 53
5.2. Evaluation of Technologies, Tools and Methodscccccevevcieieciiieicrcceee e 53
5.2.1. CRISP MethodOlOgY......ccveieriiiiiiie ittt ettt cee e s cane e e e ebra e s e s aan e e e snenas 53
5.2.2. WEKA Data Mining TOOIccioiiiiiiiieiciieeectee et eee s tte e e enee e s s ntee e s e s e eee e 54
5.3, REFEIBNCES oottt e e et e s erar e s e e e e s s et e e e s e ataneesennes 54
MONAFian OLAP TOOI ..ccueriiiiiiiiiiciiect et seses s sare e e s ae e s s saas e e anaesnene 56
6.1. INtroduction tO MONAIiaN......c.ciiereieeieiee e et eee st e e e er e e s senneaeesssanee 56
L3 Yol o - o T PP PP UOURPPORUPRPPRRON 57
6.3. Analysis, Design, Implementation and TStcccceicevveiieiiienirieee e eeneereeseee 59
T s R Yo -1 1Y U 59

L T 0 1= 1Y - { o PP PR RRUROR 59
6.3.3. IMPlementation.........coveiiriiieiiiicceee e e an e s e aara e 60
B.3.4, TSl ettt e st s st anereeease s s s ne 63
6.4. Evaluation of Technologies, Tools and Methodsccccocvrveiriiiiiiienniieceniriecccnnenns 66
5.5, RETEIBNCES ...ii ittt ettt s et e s s e s s be s s sae e e s e e e sabaeesseaaesnnnarasenes 67

2

Jan David Peters Advanced and Distributed Databases 30/04/2010

1. Exploiting DBMS Data Models and Server Functionality

1.1. Task 1) Development of Product and Price Information

The first step is to create a table for storing the data that are collected. A possible solution

would be the following SQL-Statement:

CREATE TABLE product pricehistory (

PricehistoryID number NOT NULL Primary key,
OccuredAt date not null,
UpdatedBy varchar(100) not null,
ProductID number not null,
ProductName varchar2(50) not null,
Price0ld number (8,2) null,
PriceNew number (8,2) not null

)

Listing 1: Creating a new Database Table for Price History

Every row is identified by a unique ID which is automatically generated using a sequence:
CREATE SEQUENCE priceldSeq MINVALUE 1 MAXVALUE 999999999999999999999999999
START WITH 1 INCREMENT BY 1 CACHE 20;

Listing 2: Creating a new Sequence for automatic Incrementation of ID

Information about the date of change is necessary according to the requirements specified.
Additional information about the Oracle-User could be useful for tracking reasons. The fields
PriceOld and PriceNew record the actual values. The field PriceOld has to be “null”, because
if a new record is inserted, it has no old value for the price. Logging these changes is realised
by creating the following trigger:

CREATE OR REPLACE TRIGGER auditProductPriceHistory
AFTER UPDATE OR INSERT OR DELETE OF list price ON product_ information
FOR EACH ROW
BEGIN
IF UPDATING THEN
INSERT INTO product pricehistory(PricehistoryID, OccuredAt, updatedBy,
ProductID, ProductName, PriceOld, PriceNew)
VALUES (priceldSeq.nextval, SYSDATE, USER, :new.Product_ID,
:new.Product Name, :o0ld.list price, :new.list price);
end 1if;
IF INSERTING THEN
INSERT INTO product pricehistory(PricehistoryID, OccuredAt, updatedBy,
ProductID, ProductName, PriceOld, PriceNew)
VALUES (priceldSeq.nextval, SYSDATE, USER, :new.Product ID,
:new.Product Name, null, :new.list_price);
End if;
IF DELETING THEN
DELETE FROM product pricehistory WHERE ProductID = :o0ld.Product_ Id;
END IF;

Jan David Peters Advanced and Distributed Databases 30/04/2010

END;

Listing 3: Creating a Trigger for to React on Updates, Inserts and Deletes

The created trigger is covering all DML statements (Burleson Consuiting 2009), while the
cases “UPDATING” and “INSERTING” deal with the price data, “DELETING” a
product_information causes removing of all information about price history for the given
record.

Uniqueness is provided by using the unique key constraint (Tech on the net 2009). At first, it

is necessary to make sure that there are no identical product names in the table:
SELECT product_name, count(*) FROM product information GROUP BY
product_name HAVING count(*) > 1;

Listing 4: Check if there are any duplicate Keys

In this case, a record had to be renamed like this:
UPDATE product_information SET product name = 'Client ISO CP - S V4.0
WHERE product_id = '2416"';

Listing 5: Updating a Record which has had a non-unique Key

If the table is prepared well, it will be altered by using the following SQL-statement:

ALTER TABLE product_information MODIFY (PRODUCT_NAME varchar2 (50 Byte) not
null) ADD CONSTRAINT product_information_ukl UNIQUE ("PRODUCT NAME")
ENABLE;

Listing 6: Changing the Table for to not allow Duplicate Keys

It is important to use a constraint identifier with a maximum of 30 characters and to spell
the affected column name right. Inserting an invalid record tests the added functionality.

1.2. Task 2) External Availability of Product and Price information

Providing the price history information can be implemented in different ways. The data is
already stored in the table “product_pricehistory”, therefore it can be exported to XML by

using the following SQL-statement:
SELECT ProductID, XMLElement (
"Product"”,
XMLAttributes (
productid AS "id", productname as "Name",
TO_CHAR (occuredat, 'DD/MM/YYYY HH:Mi:SS') AS "DateChanged"
)
XMLElement ("OldPrice", PriceOld),
XMLElement ("NewPrice", PriceNew)
) AS PriceHistoryXmlData
FROM product pricehistory

Jan David Peters Advanced and Distributed Databases 30/04/2010

WHERE ProductID = 2416
ORDER BY OccuredAt DESC;

Listing 7: Statement for Retrieving Product Data in an XML Structure

PRODUCTID RICEHISTORYXMLDATA. -
<Product id="2416" Name="Client ISO CP - S V4.0" DateChanged="27/10/2009
01:42:31"><0ldPrice>61</CldPrice><MewPrice>7 1</NewPrice></Product>

<Product id="2416" Name="Client ISC CP .S V40" DateChanged="27/10/2009
01 :12:27"><0|dPrice>51 <f0|glF’rice><NewPrice>61 </MNewPrice></Product>

“<Product id="2416" Name="Client ISO CP - S V4.0" DateChanged="27/10/2003
1 01:00:32"><0ldPrice>41</0OldPrice><NewPrice>51</NewPrice></Product>

Figure 1: Evidence of the Result from Listing 7

Oracle displays date data types in different formats, depending on server and user settings.
An applicable way for a consistent date format is the usage of the function TO_CHAR (Tech
on the net 2009). The SQL-statement above produces XML for one history record only,
therefore it is necessary to modify it for getting a structured XML document for a specified
product. It seems to be a good idea to use the “CREATE FUNCTION” command (Oracle 2009).
An example is listed here:

CREATE OR REPLACE
FUNCTION getProductPriceHistoryXML (productid NUMBER) return String IS
strXML string(32000);
BEGIN
/* Get the product name for the given product-ID */
FOR nameRow IN (SELECT product name FROM product information WHERE
product_id = getProductPriceHistoryXML.productid)

LOOP
strXml := '<ProductHistory ProductID="' ||
getProductPriceHistoryXML.productid || '" ProductName=""'
|| nameRow.product name || '">';
END LOOP;
/* Get XML Information about Price history */
FOR curRow IN (SELECT XMLElement (
"PriceChanged",
XMLAttributes (TO_CHAR (occuredat, 'DD/MM/YYYY HH:Mi:SS')
As "DateChanged"),
XMLElement ("OldPrice", Price0ld),
XMLElement ("NewPrice", PriceNew)
) AS PriceHistoryXmlData
FROM product pricehistory
WHERE ProductID = getProductPriceHistoryXML.productid
ORDER BY OccuredAt DESC)
LOOP
strXml := strxml || curRow.PriceHistoryXmlData.getStringVal{():
END LOOP;
/* Close XML-Root-Element */
strXml := strxml || '</ProductHistory>"';

5

Jan David Peters Advanced and Distributed Databases 30/04/2010

RETURN strXML;
END;

Listing 8: Creating a Function that returns an XML Structure

The result will be of the data type “String”, the XML-Element is converted into a string using
the “getStringVal()” method (Oracle 2009). The function will be callable using the following
statements:

SET SERVEROUTPUT ON;

DECLARE

resultValue string(32000);

BEGIN
resultValue:=getProductPriceHistoryXML (2424);
dbms_output.put_line(resultValue);

END;

Listing 9: Example Query for the Created Function

<ProductHistory ProductID="2424" ProductName="CDW 12/24"><PriceChanged
DateChanged="27/10/2009
01:42:31"><0ldPrice>241</OldPrice><NewPrice>251</NewPrice></PriceChanged>
<PriceChanged DateChanged="27/10/2009
01:12:27"><0IdPrice>231</OldPrice><NewPrice>241</NewPrice></PriceChanged>
<PriceChanged DateChanged="27/10/2009
01:00:32"><0IdPrice>221</OldPrice><NewPrice>231</NewPrice></PriceChanged>
</ProductHistory>

PL/SQL procedure successfully completed.

Listing 10: Example Result for the Query Listing 9 {(copied from iSQL Plus)

It would also be possible to use the Oracle XMLType, which enables to store and update an

XML document in a table, column or row (Ritchie 2008). This XMLType data can be queried

using the “Extract” and “ExtractValue” functions in order to retrieve data. A solution for the
given scenario might be implemented as follows:

A table is created; the structure includes a column for the ProductID and an XMLType

column for the XML document

CREATE TABLE priceHistoryXML (
ProductID int PRIMARY KEY,
PriceHistory XMLType

)

Listing 11: Create a Table for Storing the Price History with XMLType

The next step is to create a trigger that listens on the “list price” of the
“product_information” table. The trigger works similar to the one created in Task 1) but

6

Jan David Peters Advanced and Distributed Databases 30/04/2010

inserts or updates the XML document stored in the XMLType column for the specified

ProductID instead of adding a record to the “auditProductPriceHistory” table:
DECLARE
newprice CLOB := '<prices>
<price new="14.00" 0ld="12.00" date="12/01/2010"/>
</prices>"';

BEGIN

INSERT INTO priceHistoryXML VALUES (2416, XMLType (newprice));
END;

Listing 12: Inserting a new Product and Price in the XML History Table

DECLARE
newprice CLOB := '<price new="16.00" 01d="14.00" date="15/01/2010"/>";
BEGIN
UPDATE pricehistoryxml SET PriceHistory = INSERTXMLBEFORE (PriceHistory,
'/prices/price(l] "', XMLType (newprice))
WHERE ProductID = 2416;
END;

Listing 13: Updating the XML Price History by adding a new Price

The retrieval of data for providing the price history to the customers could be performed by

the following query:
SELECT XMLElement ("Product",
XMLAttributes(I.Product id AS "ID",
I.Product_name AS "Name",
I.Product description AS "Description"),
H.PriceHistory
) AS PriceHistoryXmlData
FROM product_information I
LEFT OUTER JOIN pricehistoryxml H ON i.product id = H.productid
WHERE I.product id = 2416

Listing 14: Querying the created Table

. _ PRICEHISTORYXMLDATA -
aPrcduct ID="2416" Name—"Chent ISO CP-SVv40" Descnptmn-"ISO Communication Package add-on
license for additional SPNIX V4.0 client."><prices> <price new="16.00" old="14.00" date="15/01/2010"/>
<price new="16.00" old="14.00" date="15/01/20 10"/> <price new="14.00" old="12.00" date="12/01/2010"/>
</prices> </Product> :

Figure 2: The Result for the Query in Listing 14

Jan David Peters Advanced and Distributed Databases 30/04/2010

1.3. Evaluation of Technologies, Tools and Methods

1.3.1. Price History and Database Triggers

The usage of triggers is regarded as essential for the implementation of the price history
because they could easily be added to the existing data model using PL/SQL. Another
approach to the problem would cause a change in the data model: instead of storing the
former prices in a separate table, the structure requires a change in order to store all prices
(including the current price) in an own table because it can be implemented as a 1:n relation.
Alternatively, the history of prices could be stored within a data warehousing solution.

Basically, all operations which are performed by triggers could also be performed by the
logic of software systems which are accessing the database. These applications could be
responsible for validations and storage of related data.

1.3.2. Oracle SQL/XML

Oracle provides an XML component since the release of the Oracle 10g database (Ritchie
2008, p.349). SQL/XML contains a set of commands which can generate XML documents
from relational database tables (Ritchie 2008, p.351). For experienced SQL developers, the
appliance of SQL/XML is regarded as easy, also because of its in detail documentation
(Oracle 2010).

SQL/XML mainly provides retrieving and converting functions such as “XMLElement” and
“XMLAttributes”. With SQL/XML it is possible to develop complex XML documents within an
acceptable time and effort. Another advantage is the good server performance which leads
to short query times.

Oracle’s XML functionality is a powerful extension and regarded as a valuable for database
developers as well as companies. It can save the cost because it is no longer necessary to
develop XML converters programmatically. On the other hand it needs to be said that the
scope of SQL/XML does not exceed the possibilities which manually programmed solutions
have. There are some constraints existing that might influence the decision if to use
SQL/XML or not, for example merging multiple rows into one XML document by using a
single SELECT-command.

1.3.3. Oracle XMLType

The XMLType is an approach to store and retrieve XML data in tables and columns. It can be
regarded as the opposite of SQL/XML because XML data can be queried in order to receive a
traditional result set. Using the XMLType allows a software system to establish central data

8

Jan David Peters Advanced and Distributed Databases 30/04/2010

storage for XML documents. Oracle supports querying XMLType columns with XPath
(W3Schools.com 2010) and therefore uses a best practice for handling XML documents.

Beside the querying and storage of whole XML documents, there also is the possibility to
manipulate parts of the XML document. This might be helpful when dealing with large
documents in terms of increasing performance.

1.3.4. SQL Developer

Oracle SQL Developer is client software for Oracle database development written in Java.
Besides running SQL scripts, it is possible to create PL/SQL statements, develop database
functionality like triggers and generate reports. SQL Developer is a recommended tool for
accessing Oracle databases. Another alternative approach for querying the database is iSQL
Plus, which is a web-based application.

1.4. References

BURLESON CONSULTING, 2009. Oracle DML statements [online]. Available: http://www.dba-
oracle.com/t_dml_statements.htm [accessed 22 October 2009]

ORACLE, 2010. How to use Oracle XML functions [online]. Available:
http://www.oradev.com/xml_functions.jsp [accessed 19th March 2010]

ORACLE, 2009. CREATE FUNCTION [online]. Available:
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_5009.htm
[accessed 27 October 2009]

TECH ON THE NET, 2009. Oracle/PLSQL: Unique Constraints [online]. Available:
http://www.techonthenet.com/oracle/unique.php [accessed 27 October 2009]

W3SCHOOLS.COM, 2010, XPath Syntax [online]. Available:
http://www.w3schools.com/XPath/xpath_syntax.asp [accessed 17th March 2010]

Jan David Peters Advanced and Distributed Databases 30/04/2010

2. Accessing and Manipulating Data in Applications

2.1. Design, implement and test a transaction processing program

2.1.1. Software Design

Initially, a basic analysis of involved data structures and the expected result has been
undertaken. Beside the class “Action” which represents the database table structure, a class
for accessing the database and processing transactions is needed. The program needs no
graphical user interface (GUI) because it is merely regarded as a batch procedure. However,
some information about progress of transactions and function calls might be helpful for
understanding the performed operations.

Beside the GUI, certain software architecture is unnecessary because of the small scope of
this program; therefore a class diagram, basic sequence diagram and a program flowchart
suffice for specifying the programs structure.

{pig Root 1

i

\ e ——————
| (from AcCouritipdabeProgram)

&7 accouniid g
&1 awerationtyne Sting
B3 nwwvakie dosis

B stetus il
&1 deteTimeDe a7 dbsasiion
1 Egenschatd Stadivograin

| 3 petAccountio(L

¥ sstAnoounticin acemanikl ey e

P getOperstionTyper) it

Y soCpmeabanTypagn opnrabunType Srisgoid
W g \ehm() dres

B sENEWYRIRIN N A BT YR

> peStatusl vy

Detabassaccessin drens rt, in o
B> cxnsirctorss Dotsbasezeassgn RFieHam
£ ae AboutSiricr, B dnfont e i
<3 closaConnectionTbooitan

3 plinprocsssedactions(larud (1o ftinan

i SR swot S

53 nehon, AC i i1l
§1 Bowoschatincion |
£ manne]
Y <cconsiructarr» StProgramg)
Ganerated by UMaedst Www.altova.com
Figure 3: Class Diagram

£ . s) iz

10

Jan David Peters Advanced and Distributed Databases 30/04/2010

sd StartProgram()1 J

S Swh... oot

ArrayListsAction= actions = db.getUnprocessedActions(),

2: getUnprocessedActions() H
1

. il

loop [int i = 0; i < actigns.size(); i++] /)

3 processTransaction(actions.gét(i),null)
1

4; closeConnection()

Generated by UModsl www.altova.com

Figure 4: Sequence Diagram "Connecting to Database and Loading unprocessed Transactions"

11

Jan David Peters Advanced and Distributed Databases 30/04/2010

ProcessTransaction

S
:
L S
refumResult =
INVALID_ACTION |
Create Update é

Statement

i

Set Status Text to Failed ;

S

e

“I.fil‘nsert or
Update faile

Try again with predefined Status

Return False

9

Set Status Text to
Success

§ ’Return True

Figure 5: Program Flowchart for Processing a Transaction

2.1.2. Implementation

The implementation in Java is based on the derived UML diagrams and the flowchart for the
main algorithm. All database operations are performed by the “Database” class which uses
JDBC. This class is implemented in “Singleton pattern” to make sure that there is only one
instance of this class (Larman 2005, p.443) and therefore only one corresponding connection
to the database at any time. It is developed to allow easy migration to other DBMS by just
adding an additional private constructor in combination with a public “getInstanceFor...()"-
function. The only thing that needs to be adjusted is the connection string and its
parameters to provide a more flexible solution. For example, connecting to Microsoft Access
databases is already implemented and tested.

12

Jan David Peters Advanced and Distributed Databases 30/04/2010

Generally, the database is queried using so called Prepared Statements which are available
in the “java.sql” package. All possible errors are handled and outputted, because this
solution is regarded as a prototype.

The main algorithm is contained in the “processTransaction(...)” function. It is responsible for
creating the SQL statements and monitors the success. A speciality of this function is the
ability for recursive calls in the case of failed database transaction. For example:

An account should be updated, but it does not exist. The error is recognised and the function
is called again with the additional parameter “UPDATE_FAILED” which tells the function to
insert this new account into the database.

2.1.3. Source Code

Action.java - the class represents a row of the action table

* and containeg getter and zetter nethods

import java.sqgl.Date;
public class Action {

private int accountId;
private String operationType;
private double newValue;
private String status;
private Date dateTime;

public Action() {

}
public Action(int accountId, String operationType,
double newValue, String status, Date dateTime) {
this.accountId = accountlId;
this.operationType = operationType;
this.newValue = newValue;
this.status = status;
this.dateTime = dateTime;

public int getAccountId() {
raturn accountld;

public void setAccountId(int accountld) ({
this.accountId = accountId;

public String getOperationType () {
return operationType;

public void setOperationType (String operationType) {
this.operationType = operationType;

public double getNewValue () {

13

Jan David Peters Advanced and Distributed Databases

30/04/2010

return newValue;

public void setNewValue (double newValue) {
this.newValue = newValue;

public String getStatus() {
raturn status;

public void setStatus(String status) {
this.status = status;

public Date getDateTime () {
return dateTime;

public void setDateTime (Date dateTime) {
this.dateTime = dateTime;

}
Listing 15: Action.java

2 opened at
Poters

~12-05

* @Gdate 20

* Qesrysion 1.0

* /

import java.sql.Connection;
import java.sql.DriverManager;
import java.sgl.PreparedStatement;
import java.sql.ResultSet;

import java.sql.SQLException;
import java.sqgl.Statement;

import java.util.ArrayList;

public class DatabaseAccess {

private static DatabaseAccess INSTANCE;
private Connection conn;

CONNECTION PRYANETErs Lox
private String dbHost;
private int dbPort;

private String dbSid;
private String dbUser;
private String dbPassword;

private String dbFileName;

/7 possible status cexts

static String UPDATE SUCCESS = "Update: success.";

static String UPDATE FAILED = "Update: ID not found. Value inserted.";
static String DELETE SUCCESS = "Delete: success.";

static String DELETE FAILED = "Delete: ID not found.";

static String INSERT FAILED = "Insert: Account exists. Updated instead.";

static String INSERT SUCCESS = "Insert: success.”;
static String INVALID ACTION = "Invalid operation. No action taken.";

/7

[oh 4 e an instance for

private DatabaseAccess(int dbms, String dbHost, int dbPort, String dbSid,

String dbUser, String dbPasswort)

14

Jan David Peters Advanced and Distributed Databases 30/04/2010

System.out.println("DatabaseAccess();");
this.dbHost = dbHost;
this.dbPort = dbPort;
this.dbSid = dbSid;
this.dbUser = dbUser;
this.dbPassword = dbPasswort;
try |
Class. forName ("oracle.jdbc.driver.QracleDriver™);
this.conn = DriverManager.getConnection("jdbc:oracle:thin:@" +
this.dbHost + ":" + this.dbPort + ":" +
this.dbsid,
this.dbUser, this.dbPassword);
} catch(Exception e) {
e.,printStackTrace();

;7 Te an ingtance for me

private DatabaseAccess (String dbFileName, String dbUser, String dbPasswort) {

System.out.println ("Databasehccess();");

this.dbFileName = dbFileName;

this.dbUser = dbUser;

this.dbPassword = dbPasswort;

try |

this.conn = DriverManager.getConnection |

"jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" +
this.dbFileName, this.dbUser, this.dbPassword);

} catch(Exception e) {
e.printStackTrace();

ion wo oracle

return 4 Conneg

singleton patiernt
public static DatabaseAccess getOracleInstance(String dbHost, int dbPort,

String dbSid, String dbUser,

String dbPasswort)
{

System.out.println("getOraclelnstance();");
if (INSTANCE == null) {
INSTANCE = new DatabaseAccess (0, dbHost, dbPort, dbSid, dbUser,
dbPasswort) ;
}
return INSTANCE;

public static DatabaseAccess getAccessInstance(String dbFileName, String dbUser,

String dbPasswort) {
System.out.println("getAccessInstance();");
if (INSTANCE == null) ({
INSTANCE = new DatabaseAccess (dbFileName, dbUser, dbPasswort):;

}
return INSTANCE;

;7 -

close cc on (will be ca

public boolean closeConnection() {

15

Jan David Peters

Advanced and Distributed Databases 30/04/2010

System.out.println("closeConnection();");

try {

if(!'this.conn.isClosed ()} {
this.conn.close ()

}

return true;

} catch (Exception e) {

/7 - an unproc

return & li

return false;

seTion has no sta TERT

public ArrayList<Action> getUnprocessedActions() {

P I

te an empty list which can ¢ o ohijects

ArrayList<Action> arrlList = new ArrayList<Action>();

try {

create variable for temporary action of

Action tmpAction;

create a stabts

for reading in the da

Statement stmt =

this.conn.createStatement (ResultSet.TYPE SCROLL INSENSITIVE,

ResultSet.CONCUR_UPDATABLE) ;

@t

atug Text)

new_value, status,

time tag FROM action WHERE status IS NULL OR status = '' ORDER BY TIME TAG");

feteh all unprocessed a

iong {(unprocessed actlons do noi

ResultSet rs = stmt.executeQuery("SELECT account_id, oper_type,

while(rs.next ()) {

create tenporary actl object

g

tmpAction = new Action();

/7 put in the data from the sgl quary
tmpAction.setAccountId(rs.getInt ("account_id"));
tmpAction.setOperationType (rs.getString("oper type"));
tmpAction.setNewValue (rs.getDouble ("new_value"));
tmpAction.setStatus(rs.getString("status"));
tmpAction.setDateTime (rs.getDate ("time_tag"));

-

/7 add the temporary

arrList.add (tmpAction);

ction ¢ the llzt

TG Thge LLEn

}

/7 close datab

connection

rs.close();

} catch(Exception e) {

e.printStackTrace();

/7 return list

return arrlList;

allo o 3
public boolean processTransaction(Action action, String predefinedReturnValue) {
System.out.println ("processTransaction (" + action.getAccountId() + ");");

/7 Default Result is

wext in ¢ of a £ d command

to Invalid Action

String returnResult = INVALID ACTION;

try |

Jan David Peters

Advanced and Distributed Databases

30/04/2010

ACCOUNT_ID =

2"y ;

(account_id, bal}

7 39l st for
S/ and sateguarding against flure

PreparedStatement pstmt = null;

i/ i

Ccperation ig

if(action. getOperatlonType() equals ("u")) {

prepare statement for updating
pstmt = this.conn.prepareStatement ("UPDATE accounts SET BAL = ? WHERE
add the new balance as flrst parametex
pstmt.setDouble(l, action.getNewValue());
/7 add the account ld a3 second parameter
pstmt. setInt(Z action.getAccountId());
/7 Lf there lg no predefined value, then the
defaunlt returned result will be UPDATE 1,
otherwise it will be the predefined value
Lf(predeflnedReturnValue == null) {
returnResult = UPDATE SUCCESS;
} else {
returnResult = predefinedReturnvValue;
}
// exXecute The crezted =i
pstmt.executeUpdate ()
'/ count the number of results verlflcatlon
updateCount = pstmt getUpdateCount(
fsoag e .
an attempt for
if (updateCount == 0)
24 sr object by
action;
/7 change operatl o lnse) of update
newAction. setOperatlonTyp e ("i");
// process 2 new Lo * sddivziconal
/7 nf the previous resulz:
this. processTransactlon(newActlon, UPDATE FAILED);
// reuvurn :
return false;
}
// 1E operaticon will be an sl

VALUES

2,)"y

} alse 1f(actlon.getOperationType().equals("i"))

/

/7 prepare

ement for Insert

{

pstmt = this.conn. prepareStatement("INSERT INTO accounts

pstmt.setInt (1, action.getAccountld()):;

/7 add the new balance as second paraneter

pstmt setDouble(Z, action.getNewvValue());
/Lf sredefined value, T

arned result will be

/ be the pre:
if(predeflnedReturnValue == null) {

returnResult = INSERT SUCCESS;
} else {

returnResult = predefinedReturnValue;

}
try

/7 execute the created stavement
pstmt.executeUpdate () ;

17

Jan David Peters Advanced and Distributed Databases 30/04/2010

/4 L8 alreldy € Xig g
if(e.getSQLState () == "23000" ||
e.getMessage () .equals ("General error")) {

setup a new on object by copyving the old

Action updateAction = action;

change operation to update instead of i

updateAction.setOperationType {("u"});
. T

P o) > AoTiew tra 2T WA

niormart.on

7 the previ LT {INSERT _FAILL
this.processTransaction (updateAction,
INSERT FAILED);
return false;
} else {

e.printStackTrace () ;

}

} else if(action.getOperationType ().equals("d")) {
/7 prepare statenent for deleting

pstmt = this.conn.prepareStatement ("DELETE FROM accounts WHERE
ACCOUNT_ID = 2");

/add the ac

cunt id as paranpeter

pstmt.setInt (1, action.getAccountId{()):

/ define the axp e 1l e

e 2

returnResult = DELETE SUCCESS;

execuie Lhe 31and

pstmt.executeUpdate () ;

// get the result

updateCount = pstmt.getUpdateCount ();
Lf no row has been deleted

if (updateCount == 0) {

/7 set s led, becauss no vow was LZound orv

returnResult = DELETE FAILED;

/ write status to the action row
pstmt = this.conn.prepareStatement ("UPDATE action SET status = ? WHERE
account_id =
")
/7 set status text as first parameter
pstmt.setString(l, returnResult) ;
// set account id as identifier
pstmt.setInt (2,action.getAccountId()):;
try |
/execute s nt
pstmt.executeUpdate () ;
} catch(Exception e) {
e.printStackTrace();
}
} cateh (SQLException e} {
e.printStackTrace();
}

return true;

}

Listing 16: DatabaseAccess.java

18

Jan David Peters

Advanced and Distributed Databases

30/04/2010

;K ox

*
@y U

* Zversion 1.0

import java.util.ArrayList;

public class StartProgram ({

¢t class for the accounts update program

public static void main(String[] args) {

}

new StartProgram();

public StartProgram() {

}

System.out.println("StartProgram{()");

// for use In university (oracle)
DatabaseAccess db = DatabaseAccess.getOracleInstance
"preston3",1521, "academic", "petei 97", ""S8247897");

access)

e ("database.mdb™, ", "

/7 load all unproce xd act
ArrayList<Action> actions = db.getUnprocessedActions();
// for each action
for(int i = 0; 1 < actions.size(); i++) {

// process the given transaction

db.processTransaction(actions.get (i), null);

se database connectlon

db.closeConnection() ;

Listing 17: StartProgram.java

2.1.4. Test

Testing has been performed by creating a set of test data which was applied to the program.

The application of an “action” can cause either a change in the accounts table or a failure.

For verify the appropriate running of the program, a table of expected results has been

created. After running the program, the received results have been compared with the

expected ones:

Action

Expected Result

Update ID 3, Set Bal. to 599
Insert ID 6, Set Bal. to 20099

Delete ID 5

Update successful
Insert successful

Delete successful

19

Jan David Peters

Advanced and Distributed Databases

30/04/2010

Update ID 7, Set Bal. to 1599

Insert ID 1, Set Bal. to 399

Delete ID 9

Invalid Command on ID 10

Update failed, Record does not exist, Record was

inserted instead

Insertion failed, Record already exists, Record was

updated

Deletion failed, Record does not exist

Invalid Command

Figure 6: Table of Test Data and Expected Results

The following figure shows an example output of the programming. This example is started

in Eclipse IDE and connects to a Microsoft Access database:

public class Start.

ScartProgram()
getAccessInstance();
Databaseiccess () ;

processTransaction(10)
Invalid operation. No
processTransaction(9):
Delete: ID not found.
processTransaccion(l)
processTransaction(1);

processTransaction(7);
processTransaction(7) ;
Update: ID not found.
processTransaction(5):
Delete: success.
processTransaction(6);
Insert: success.
processTransaction(3);
{[Update: success.
closeConnection();

import java.ucil.ArraylLisc;

Program (

........ Sl Sartbieny n {4) [v A o] oy om Fles\ oS\ v e 07,4010 13746:62)

getUnprocessedActions ()

action taken.

Insert: Account exists, Updated instead.

Value inserted.

S Tkt 22

ﬂ;é

Figure 7: Example Output of the Accounts Update Program in Eclipse

2.2. Evaluation of Technologies, Tools and Methods

2.2.1. Java or PL/SQL

Java has been chosen as the programming language for the accounts update program.

Beside the familiarity to Java, the crucial point is that PL/SQL is a proprietary scripting

language that originally was designed only for Oracle database management systems and

therefore is not platform or database independent. A PL/SQL script would need to be

20

Jan David Peters Advanced and Distributed Databases 30/04/2010

translated into another procedural language like Transactional SQL (T-SQL) for Microsoft SQL
Server. This potentially causes an increased effort in time and therefore cost. Furthermore, a
Java program runs outside the DBMS and therefore can make use of more or iess unlimited
processor resources which can increase performance (Lott 2007).

2.2.2. JOBC and Prepared Statements

Usage of JDBC and Prepared Statements highly contributed to realise easy swapping of
DBMS. Nowadays, the majority of relational database management systems bring a JOBC
driver along that can easily be used in Java. Beside a specific driver, the only thing that needs
to be changed is the connection string which contains information like the host address,
database name, user account and password.

Prepared Statements are regarded as an improved alternative to common SQL statements
especially when dealing with parameters. A Prepared Statement is precompiled when it is
created and does not need further compilation when running. The advantage is that one
Prepared Statement can be used with different parameters and needs to be compiled only
once (Oracle Corporation 2010, “Using Prepared Statements”). Another advantage is that
values are not directly written into the SQL string but step-by-step added to the Prepared
Statement object by using functions that correspond to the parameters data type. This
assures that only valid values are reaching the database, because the Prepared Statement
takes care of escaping values (De Vries 2006, p.17). This seems to be an effective way to
prevent SQL injections and therefore increases application and database security.

2.2.3. Eclipse IDE

Using the Eclipse Integrated Development Environment was quite useful, primarily because
of its good usability. It contains comfortable features like syntax highlighting, code
completion and code refactoring. Eclipse is regarded as one of the best open source
solutions for Java development and is used prestigious IT companies like SAP, Ericsson and
Hewlett Packard as well as strategic developers like Intel or IBM, which create products that
are based on the Eclipse project (Milinkovich 2004).

2.2.4. Oracle Application Express (APEX)

Oracle tries to position APEX as an easy-to-use web application development tool. It can be
useful for rapid development of common requirements like data entry masks, reports and
charting (Oracle Corporation 2010, “Oracle Application Express”). These typical fields of
appliance are covered by wizards, which causes a minimal amount of programming effort.
APEX is available as a free add-on for “every edition of Oracle database” (Oracle Corporation

21

Jan David Peters Advanced and Distributed Databases 30/04/2010

2010, “Application Express Flash Demonstration”). in converse argument that means, that an
Oracle database license has to be owned before using APEX.

However, APEX has not achieved a noteworthy acceptance by software engineers. Research
about APEX discovered only a handful of books and, beside the Oracle APEX web site, no
frequently used exchange platforms on the web. One reason might be its limited
customisation capabilities because of predefined elements. It could be difficult to implement
more complex business processes or work flows with this kind of modular construction

system.

2.3. References

DE VRIES, S., 2006. A Modular Approach to Data Validation [online]. Available:
http://research.corsaire.com/whitepapers/060116-a-modular-approach-to-data-
validation.pdf [accessed 3rd April 2010]

LARMAN, C., 2005. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development. 3™ ed. Upper Saddle River: Prentice Hall

LOTT, S., 2007. PL/SQL vs. Java — Which is really faster? [online]. Available:
http://homepage.mac.com/s_lott/iblog/architecture/C465799452/E20070322201220/index.
html [accessed 2nd April 2010]

MILINKOVICH, M., 2004. Eclipse bietet Potential fiir Softwareunternehmen und IT-
Abteilungen [online]. Available: http://de.sap.info/%E2%80%9Eeclipse-bietet-potenzial-fur-
softwareunternehmen-und-it-abteilungen%E2%80%9C/1997 [accessed 3rd April 2010]

ORACLE CORPORATION, 2010. Using Prepared Statements [online]. Available:
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html [accessed 2nd April
2010]

ORACLE CORPORATION, 2010. What is APEX? [online]. Availbale:
http://www.oracle.com/technology/products/database/application_express/html/what_is_
apex.html [accessed 2nd April 2010]

ORACLE CORPORATION, 2010. Application Express Flash Demonstration [online]. Available:

http://www.oracle.com/pls/ebn/swf_viewer.load?p_shows_id=6392594 [accessed 2" April
2010]

22

Jan David Peters Advanced and Distributed Databases 30/04/2010

3. Improving Data Access by Data Distribution and Replication

3.1. Task 2) Creation and Testing of a SQL View

Designing a view which includes tables of different databases requires careful thoughts
about the required fields and the construction of the SQL statement. Basically, there are
three steps necessary in order to create the basic view:

At first, a SQL statement needs to be created for to retrieve data from one database. The
required tables and fields need to be determined and the tables need to be joined, e.g. like
this:

SELECT EM.employee_id, EM.first_name, EM.last_name, lo.city, JO2.job_title, jo.job_title AS
former job_title, jh.start_date, jh.end date
FROM hrd.employees@student3 EM

LEFT OUTER JOIN hrd.departments@student3 DE ON EM.department id = DE.department_id
LEFT OUTER JOIN hrd.locations@student4 LO ON DE.location_id = LO.location_id
LEFT OUTER JOIN hrd.job history@student4 JH ON EM.employee_id = jh.employee_id
LEFT OUTER JOIN hrd.jobs@student4 JO ON JO.job_id = JH.job_id

LEFT OUTER JOIN hrd.jobs@studentd Jo2 ON JO2.job_id = EM.job_id

Listing 18: Query for to retrieve the List of all German Employees

EMPLOYEE ID FIRST NAME TLE START DATE END DATE

204 Hermann “Baer Munich Relations
Representative

Figure 8: Result for Listing 18

Beside basic employee data which is on the corresponding database server, the information
about locations and former jobs is available on the “student4” server. This query contains
the table “departments” as an intermediate table, because it contains the reference to the
actual location of the employee which is included in the “locations” table. The table “jobs” is
joined in two ways. On the one hand, it is linked to the current job of the employee and on
the other hand it references to all former jobs that are contained in the “job_history” table.

Although, this query obviously contains all required fields from the given tables, an
important column is missing: an identifier for the database that holds the queried records.
Therefore, an additional field that contains the “database country” needs to be added

manually. This can be performed as follows:

SELECT EM.employee id, EM.first_name, EM.last_name, lo.city, JO2.job_title, jo.job_title AS
former_ job_title, jh.start_date, jh.end_date, 'Germany' AS DbCountry

Listing 19: Extended Query which includes a column for the corresponding Country

23

Jan David Peters

Advanced and Distributed Databases

30/04/2010

EMPLOYEE_ID FIRST NAME

204 Harmann Baer

‘Munich Relations
Representative

TLE START DATE END_DATE DBCOUNTRY

Germany

Figure 9: Result of Listing 18 with the Changes made in Listing 19

This query has to be adjusted for the “student4” and “student5” database as well, but with

different presets in the “DbCountry” column (values for “USA” and “UK”).

The next step is to combine all three queries in order to retrieve one set of records. Oracle

uses the UNION ALL command for this operation. Finally, the constructed SQL statement
needs to be stored as a view using the CREATE OR REPLACE VIEW command:

CREATE OR REPLACE VIEW employee_list AS (

SELECT

FROM
LEFT
LEFT
LEFT
LEFT
LEFT

former_job_title, jh.start_date,
hrd.employees@student3 EM

OUTER
OUTER
OUTER
OUTER
OUTER

UNION ALL
SELECT EM

former_job_title, jh.start_date,

hrd.employees@student4 EM

FROM
LEFT
LEFT
LEFT
LEFT
LEFT

OUTER
OUTER
OUTER
OUTER
OUTER

UNION ALL
SELECT EM

former_job_title, jh.start_date,

hrd.employees@student5 EM

FROM

LEFT

LEFT

LEFT

LEFT

LEFT
)

OUTER
OUTER
OUTER
OUTER
OUTER

JOIN
JOIN
JOIN
JOIN
JOIN

hrd.departments@student3
hrd.locations@student4d
hrd.job_history@studentd
hrd.jobs@student4
hrd.jobs@student4

EM.employee_id, EM.first_name, EM.last name, lo.city, JO2.job_title, jo.job_title AS

jh.end_date, ‘'Germany' AS DbCountry

DE
Lo
JH
Jo

JO2

ON
ON
ON
ON
ON

EM.department_id = DE.department_id
DE.location_id = LO.location_id
EM.employee_id = jh.employee_id
JO.job_id = JH.job_id

JO2.job_id = EM.job_id

.employee_id, EM.first_name, EM.last_name, lo.city, JO02.job_title, jo.job_title AS
jh.end_date, 'USA' AS DbCountry

JOIN
JOIN
JOIN
JOIN
JOIN

hrd.departments@student4
hrd.locations@student4
hrd.job_history@studentd
hrd.jobs@studentd
hrd.jobs@student4

DE
LO
JH
JoO
Jo2

ON
ON
ON
ON
ON

EM.department_id = DE.department_id
DE.location_id = LO.location_id
EM.employee_id = jh.employee_id
JO.job_id = JH.job_id

JO2.job_id = EM.job_id

.employee_id, EM.first_name, EM.last_name, lo.city, JO2.job_title, jo.job_title AS
jh.end_date, 'UK' AS DbCountry

JOIN
JOIN
JOIN
JOIN
JOIN

hrd.departments@student5
hrd.locations@student4
hrd.job_history@student4
hrd.jobs@student4
hrd.jobs@student4

DE
LO
JH
Jo
Joz2

ON
ON
ON
ON
ON

EM.department_id = DE.department_id
DE.location_id = LO.location_id
EM.employee_id = jh.employee id
JO.job_id = JH.job_id

JO2.job_id = EM.job_id

Listing 20: SQL Statement for to Create a View over Different Databases

24

Jan David Peters Advanced and Distributed Databases 30/04/2010

A simple query for retrieving the first few rows is shown below:

EMPLOYEE ID FIRST NAME LAST NAME CITY JOB.TITLE FORMER JOB -
Public
204 Hermann Baer Munich | Relations Germany
) Representative
I Accounting
205 Shelley Higgins Seattle Manager USA
- . Public
206+ William G@z Seattle Accountant i USA
i Finance
108 Nancy Greenberg Seattle Manager UsA
111 lsmael : Sciarra Seattle Accountant] USA
112 Jose Manuel Urman Seattle Accountant) USA
- 110 John Chen _ - Sealtle Accountant USA
13 Luis Popp _ Seattle Accountant - USA
109 Daniel Faviet Seattle Accountant usAa
100 Steven King Seattle 'President USA
Administration
102 Lex De Haan Seattle Vice President Pragrammer ‘13-JAN-93 24-JUL-98 USA
Administration .
101 Neena Kochhar Seattle Vice President Public Accountant ‘21-SEP-89 27-0CT-93 USA
j : Administration -
101: Neena Kochhar Seattle Vice Prasidant AccountmgwManager 28-0CT-93 15-MAR-97 USA
Purchasing
114 Den Raphaely Seattle Manager - Stock Clerk 24-WAR-38 31-DEC-39 USA
, . Purchasing
118 Guy Himuro Seattle Clerk USA
119 Karen Colmenares Seattle Purchasing USA
Clerk
. . Purchasing
117 . Sigal Tobias Seattle Clerk usa
. . Purchasing
116 Shelh‘ Baida Seattle Clerk USA
Purchasing
115 Alexander Khoo Seattle Clerk - USA
200 Jennifer Whalen Seattle ROMTSUAIN pipic Accountant 01JUL94 31-DEC98 USA
ssistant
. Administration - Administration
200 Jennifer VWhalen Seattle‘ Assistant Assistant 17-SEP-87 17-JUN-83 USA
Sales
146 Karen Part{'ners Oxford Manager UK
. Sales
149 Eleni Zlotkey Oxford Manager UK
c Sales
145 Jchn Russell O#ord Manager UK

Figure 10: Excerpt of the Full Result for the Query in Listing 20

25

9¢

|9pOW seqeieq pRinquiasia (IT 4ndi4

= Users

HF = Horizortal Fragment

AR = Asynchronous Replication
SR = Synchronous Replication
CU = Connected User

EMPLOYEE
JOBHISTORY

JOBS
DEPARTMENTS »HF
LOCATIONS
COUNTRIES
REGIONS

o g

Communication Network

Has Access Rights

ORDERS
ORDER_ITEMS
CUSTOMERS ¢ AR
INVENTORIES
WAREHOUSES

PRODUCT _INFORMATION

SR

USA Site (HQ) GER Site
cy a0 -1
S e
AR
WY
EMPLOYEE EMPLOYEE T Access Rights
JOBHISTORY Hia Accuss Rig JOBHISTORY
JOBS JOBS
DEPARTMENTS »HF DEPARTMENTS @ HF
LOCATIONS LOCATIONS
COUNTRIES COUNTRIES
REGIONS REGIONS
R N -

ORDERS
ORDER_ITEMS
CUSTOMERS > AR
INVENTORIES
WAREHOUSES

PRODUCT _INFORMATION

PRODUCT DESCRIPTION

SR

ORDERS
ORDER._ITEMS
CUSTOMERS > AR
INVENTORIES
WAREHOUSES

PRODUCT DESCRIPTION

PRODUCT _INFORMATION

SR

‘'€

uonnjos ubisaq asoqning paingiiisig b Jo uoiadNpPoid (g ¥sol

s4919d piaeq uer

saseqeleq paingusiq pue padueApy

0T0Z/¥0/0€

Jan David Peters Advanced and Distributed Databases 30/04/2010

This diagram describes the basic architecture of a solution for to distribute the company’s
database. Basically, the scenario requires a “truly distributed database architecture” as it is
shown by Elmasri (2000, p.768). The chosen approach combines Elmasri’'s model, which
contains information about the different transparencies (2000, p.769), with symbols and
presents detailed descriptions of the applied replications, fragmentations and accessibilities.

On the top of the model, there is the communications network which stands for the basic
connectivity between the databases in order to enable distributed query processing (Elmasri
2000, p.770). The three rectangles do represent the different sites with their database
servers which are connected to the communication network.

Each database server contains two databases with identical data structures. Location specific
data (especially the HR database) are stored horizontal fragmented because these tables all
have the same structure but different contents. In other words, the rows of the table are
distributed to the corresponding sites (Monger 2009, p.6).

While the distribution of the HR database is regarded as simple, the requirements for the OE
database need to be carefully analysed. Updates of orders do not need to be available on
other sites instantaneously; therefore this partial replication can be asynchronous, e.g. once
a day. According to the requirements, the product and price information needs to be as
consistent and up-to-date as possible. This information is stored in the tables
“product_information” and “product_description” which are synchronously replicated to the
other databases. In this case, synchronously means an immediate replication. It has to be
said that this replication technique requires a concurrency control for “multiple copies” in
order to maintain a consistent database (Elmasri 2000, p.786).

Finally, the model contains connected users in order to allow one site to look up data of
another location. These users have access rights to all tables of the corresponding database.

3.3. Evaluation of Technologies, Tools and Methods

3.3.1. Concept of Distributed Databases and Replication

Basically, the idea of distributed databases is regarded as a great extension for “normal”
database management systems. Bigger companies can profit of these concepts, especially
when using a distributed computing system for different locations instead of stand-alone
applications (Eimasri 2000, p.766). On the one hand, it enables the different sites to store
their data autonomic and therefore increase sovereignty of their data pool by using a certain
limited transparency level. On the other hand it allows easy exchange of productive data
with other sites and can enhance communication and transparency with all its advantages
and synergetic effects. Elmasri mentions some of the most important pros (2000, p.770):

27

Jan David Peters Advanced and Distributed Databases 30/04/2010

- Improved performance by spreading the CPU workload to different systems

- Better availability, because if one database should fail, the other sites could continue
work or another database might be accessed

- Easier expansion can be performed easier, because the architecture of the database
management system is designed for increasing the database size or adding more
processors

Management can highly profit from immediate reports. Processing distributed queries with
various databases can for example show the differences between certain sites and serve as a
basis for decision support.

3.3.2. Database Design and Effort

All of these advantages come along with an enormous effort and serious risks. Good
planning of a distributed system is essential for a successful system and is seen as the major
risk. Especially the requirements elicitation should be detailed, well-designed and validated
multiple times. Later changes in basic needs could easily cause a complete re-design of the
architecture and possibly have a bigger impact than common requirement changes in
software systems development.

The effort can be divided into two parts:

1. The effort for to design and implement a distributed database. It takes more time to
establish a distributed database than a normal one, because of the complexity and
constraints that are derived from the requirements. Furthermore, an extensive
testing must include availability and reliability tests as well as auditing concurrency
control.

2. The effort for to run a distributed database. Beside the financial aspects of owning
and maintaining multiple servers with numerous licenses, queries may cause huge
efforts in system performance. Elmasri provides basic calculation for different
strategies in order to determine the effort of distributed query processing (2000,
pp.781-782)

The effort and costs for distributed database systems depends on the chosen approach:

- Centralised databases are the cheapest concept, but they go along with high
communication effort and provide low reliability. Furthermore, they are not seen as a
distributed database.

- Fragmentation of a database distributes the responsibility for the content to different
servers. The storage cost is quite low and the system itself might be highly available.
Nevertheless, retrieving single records might fail because they are only stored at one
place.

28

Jan David Peters Advanced and Distributed Databases 30/04/2010

- Replication provides the best quality in terms of communication, reliability and
availability. However, it distributes the data to all involved servers and therefore
causes a continuous huge effort.

3.3.3. Applicability in Praxis

Implementation of a distributed database design for Oracle database servers requires
thoughts about the different techniques. Databases and users need to be linked and
replication models need to be determined. The replication itself requires careful thoughts
about concurrency. Furthermore, the necessities for defining so called snapshots have to be
evaluated and other techniques for increasing the speed of queries should be applied.

3.4. References
ELMASRI, R., 2000. Fundamentals of Database Systems. 3" ed. Harlow: Addison-Wesley
MONGER, A., 2009. Distributed Databases [online]. Available:

http://mycourse.solent.ac.uk/file.php/1795/DatabaseSystems/Topics/Distributed%20Datab
ases/Distributed%20Databases%20Test.ppt#1 [accessed 21 April 2010]

P =

29

Jan David Peters Advanced and Distributed Databases 30/04/2010

4. Multi-Dimensional Modelling and Analysis for Decision
Support

4.1. Task 1) Implementation of Analysing Data for Decision Support

This analysis deals with providing a presentation for the management. This report contains
sales information generalised by product categories and split into customer’s income level
and the year. On the one hand, it can be used for to identify uneconomical product
categories that might be rejected. On the other hand it can detect lucrative product
categories that could be expanded in a better way. The information about the customer’s
income level, and therefore their credit rating, could lead to decisions if to put the business’s

focus on richer customer groups.

Basically, the given model contains all relevant dimensions for this reporting. According to
Smith (2004, pp.384-385) and Mallach (2000, p.496), this model can be characterised as a
star scheme that is commonly used in data warehouses. The first step is to analyse the
dimensions and measures (or fact data) in order to determine the so called “cube”. A cube
typically consists of three dimensions and the measure. Larger cubes with four or more
dimensions are called “hypercubes” (Mallach 2000, p.499). In this example the basic
dimensions are given, but the values need to be determined:

Dimension Values
1* Dimension Time Year
2" Dimension Product Category
3" Dimension Customer Income Level

Table 1: The Chosen Dimensions

The fact data is defined as well; it is either the number of sold products or the summarised
amount that has been earned by selling the products. After changing the dimensions, the
modified cube looks like this:

30

Jan David Peters

Advanced and Distributed Databases 30/04/2010

‘o"l‘\(? @
o
> & & &
4 1998 /
B 1999 A: below 30K
etc.
total

Product Category

B: 30-50K

etc.

Income Level

total

Figure 12: Multi-Dimensional Model (Cube) for the example Analysis

After modelling the cube it needs to be implemented as a SQL statement. The following SQL

statement contains the basic query that returns all combinations of records:

SELECT

FROM
WHERE
AND

AND
GROUP BY
ORDER BY

T.calendar year, P.prod_category, C.cust_income level,

sum (S.amount_sold) AS FactData

sales_transactions_ext S, products P, times T, customers C
S.prod_id = P.prod id

.time_id = T.time_id

S
S
T
T

.cust_id = C.cust_id

.calendar_year,
.calendar_year,

P.prod category, C.cust_income level
P.prod category, C.cust income level

Listing 21: Querying the cube for to retrieve all records (combined with all dimensions)

Retrieving data from this cube should be done by assuming values for the dimensions in

order to provide “a more useable, generic solution” (Monger 2010, p.5). The whole set of

records might

be very large and could therefore demand a lot of unnecessary processing

power. A short example statement retrieves the 1998’s summarised amount for the

category “Electronics” listed by the different income levels:

SELECT

FROM
WHERE
AND
AND

T.calendar_year, P.prod category, C.cust income level,
sum(S.amount sold) AS FactData

sales_transactions_ext S, products P, times T, customers C
S.prod_id = P.prod_id

S.time_id = T.time_id

S.cust_id = C.cust id

31

Jan David Peters Advanced and Distributed Databases 30/04/2010
AND T.calendar_year = '1998'

AND P.prod category = 'Electronics'

GROUP BY T.calendar_ year, P.prod_category, C.cust_income_ level

ORDER BY T.calendar year, P.prod category, C.cust_income_level

Listing 22: Querying the cube for a certain year and product category

The database result for this query looks like this:

CALENDAR YEAR PROD_CATEGORY CUST_INCOME_LEVEL FACTDATA
1998 Electronics ‘A: Below 30,000 80432.73
1998 Electronics B: 30,000 - 49,999 98595.35
§ 1998 iElectronics C: 50,000 - 69,999 E 171791.26
; 1998 Electronics D: 70,000 - 89,999 173268.92
1998 Electronics E: 90,000 - 109,999 | 269882.92
§ 1998 Electronics F: 110,000 - 129,999 . 308938.59
1998 Electronics 'G: 130,000 - 149,999 171013.77
1998 Electronics H: 150,000 - 169,999 - 170221.12
1998 Electronics I: 170,000 - 189,999 130022.95
1998 Electronics J: 190,000 - 249,999 | 86140.1
1998 Electronics K: 250,000 - 299,999 55149.8
1998 Electronics 'L: 300,000 and above 57665.01
| 1998 Electronics 868.47

H

Table 2: Example result for query in Listing 22

The last record contains an empty column for income level. It means that there are customer
records in the database that contain no information about their income level. The
circumstance of missing or empty data is common for data warehouses and the reason for it
is often poor information quality in data warehouses database (Mallach 2000, p.507). In
order to achieve a meaningful and valid result this exceptional case should be handled either
by excluding the data or better naming it as “unknown” for example. According to Mallach,
this process is called cleansing and aims to reduce missing, incorrect, inconsistent and
conflicting data (2000, p.508).

The next step is to prepare the data for evaluation and presentation. This can be done using
different approaches.

32

Jan David Peters Advanced and Distributed Databases 30/04/2010

4.1.1. Preparing the Data using Microsoft Excel

Copying the raw data to Microsoft Excel and create a pivot table that is able to display multi-

dimensional data on a spreadsheet with summarised columns and rows:

3 Micrasoft Dxcel Molwrldﬁ TS . . . wlalx
. . M £ 05 Mo e viimx
3Dﬁxﬂﬁig§[§t'&‘ xﬁamv : , , e . :

G D Mg v e . ‘ 0. A D EBEE W e n g e B A

Gemeinrchaftskasse. xls
“amlchalskasye. v
Mappe.xls
Ausgafihrte Arbeian i England |
[Weders Arhellsmaggen,

Y Leere Arbsitsmappe
Neu aus vorhandener

&) Arbeksmappe wahiers. .

Aligemesre Variagen...
23 voriagen aUF eigenen Websiss. ..
] vorlagen auf Mia gsoRt.coi

£ Netawerkressonrce hinzutig:
{3} Microsait Excebie
j:‘; (¥ Beim Start anzeigon

Summew£98. 359, 146

: BTTET)
Office-Assistent v A
Machten Sie Hilfe
2u diesem
Feature? s Ol

® Ja, bitte Hife
anbleten
© Nein, bitte
keine Hilfe
anbieten

o Arhwiten w England. |
rheitsmappen. ..

4: Vorlagen mf migenen Wabsies..
& vorlagen sl Merosolt.com

£ nNetzwerkressource hinzufisge:
Microsoit ExcetHife

g1
i
A
%

Figure 14: Creation of Pivot Table uses the Excel Wizard for Pivot Tables

33

Jan David Peters Advanced and Distributed Databases 30/04/2010

N (Tabolel /[Tabelez J Tabebes 7 1] _’Il

ol Y =L ¥ 1) Topke_¢.doc - Maro... | @4 Intemet Explorer «] # Readng | % smetpcf - acobe ... | 2 postaingang - wied... [l icrosont Ecel -~ D [« N, W M DB 123

T Microsoft Excel Mappe Lxls 2
@ Datel Boarbokten. Anuich: Enflgen Formah Extras Dateg FEpnster 2 Frage her ergeben .8 X
DSER SRY IRABA - v.-- QT -BHH DL 0% -T.
AR BADE T HE rerestenng iy g Leenden... | Al cn S FAUNEBETCX0BR TEE _-D-A-,
Aus v .
J63 v Lod
A i B | c 1 D T E [F I G | H I 4] ® ® Neve Atheltsmagpe v X
2 Arbettsmappesfinen
3 FROD CATEGORY | | Gemminschaftskasse x5
i 4 [CALENDAR YEAR «|C INCOM| ~w{Electranics Hardware Peripherals and A ies Photo fhy Other [Total Gemein: I
EJ 2000[A. Below 30,000 20014353 14408113 26554065 17548277 14080581 Mappet s
[34] B: 30,000 - 43 999 29451708 25507306 IW/7 07 25464386 21151182 Ausgefarte Arbetan 1 England.»
[35] C: 50,000 - 69,999 45701827 38211498 5700047 36694993 2752232 200830685 G5 wetere Arbetsmappen..
¥* D: 70,000 - 89,999 60167986 550650.77 74695916 51711006 442681401 285921386
[37] E: 90,000 - 109999 81376558 66772528 995576 616319 32 5277511 %23137 28 New -
[36] F: 110,000 - 129,999 91352243 745977 98 122222365 79414185 62735905 430322496 D3 Leere arbaitsmanpe
E1 G: 130,000 - 149,999 50348533 45142125 65581926 4356282 349080 65 2395444 89 Neu aus vorhandener
[0 H: 150,000 - 169,999 50515406 36341582 57170477 436217 27 306747 95 2183239 87 Arbeitsmappe
I 1: 170,000 - 189 899 42313731 394491 81 47335811 35021382 26443317 1905634 22| &) Arbeasmappe wahien...
42 | J: 190,000 - 249,999 16638316 99017 52 20941185 12291249 10736231 705087 33 Mt Y ~
43| K: 250,000 - 293,993 17763304 15178688 21047454 136708 66 105953 24 762568 ,36) Allgemeine Yerlagen. ..
(44 L: 300,000 and abave 12101968 115685,59 1506108 1023567 6204104] 5171381 2 Virlagen auf sigenen Websies,
45 unknown 22485 31 10414 37 1755882 1856396 8767 44 g '] Vorlagen af Microsoft com
48 12000 Total 51999607 4331856 44 63854351 432004889 3429686 79 g :
| 47 | 2001 A Below 30,000 2018852 27658173 300637 81 27017378 154064 84 120312348
| 48 | B: 30,000 - 49,993 26316894 30704282 43650937 363088 21 187776.01 1557585 35
| 49 C: 50,000 - 63,999 39011178 434401 9 61732091 501965 55 290427 45 223422859
| 5 z D: 70,000 - 89,999 5590159 60161066 89297007 72913685 394898,07 3177631 51
| 51 E: 90,000 - 109 998 6057178 769456 67 10714813 786108,13 505164 51 3737920 41
| 52 | F: 110,000 - 129,993 928188 115284374 155341889 1279747 19 689533 85 SBIJ3731 67!
53 | G: 130,000 - 149,999 51813301 64557643 78161852 66951356 376088 81 2990930 33
| 54 | H: 150,000 - 163,993 425436 92 5423715 74946573 569248 62 333448 52 261997129
| 55 | 1 170,000 - 189 998 319978 21 346786 5 59807274 462647 04 26243824 198992273
| 56 | J: 190,000 - 242,999 22795508 25527414 42448197 32631839 159691 85 1393721 43|
| 57 | K 250,000 - 299 993 15822613 15645102 22877059 22478392 113345 82 860566,48
5 {: 300,000 and above 85487 08 164463 83 15967579 11805124 7345612
59| unknown 211767 82 32498 81 4528402 3284543 1357021
| 60 | 2001 Total 4704850 95 5684370 01 7859707 71 g 6904 41 X B
61 [Total [~ Netzwerkressource hinzufiigen
(3} Microsaft Excel-tiife
E [# Beim Start anzeigen
M ¢ » M\Tabelle? { T
Berek

Figure 15: Final Pivot Table with Indication of Dimensions and Aggregated Measures according to Figure 12

4.1.2. Preparing the Data using Oracle SQL statements

Another faster approach is to use the built-in SQL command ROLLUP() for to rollup
dimensions. The first step might be to rollup only one dimension. This can be expressed like
this:

SELECT T.calendar_year, C.cust_income_level, P.prod category,
sum{S.amount_sold) AS FactData

FROM sales_transactions ext S, products P, times T, customers C

WHERE S.prod_id = P.prod_id

AND S.time_id = T.time_ id

AND S.cust_id = C.cust_id

GROUP BY T.calendar year, C.cust income level, ROLLUP(P.prod category)

ORDER BY T.calendar year, C.cust_income_level, P.prod category

Listing 23: Using the ROLLUP Command in order to add Aggregations to the Resuit

34

Jan David Peters

Advanced and Distributed Databases

30/04/2010

An excerpt of the result looks like this:

CALENDAR YEAR CUST INCOME LEVEL PROD CATEGORY FACTDATA‘

1998 A: Below 30 000

1998 A: Below 30,000

1998 ‘A: Below 30,000

1998 A: Below 30,000

1998 A: Below 30,000

Electromcs '

W Hardware

80432.73

"‘287949 89

Perlpherals and
Accessorles ;

i PhOtO ;

391819.31

15312093

110691.19

1998 A: Below 30,000

1998 B: 30,000 - 49,999

1998 B: 30,000 -49,999
1998 ‘B: 30,000 - 49,999

1998 B:30,000-49,999
1998 B: 30,000 - 49,999 |

“Perrpherals and

|

(All Categones) |
Electromcs

Hardware

Accessorles :

‘ Photo

1024014 05
98595.35

385309.49

516045.74

21622347
183310.74

1998 [B: 30,000 - 49,999

R Software/Other

1998 C: 50,000 - 69,999

1998 C: 50, OOO 60999

“ Electromcs

1399484.79
171791.26

Hardware

69415148

CALENDAR YEAR CUST INCOME LEVEL PROD CATEGORY FACTDATA‘

CALENDAR YEAR CUST INCOME LEVEL PROD CATEGORY FACTDATA‘

1998 L: 300,000 and above Software/Other | 66083.67

1998 L: 300,000 and above o - 682793 56

1998 * unknown ~ Electronics | - 868.47

1998 * unknown Hardware V 4041 96

1998 * unknown fiecréepi‘:gfllessand 4249024

1998 * unknown Photo ©9600.99

‘ 1998 * unknown Software/Other © 10840.53

| 1998 '* unknown i " 67842.19

Table 3: Raw Result from Oracle with rolled up Categories

These rollups can be expanded in any directions by adding more dimensions. Rolling up all

dimensions is possible as well and can be performed by using the CUBE() command:

SELECT

FROM

T.calendar_ year,
sum (S.amount_sold) AS FactData

C.cust_income level,

35

P.prod_ category,

sales transactions_ext S, products P, times T, customers C

Jan David Peters Advanced and Distributed Databases 30/04/2010
WHERE S.prod id = P.prod id

AND S.time id = T.time id

AND S.cust id = C.cust_id

GROUP BY CUBE (T.calendar_year, C.cust_income level, P.prod category)
ORDER BY T.calendar_year, C.cust_income_level, P.prod category

Listing 24: SQL Statement that includes the CUBE() Command and retrieves all relevant Dimensions with
aggregated Values

The result for this query contains the same data like the Microsoft Excel pivot table but it
displays them in slightly different way. Total number of records for this query is 420 rows;
therefore a screenshot of last rows with aggregated values should be sufficient:

£31501*Plus Releas

.8 Production: Wark Screen - Windows Internet Explotes

M mmwm E}ozmmuum Hame mm Emomm.wo...

4‘:& s E] ¢ s Sckes Schorhokv Edras v e
o5 546 59 "s"&'ﬁ&ém/omer P =
{190,000 - 249 999
< 9 £lactrnmcs
Hardware
Peripherals and Accessaries
Phote
{ Software/Other
i i
L 300 000 and above Electronics
£: 300000 and above Hardware
L: 300,000 and abovs Peripharals and Accessories
300,000 and ab Photo
"""" Electronics
Electronics
Hardware
Hardware
Peripherals and Accessories
Peripheraie and Accessories
Bty

i Photo
| SoﬁwarelOlher

420 rows selected.

ﬁﬁimtm.’m Tnakdiv

_n_gmpx S Mot | gqmmm - A |Lcum Taskl g - wid,...| ™% Smith pof - addobe Reader | DE

Figure 16: Aggregated Result that includes all Dimensions

Obviously, this approach requires additional manual work by adding the labels for the
aggregated values.

4.1.3. Evaluate Data and Derive Decision Support

The goal of this analysis is to support the decision which product category might by rejected
and on which customer group should the company aim. The data of the Excel document can
be put into diagrams to visualise the statistics.

36

Jan David Peters Advanced and Distributed Databases 30/04/2010
20000000]
18000000
16000000
14000000 +
PROD_CATEGORY -
12000000 u Software/Other
10000000 o Phqto »
£1Peripherals and Accessories
8000000 m Hardware
o Electronics

5000000

4000000

2000000

B: 30,000 -
49999

C: 50,000 -
69,999

D: 70,000 -
89,999

E: 90,000 -
109,999

F: 110,000 -
129,999
G: 130,000 -
149 999
H: 150,000 -
169,999

1: 170,000 -
185,939

J: 190,000 -
248 999
K: 260,000 -
295999

L: 300,000 and
above
unknown

1998-2001

[CALENDAR_YEAR . JCUST_INCOME_LEVEL .|

Figure 17: Chart helps to identify the most common Income Levels and the Proportion of the different
Product Categories in Relationship to each other

The outcome of this representative chart is as follows:

Most turnover is generated by customers with “income level F”;

Basically, customers with an income of less than 30.000 or more than 190.000 are
outnumbered

Best products, especially in the main customer group, are “Peripherals and
Accessories” products

“Software/Other” and “Electronics” are accounting only for a small part of total
turnover

Therefore, some decisions could be derived by business analysts, for example according to

processes of decision making (Mallach 2000, pp.38-39). Some simple but significant

decisions might be:

”I”

Focus on average income level customers with levels “C” to “I”. This also provides
some security when dealing with debits or credit card payments because of increased
credit rating!

Try to get rid of either the categories “Software/Other” or “Electronics” and

concentrate business on the more profitable products.

37

Jan David Peters Advanced and Distributed Databases 30/04/2010

4.2. Task 2) Development of a Dimension Model for the HR Database

The HR department deals mainly deals with the employees and all related affairs. One of
these affairs is the annual personnel talks with corresponding requests for salary
adjustments. It is required to support the decision, if an employee will earn more money, by
retrieving valuable information from the database. For example, this information can be the
development of salary or the current average salary for the job.

First step for to design a model is to analyse the requirements in order to define the
dimensions for this cube:
- Employee information is required to identify the employee (employee_id)
- Furthermore, the salary of the employee needs to be recorded steadily (salary)
- Development needs to be illustrated, therefore a time dimension is necessary
(time_id, month, year)
- Similar jobs should be compared which each other, therefore the title of the job
needs to be logged (job_title)

According to these requirements, a table for the time dimension needs to be added to the
database model. This example is designed for to record the information in monthly intervals,
therefore the time dimension contains the month and the year and of course, an identifier
for accessing the time. The next table that needs to be created is the table that actually
contains the records. Beside the reference to the time, it contains the identifier for the
employee, the job and the salary at the time of recording. Furthermore, a column that
contains the term of employment is added. The following model has been designed:

Dimensions w3y | i iobidmw
~hire_date DATE
<> salary DEAMAL(10,2)

New tables:in fhe data model

e

‘ ¢§4salary_dev pmént_id N
@time_id INT =
< employee_id /
> job_title YARCHAR(50)

| <: salary DEAMAL(10,2)
onths_in_company INT

job_id INT
_>min_salary DECIMAL(10,2)
Zsmax_salay DECIMAL{10,2}

year INT |9 —— ——
onth INT |

e !

Measures

Figure 18: Multi-Dimensional Database Model for to provide recording of Salary Development

38

Jan David Peters Advanced and Distributed Databases 30/04/2010

Implementation of it can be performed by creating the new tables and a transformation
script.

The model realises the characteristics for to differ between fact data and dimension data
that is mentioned by Mallach (2000, p.496):

Fact Data Dimension Data

Millions or billions of rows Tens to a few million rows
Multiple foreign keys One primary key

Numeric Textual Descriptions
Don’t change Frequently modified

Table 4: Differences between Fact Data and Dimension Data

In order to fill the new table with data, a transformation processing is required. It is
recommended to perform the following steps each month:
- Add a new record in the table “time” that contains the current year and month
- For each employee the following information are collected and inserted into the
“salary_development” table together with the corresponding “time” identifier:
o Current job
o Current salary
o Current number of months of employment

An example for this processing can be simulated by creating inserting SQL statements:

/* Records for April 2010 */

INSERT INTO time (time_id, year, month)

VALUES (1, 4, 2010);

INSERT INTO salary_development (salary development id, time_id,
employee_id, Jjob_title, salary, months_in_company)

VALUES (1, 1, 1, ‘Stock Clerk’, 2000, 120);

INSERT INTO salary development (salary_development id, time id,
employee_id, job_title, salary, months in_company)

VALUES (2, 1, 2, ‘Stock Clerk’, 2200, 125);

INSERT INTO salary development (salary development id, time id,
employee id, Jjob_title, salary, months in company)

VALUES (3, 1, 3, ‘Stock Clerk’, 2000, 70);

/* Records for May 2010 */

INSERT INTO time (time_id, year, month)

VALUES (2, 5, 2010);

INSERT INTO salary development (salary_ development id, time_id,
employee_id, job_title, salary, months_in_company)

VALUES (4, 2, 1, ‘Administration Assistant’, 3100, 121);

39

Jan David Peters Advanced and Distributed Databases

30/04/2010

INSERT INTO salary development (salary development id, time_id,
employee_id, job_title, salary, months in company)

VALUES (5, 2, 2, ‘Stock Clerk’, 2200, 126);

INSERT INTO salary development (salary development id, time id,
employee_id, job_title, salary, months in company)

VALUES (6, 2, 3, ‘Stock Clerk’, 2200, 71);

Listing 25: Test Data for to Record Salary Development on a monthly base

Referring to the analysis techniques described in Task 1, a cube can be produced for

accessing and evaluating the information:

Employee

e & §
o O Q€
%* Q"Q ’

01/2010

0272010

Month and Year

Figure 19: Two-Dimensional Model for Recording the Development of Salary

An example report for decision support might monitor the changes in an employee’s salary

by using a curve chart with time dimension on the X-axis and the salary on the Y-axis:

Salary Development of W. Rooney

T T T T T

Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez
% 10 10 10 10 10 10 10 10 10 10 10

Time

Figure 20: Example Diagram for Monitoring Development of Salary based on Collected Information

40

Jan David Peters Advanced and Distributed Databases 30/04/2010

4.3. Evaluation of Technologies, Tools and Methods

4.3.1. Online Analytical Processing (OLAP)

Firstly, it has to be said that the definition of OLAP is varying and the outcome of this topic is
that OLAP is understood as a methodology for to explore databases. Beside Codd’s definition
of 18 rules for OLAP compliance (Smith 2004, p.403), there is another, simpler approach
which is called FASMI. The abbreviation stands for the key requirements of OLAP
applications (Smith 2004, p.406):
- Fast 2 immediate delivery of results, even if large cubes are involved
- Analysis 2 must be able to perform all required reports
- Shared = high application security, especially when dealing with concurrent updates.
However, most OLAP applications use read-only access.
- Multi-Dimensional - key requirement is to analyse data in multiple hierarchies
- Information =2 refers to the data that an OLAP application can hold and how relevant
it is for decision support

OLAP methods are regarded as highly valuable for companies in order to exploit e.g. data
warehouse system and “make informed tactical and strategic decisions” (Smith 2004, p.376).
In the sector of reports, there are different fields of application but all rely on multi-
dimensional conceptual views.

4.3.2. OLAP with Microsoft Excel and Oracle SQL

Performing a multi-dimensional analysis can be done in many ways. There are different tools
that relieve this particularly complicated process. Microsoft Excel has been used to analyse
records of a three-dimensional cube. Unfortunately, the pivot table of Excel is not well-
arranged enough to display the aggregated information. However, the handling is quite easy
and Microsoft Excel is definitely a good choice for to analyse simple multi-dimensional
models.

The other approach to analyse information is to insert aggregations into the query. Oracle
contains a range of commands to retrieve processed data from multi-dimensional cubes
Smith 2004, p.393). Although they are saving time and might be valuable for fast results,
they need to be reworked, because they contain unlabeled rows that might not be
understandable for uninformed users. Therefore, a direct distribution of database results,
e.g. for management, is not recommended.

A more advanced approach, which is recommended for usage in companies, is the Mondrian
OLAP Tool (see Chapter 6.).

41

Jan David Peters Advanced and Distributed Databases 30/04/2010

4.3.3. MySQL Workbench 5.1.

The MySQL Workbench is an assisting tool for database modelling. Although the product
name contains the word MySQL, it is possible to produce Entity Relationship Diagrams for
various relational database management systems. However, the software offers more
advanced functionality as well. For example, it is possible to perform Reverse Engineering
with MySQL databases. That means that the software connects to an existing database,
retrieves the data structure and transforms it into an Entity Relationship Diagram. This visual
diagram might be edited or extended and the changes can be applied to the original
database as well. Creating and editing tables, columns and relationships is regarded as very
simple, because it is supported by wizards.

Alternatively, the free tool “DBDesigner 4”, which is manufactured by fabFORCE, would be a
good choice as well. It offers similar functionality (including synchronisation) and is
optimised for MySQL but can also handle different database management systems
(FabForce.net 2010). These DBMS can be connected using ODBC or specific drivers. The
graphical user interface of the diagram designer looks nearly equal to the MySQL
Workbench.

4.4. References

FABFORCE.NET, 2010. fabFORCE.net — DB Designer 4 [online]. Available:
http://www.fabforce.net/dbdesigner4/ [accessed 18% April 2010]

MALLACH, E. G., 2000. Decision Support and Data Warehouse Systems. Boston: McGraw-Hill
MONGER, A. 2010 ? (TODO). Analyse Multi-Dimensional Data Practical [online]. Available:
http://mycourse.solent.ac.uk/file.php/1795/DatabaseSystems/Topics/OLAP/OLAP%20Practi

cal.ppt [accessed 16" April 2010]

SMITH, W., 2004. Decision Support Systems. Basingstoke: Palgrave Macmillan

42

Jan David Peters Advanced and Distributed Databases 30/04/2010

5. Mining Databases for Decision Support

5.1. Task 1) Design and Implementation of an example Market Basket
Analysis

5.1.1. Choice of Data Mining Tools and Technique

This topic deals with a market basket analysis; therefore a methodology needs to be
determined in order to achieve a result. The CRISP methodology (CRoss Industry Standard
Process for Data Mining) is a promising approach for to perform this analysis. It consists of
six steps which are referenced by the arrows in brackets (= [name of activity]). The result of
this analysis should be a rule which supports the management with their decisions.

5.1.2. Background Discussion (= Business / Data Understanding)

The existing OE database contains a vast range of information which might be used for
decision support. However, only a small part can be considered for this activity. In order to
receive a valuable result, a clearly laid out set of data will be analyzed. Before determining
this small area, a detailed knowledge of the data model and therefore the business has to be
gained (> Business Understanding).

An appropriate Assumption, which regards not too many different records, might be to

determine, which categories of products are sold together and how they relate to each other
(= Data Understanding).

43

Jan David Peters Advanced and Distributed Databases 30/04/2010

5.1.3. Preparation of required Data (> Data Preparation)

The first step in order to perform a market basket analysis is to prepare the data for further
processing. An example approach is to query a list of orders and the product categories of
contained items from the database:

Doder | _4

PERRS BB @ 0011465128 seconss

SELECT o.order_id, 1, pi.category id

FROM oe.order_items o, product_information pi
where o.product_id = pi.product_id

GROUF BY o.order_id, 1, pi.category_id

DRDER ‘BY pi.category id:

£y

B> Resutts | script Outout | B3Explain | 8 Autotrace | FDBMS Output

Results:
B oroerp|f 1|8 catecory o
2392 1 [l

1 1
2 2426 1 11
3 2375 1 11
4 2387 1 11
5 2395 1 11
6 2422 1 11
7 2361 1 11
8 2362 1 11
9 2394 1 11
10 1

Figure 21: Retrieving raw Data from the Database

44

Jan David Peters Advanced and Distributed Databases 30/04/2010

This table can be transferred to Microsoft Excel and transformed into a Pivot Table according
to Berry and Linoff’'s recommendation (2004, p.295):

Tables Hustrations i Charty) g Links
. £ 2392
=) Eo oo F G H I K
239 1 11}
2426 1 11 : 3
2375 1 i1 [ﬂﬁ
2387 1 11 Choose the data that you want to analyze
2385 1 11 {¥) gelect atable or range
2422 1 11 ’ Table/Range: : ENSIETY R TEE %
2361 i 11 {73 Use an external data source
2362 1 11 e
2394 1 1 95—
2421 1 1 Choose where you want the PivotTable report to be placed
2452 1 1 {3 New Worksheet
2357 1 11 3 Existing Worksheet
24 1 11. Location: .9
2413 1 11 B
2430 1 11 o | cocdl |
2440 1 11 2l
2396 1 11
2443 1 11
2457 1 11
2355 1 11
2369 1 11
2380 1 11
2399 1 11
2444 1 11
2359 1 11
a6 LT 3 11
Mot b M Sheet] < Sheetd . Sheat3 %3 .
Paint Sumi 104

Figure 22: Inserting it to Excel and Creating a Pivot Table

45

Jan David Peters Advanced and Distributed Databases 30/04/2010

The result of this transformation contains a table which shows the product category IDs as
columns and the order IDs on the rows. The number “1” indicates that a certain product
category is contained in the corresponding order:

v i Jx | Sumofi B
¢ D E _F. .6 H K baM N Q. P Q TG pvotTable Field st %
§ LG e -
2 Choose fields o add to report: ::1 T
3 Fumott v | M '
4 2392 v] 11 12 13 14 15 16 17 19 21 22 24 25 23 31 32 33 |
5 2354 11 1 1 1 o1 M
6 2355 1 11 1 1
7 2356 11 101
8 2357 1 11 101
3 2358 1 1
10 2359 1 101 1
1 2360 1 1
12 2361 1 11 1 1
13 23620 1 1 1 1 1
14 2363 11 11 1
15 2364 1 1 rag fiaids between arzas below:
16 2365 1 1 1 1 1 ' Report Fiter) Column Labels
17 2366) 1 11 11 T v
18 2367 1 11 1 1 1 :
13 2368 1 1 11 1
20 2369 1 1 1 1011 ;»
21 2370 1 | i Rowlabels X values
22 2371 11 1 11 1 Y 1 sumef v
23 2372 1 1 1 1
% 2373 1 1
5 2374] 101 1 5
& . 237s 1 1 . D 1 1) L1 Defer Layout Update
Moy ¥ Sheotd - Shoory. Ghastd o Shagey 08 3

Figure 23: View of the Pivot Table

The final steps in Microsoft Excel are on the one hand to replace all empty cells with
quotation marks and the “1” with the string “yes”. On the other hand, the produced result
needs to be stored in CSV format in order to use it with the WEKA Data Mining Tool (see
Chapter 5.2.2.).

& 90 Conational “Format Celt L. Sert& Find &
i B
Savein:) DataMining vl i@ ¥
2 i ()Assessment : o ;:j
: & mysportsmba,cs 3L 2 |
2 i? !? () peshtop :%!]W-“V yes yes|
2 ves > ‘ﬂue_categories.csv s 5 |
! : QMY kioe_limked.csv Y E
47 ? Documents: 1 ? ?
. 5 ﬂM %oe_lm_kems.csv 5 ” H
5 yes ? Aloe_new,csv ; |
&7 yes Compter ? ?
s 5 gMy Network. o
7 yes 3 Places yes ? |
g ? ? yes ?
3 yes ? ? 7
10 yes ? yes ?
1? ? ? ?
127 ? ? ?
127 yes yes ?
14 yes ? 2 ?
1507 yes ? ?
16 yes yes ? ?
17 yes 2 Flepsme: - os_analyse_categaries,csv v yes y
180? ? Save astype: . sy (Comma delimited) (*.csv) v ? ?
19:? ? : yes ?
202 ves || Tods - Save ’ Cancel ? ¥
21.? ? 7 7 ?
n:? ? ? ? ? ? ? ? ? ? yes yes yes ? ? ?
23 yes yes ? ? yes yes ? yes ? ? ? ? yes ? yes

Figure 24: Saving the created Document as a CSV File (Comma Separated Values)

46

Jan David Peters

Advanced and Distributed Databases

30/04/2010

5.1.4. Performing the Analysis using WEKA Data Mining Tool (- Modelling)

The WEKA Data Mining Tool is used for automatic search for rules, because manual research

would consume a huge effort, especially when dealing with huge sets of data.

Searching for rules can be done by using the “WEKA Explorer”. At first, the generated CSV

file needs to be imported:

»* By
~~~~~~~~~~~~ S )
Preprotess | fuster || rennoare | gkt wtrhoes § Bk
T Cpen fie... J I Open URL... ] [ Open DE.., ] [ Generate, .. g
Filtar
[ Choose }None
Cureent relation g peee
Reelation;: None »* o Type: None
Inst 1 None = ique:
vl Lookin:* %) DataMining Unique: None
Attributes ;
b 15) Assessment
4 ‘} ) mysportsmba.csv
MyRecent 43} oe.csv
Documents e anshise Taleguies UsY]
&) oe_categorias.csv
U34] oe_limited.csv
4] 0e_ine_items.csv
434 oe_new.csv
S
=
My Documents i 2
v visualize Al ]
ey
.
My Computer
\-g File name:: oe_analyse_categories.csy { Open
My Network
Places Files of type: - 'Csv data Fies (*.csv) [ Cancel
wStatus s
- Welcome to the Weka Explore 4 0

Figure 25: Importing the generated File into WEKA Data Mining Tool

47



Jan David Peters Advanced and Distributed Databases 30/04/2010

After loading the file, some categories need to be identified for comparison; therefore the
IDs have to be looked up for the related text values:

EESELECT * FROM categories_tab -
JIRDER BY category id
i
e
B> Resutts| ] script Output | BExplain | 3 Autotrace | (ADBMS Output | £3 OWA Output
Resuitts: N
B catEcory NaME |l CATEGORY DESCRPTION I8 camcory_p [} PaRENT caTEGO
5 hardware4 memory componentsiupgrades 14 -
B hardwares processars, sound and video cards, network cards, motherhoards 15
7 hardwaret keyboards, mouses, mouse pads 16
8 hardware? ather peripherals (CD-ROM, DVD, tape cartridge drives, ...) 17
9 hardwared miscellaneous hardware (cables, screws, power ’supplies ) 19
10 software computer software 20 |
11 softwarel spreadsheet software 21
12 ‘software2 word processing software 22
13 software3 database software 23
14 softwared operating systems 24
15 softwares software development tools (including languages) 25 .
16 softwaret miscellaneous software 29 ;
17 office equipment office furniture and supplies 30
18 officel capitalizable assets (desks, chairs, phones ...) al
19 office2 office supplies for daily use (pencils, erasers, staples, ...) 32
20 office3 manuals, other books 33
21 officed miscellaneous office supplies 39
22 online catslog catalog of computer hardwvare, software, and office equipment 90 e

Figure 26: Looking Up the Database for Product Categories and their Descriptions

48



Jan David Peters Advanced and Distributed Databases 30/04/2010

One optional step is to exclude product categories of cheaper value, which might be so
called items of category C (Wan 2008). This step is performed by sorting the average price of
items of one category and deciding to exclude the ones that are below a defined price:

IPELECT . category. 1d, Found! awgimin prics) 21
! product information
ROUP - BY:category id

i

BoRDER BY avy (nin price)

w
&Resuks @Script Output l%Explain [%@Al.ltotrace ‘@DBMS
Results:

CATEGORY.ID |l ROUND(AVGMIN_PRICE)2) |

1 39 2395

2 16 269

3 32 3545

4 21 36.57

5 22 45

8 33 4747

7 29 84.71

8 15 102.25

] 17 109.05

10 25 161.88

11 24 169.77
12 14 202.92
13 12 25187
14 19 254,96
15 13 4415
16 11 469 81
17 31 17222

Figure 27: Analysing the Average Prices of Products from each Category

49



Jan David Peters Advanced and Distributed Databases 30/04/2010

In this case, all products with an average price of less than “50.00” are excluded. The WEKA
tool offers the possibility to remove certain records from the list of categories:

Flter

Choose _Nane . [ty ]
Current ralation s fakn L Selpctad. aitribite )

Relation: os_analyse_categories Name: 16 Type: Nominat
Instances: 105 Attributas: 17 Missing:: 53(50%) Distinct: 1 Unicue: 0{0%)

i g No. . Label Count

1iyes is2
S[vRzi  Class: 39 (Nom) s | visuslze al

{[Remove selected attributes. | -

Figure 28: Removing irrelevant Categories

After this step, the actual analysis can be performed by choosing the “Associate” tab pane
and starting the analysis. The result looks like this and shows two found rules with a quite

high confidence:

Azsociator
Choose' ]nprhri-N 10+1.0:C0.9:00.05-U1.0-M0.1 510 ¢+L .

Associator outpit

19

=== Associator model {full training set) ===
Apriori

Minimum support: 0.1 {11 instances)

Minixum metric <confidence>: 0.9

Nunber of cycles performed: 18

Generated sets of large itemsets:

Size of set of large itemsets L{l): 8

Size of set of large itemsets L{2); 8

iiSize of set of large itemsets L(3): 2

Best rules found:

1. llayes 1S=yes 16 ==> 19=yes 15 conf: (0.94)
2. l2=yes 15=yes 25 ==> 19ayes 23 conf: (0.92)

Status i ‘ = g
. | e

Figure 29: Result of an Example Search for Association Rules

50




Jan David Peters Advanced and Distributed Databases 30/04/2010

These rules state that:
- Whenever products of category 11 and category 15 are sold together, there is a 94%
chance, that products of category 19 are sold as well in this order
- Whenever products of category 12 and category 15 are sold together, there is a 92%
chance, that products of category 19 are sold as well in this order

However, there is the possibility to explore even more rules by adjusting the settings for
analysis. The value of minimum confidence can be decreased to e.g. 70% (0.7) — by default, it
is set to 90%:

weka.associations. Aprioti
; Abuut bl o

i
H

. Class implementing an Apriori-type algorithm,

Capabilities
B v‘§

car |False

classIndex -1

£

delta 0.05 §

lowerBoundMinSupport - %01

i<
L2

metricType | Confidence [

minMetric i

numRules * 10

outputItemSets

removehliMissingCals

significanceLevel -1.0

upperBoundMinSupport 1.0

verbose | False v

| Open, ., ] I ) 5ave.. [ I CK l ] Cancel l

Figure 30: Adjustment of Settings for Finding Association Rules

51



Jan David Peters Advanced and Distributed Databases

30/04/2010

Therefore, the result of a new analysis shows more rules:

Best rules found:

l. ll=yves 1l5=yes 16 ==> l9=yes 15 conf: (0.94)
2. 1l2=yes 15=yes 25 ==> 19=yes 23 conf: (0.92)
3. 12=yes 33 ==> 19=yes 29 conf: (0.68)
4. 15=yes 49 ==> 19=yes 4l conf: (0.84)
l2=yes 19=yes 29 ==> l5=yes 23 conf: (0.79)
l4=yes 14 ==> 19=yes 1l conf: (0.79)
17=yes 17 ==> l9=yes 13 conf: (0.76)
12=yes 33 ==> l5=yes 25 cont: (0.76)
ll=ves 32 ==> 19=yes 23 conf: (0.72)

W 00 -1 T n

Figure 31: Example Result for an Analysis with lower Confidence

Data quality is another important aspect of meaningful data mining. Usually, data quality in

market basket analysis is not really high (Berry and Linoff 2004, p.308). An approach to

increase quality has been undertaken as follows:

In the figure above, the product category 19 is contained in nearly every rule. A look up for

the name of the category shows why: it is called “miscellaneous hardware (cables, screws,

power supplies...)”, which means it contains mainly mass products. It is seen as necessary to

remove category 19 in order to achieve meaningful rules.

The final result of the WEKA Data Mining Tool analysis looks like this:

:Associator

[ choose }Apriori N10-T0-C05-D0.05-U1,0ME15-1.0-c-1

@ S Aggociator output =2
13

Resit kist:(right-click for 14
11:36:25 - Apriodl 1s
11:54:22 - Apriori 17

31
=== Associator model (full training set) ===

i1 Aprieri

Minimum support: 0.1 (1l instances)
Minimum metric <confidence>: 0.5

3 Number of cycles performed: 18

Generated sets of large itemsets:

Size of set of large itemsets L(l): 7
Size of set of large itemsets L{2): 2
Best rules found:

1. l2=yes 33 ==> 1S5=yes 25 conf: (0.76)

2. 15=yes 49 ==> l2=yes 25 conf: (0,51}
3., ll=yes 32 ==> l5=yes 16 cont: (0.5)

b e e e

Figure 32: Result after excluding Category ID 19

52



Jan David Peters Advanced and Distributed Databases 30/04/2010

5.1.5. Significance of discovered Rules for Decision Support (- Evaluation)

The found rules state, that:
- On the one hand, in 76% of the orders where a product of category 12 has been sold,
a product of category 15 has been sold as well.
- The other way round, in just 51% of the orders where a product of category 15 has
been sold, a product of category 12 has been sold as well.

Nevertheless, there must be a relationship between these products, and a decision for the
business could for example be:
- Place items of these categories next to each other in the shop in order to allow easier
access for the customer
- Spend further effort in investigating which particular items are related to each other

However, it needs to be said that there are many more possible rules and combinations, or
even other data mining problems to be solved with this methodology.

5.2. Evaluation of Technologies, Tools and Methods

5.2.1. CRISP Methodology

The CRISP methodology has been conceived in 1996 by a group of three industrial
companies: Daimler-Benz, ISL and NCR. The first quality draft of the process model has been
published in 1999 (CRISP-DM Consortium 2000). Therefore, this process model is used in
different independent industries for over 10 years now. A small (and therefore not really
representative) poll within the data mining web community “KDnuggets.com” asked the
users for their preferred data mining methodologies. The result shows that 42% of them are
using the CRISP-DM; followed by individual approaches and the SEMMA process (KDnuggets
2007).

Using the CRISP methodology is regarded as easy on the one hand, because the six steps are
clearly described and documented. On the other hand, it could turn into very complex
activities, especially when dealing with more complicated techniques than the market basket
analysis by finding association rules. According to Thearling (2009), some of these
technigues might be:
- Classification and Clustering = splits data sets into groups; measures and evaluates if
they are “close to” or “far from” each other
- Retrospective Data Analysis = “Data analysis that provides insights into trends,
behaviours, or events that have already occurred. “ (Thearling 2009)

53



Jan David Peters Advanced and Distributed Databases 30/04/2010

In summary, CRISP is recommended for usage, because it is accepted by the industry (CRISP-
DM Consortium 2000) and data mining specialists as well (KDnuggets 2007).

5.2.2. WEKA Data Mining Tool

The WEKA Data Mining Tool is available in two ways. There is a cost free standalone
solution, but it is also included in the Pentaho Open Source Business Intelligence Suite
(Pentaho Corporation 2010).

During the market basket analysis, it has been used for automatic search of association
rules. After a short introduction phase, the basic steps in order to achieve a result have been
performed without major problems. Nevertheless, the scope of the software is regarded as
vast, because there are many other features and options which might be valuable for
different kinds of analysis. Therefore, the handling of this software could be complicated and
the first impression of the interface might scare unaware users.

Beside the semi-manual approach by using Excel as an intermediate application for
preparation, the WEKA Data Mining Tool is able to directly connect to databases as well.
However, this is not regarded as part of the performed tasks and might belong to the
advanced topic research.

In summary, the WEKA Data Mining Tool meets all requirements for performing this market
basket analysis. Assumed that all features of the program are explored, it is providing great
facilities for to analyse business data and therefore derive decisions. Especially larger
companies can profit from this powerful software by using it for to effectively use their data
warehouses.

5.3. References

BERRY, M.J.A. and G. LINOFF, 2004. Market Basket Analysis and Association Rules. London:
Wiley

KDNUGGETS, 2007. Poll: Data Mining Methodology [online]. Available:
http://www.kdnuggets.com/polls/2007/data_mining_methodology.htm [accessed 26th April

2010]

THEARLING, K., 2009. An introduction to Data Mining [online]. Available:
http://www.thearling.com/text/dmwhite/dmwhite.htm [accessed 26th April 2010]

54



Jan David Peters Advanced and Distributed Databases 30/04/2010

WAN, D., 2008. ABC Analysis in Inventory Management [online]. Available:
http://dylanwan.wordpress.com/2008/03/11/abc-analysis-in-inventory-management/
[accessed 25™ April 2010]

55



Jan David Peters Advanced and Distributed Databases 30/04/2010

6. Mondrian OLAP Tool

6.1. Introduction to Mondrian

Mondrian OLAP Tool is the name of a web application that is used for multidimensional
exploration of databases. Although it is available as an open source product, it is part of the
Pentaho Open Source Business Intelligence suite as well (Pentaho Corporation 2010,
“Pentaho Reporting Enterprise Edition”). This commercial suite contains a range of analysis;
data integration and reporting software like the WEKA Data Mining Tool (see Chapter 5.2.2.).
Mondrian has the ability to deal with large datasets, for example data warehouses. Instead
of common SQL statements, it mainly uses Microsoft’s MDX (Multi Dimensional eXpression)
technology to query databases in various dimensions (Microsoft Corporation 2010,
“Multidimensional Expressions (MDX) Reference”). Primarily, it is used for reporting;
therefore it accesses the target database for read-only queries. Mondrian makes meaningful
usage of standard DBMS aggregation functionality like “GROUP BY” statements or
materialised views (Hyde 2006, “Architecture”).

Due to the fact that Mondrian OLAP Tool is a web application, the usage is completely
browser-based. All menus, which actually are pages, need to be created as Java Server Pages
(JSP). The contents of these pages can be customised and may range from simple MDX query
interfaces to pivot tables or chart views. Depending on the setup, the start screen shows all

available menus.

In this case study, the pivot table component “JPivot” is used because it provides

comfortable exploration options and is regarded as easy-to-use. The user interface consists
of graphical buttons that includes so called “tooltip” descriptions as well. Exploration of the
different dimensions behaves like a tree navigation that means the levels can be expanded

step-by-step:

{ Product | Promotion Media}s Unit Sales
f=all products - |+All Media 266.773
+Drink +All Media 24.597
~Food . +All Media-: 191,940
~Bakad Goods T eall Madia 7.870
~Bread Al Media 7.870
+Bagels ?:MI Media 815
~Muffins +All Medla 3.497
+Colony «All Media 740
+«Fantastic +All Medla 798

~Great +All Madla 605

Great Bluel;arry Muffins |+All Media 127

Great Cranberry hf!ufflns +All I:Iadin 165

Great English Muffins . j+All.Media 164

Great Muffins +All Media 149

+Modoli E +All Media 718

+Sphinx +all Medla 635

#8llced Broad ‘{+All Madla 3.558
+Baking Goods i +All Media 20.245
E“««M;Braakfast Foods : ieli:ﬁsdla . 3.317
" scanned Foods '+all Media 19.026
“““““ iCanned Products . L1 Al media 1.812

Figure 33: Exploring the dimensions in a JPivot table

56



Jan David Peters Advanced and Distributed Databases 30/04/2010

Information can be displayed in different ways, e.g. chart views:

30.000+

20000

10.000 -

S 40 a0 g 5 <@°~ N 5.04 O S 40 4B 40 O g0
R R A R At

0-

NP I P PP (R R »
t - Ry PR 5" 2 SPYL L
SR R e
},dg@.‘”c,«‘;‘\«e‘ € 0 oY eo:%a‘ Sicer: Year=1987
& (,do‘;ﬁ? € oo ® Food.Baked Goods Bread. Muffins.Great Great Blueberty Muffins All Media.
€ @ Food.Baked Goods.Bread.Muffins.Great Great Cranberry Mutfins All Media.

Slicer: Year=1997 ® Food Baked Goods.Bread Muffins.Great Great English Muffins.All Media

Food Baked Goods.Bread Muffins Great Great Muffins.All Media

Figure 34: Example Vertical Bar Chart Figure 35: Example Pie Chart

An advantage of the web application concept is that a range of different users can access the
same application and related data pool. However, it is not always intended to distribute data
for everyone, especially when dealing with sensitive data like customer behaviour or even
employee data. Therefore, security can be increased by using roles. These roles might be
regional or hierarchical limited, e.g. the managers for Europe can only access sales statistics
for Europe or an HR manager just sees information of his employees but not about sales.

6.2. Scenario

A company decided to establish a data warehouse in order to generate sales and turnover
reports for the management and major shareholders. Originally, it was intended to record
only sales data by product and area, but the database developers included all available data
in this data warehouse. One of these dimensions covers the promotion media that
advertised the products. This information has been elicited by surveying customers at point-

of-service.

The management intends to start a new marketing campaign for to increase sales of Dairy
products. The database expert is asked to provide a report that contains Dairy product sales
statistics of the year 1997 grouped by promotion media types that caused selling in order to
determine the most effective one. Furthermore, the manager mentions that this kind of
information will be frequently requested in future with different products or product groups.
The database expert suggests trying the Mondrian OLAP Tool.

57



Jan David Peters Advanced and Distributed Databases 30/04/2010

product_class_id
promotion_id . product_id
promotion_district customer_id brand_name
promotion_name promation_id product_name
media_type store_id SKU -
cost store_sales SRP
start_date store_cost gross_weight
end_date unit_sales net_weight
recyclable_package
low_fat

units_per_case

" 1 cases_per_pallet

store,_id shelf _width

foacd store_type shelf _height

g
store_number
store_street_addres
store_city
store_state
store_postal_code
store_country s
store_manager 1 3
store_phone A warehouse_id oo
store_fax warehouse_class_id
first_opened_date g stores_id
last_remodel_date in s 7 warel:;use_;mame
lease_sqft = wa_address
store:s:ft product_jd wa_address2
grocery_sqft time_id oo wa_address3
frozen_sqft warehouse_id wa_address4
meat_sqft store_id warehouse_city
coffee_bar units_ordered warehouse_state_province
video_store units_shipped warehouse_postal_code 1
salad_bar warehouse _sales warehouse_country
prepa_red_food warehouse _cost warehouse_owner_name
florist supply_time warehouse_phone

store_invoice warehouse_Fax

Figure 36: Entity Relationship Diagram of Company's Data Warehouse

58



Jan David Peters Advanced and Distributed Databases 30/04/2010

6.3. Analysis, Design, Implementation and Test

6.3.1. Analysis

The first step when using the Mondrian OLAP Tool is to analyse the required data and data
sources:
Which data dimensions are needed?
- Time (In fact, it is determined to 1997 because the demo database only contains
complete sample data for this year)
- Products

- Promotion Media
- Sales Data

Which tables hold this information and which related tables are involved?

- The “sales_fact_1997” table is similar to a materialised view and contains all relevant
sales data

- Foreign key “time_id” links to the table “time_by_day” in which the year is stored

- Foreign key “product_id” links to the “products” table and contains detailed product
data like the product and brand name. Each product is categorised into product
classes; therefore the table “product_class” is involved as well

- Foreign key “time_id” is linking to the “time” table and is required as well, because it
contains the information about the year

6.3.2. Design

Generally, the structured query for this report can be described as follows:
“Select sales data of dairy products of the year 1997 and group them by the promotion
media which animated the customer to buy it.”

The developers of the Mondrian OLAP Tool are quoting as a key feature that no knowledge
about SQL is needed because it uses MDX. That is why a transcription of this query into MDX

is needed for to implement this scenario:
SELECT
{ [Measures].[Unit Sales]} ON columns,
{ ([Product].[All Products], [Promotion Medial].[All Medial])} ON rows
FROM Sales
WHERE ([Time].[1997])

This MDX query can not really be compared to SQL because it is able to define different
dimensions (Microsoft Corporation 2010, “Comparison of SQL and MDX"):

- The values of “Unit Sales” are listed on the columns
- The Dimensions Products and Promotion Media are listed on the rows

59



Jan David Peters Advanced and Distributed Databases 30/04/2010

6.3.3. Implementation

The first step to achieve a result is to install the Mondrian OLAP Tool. For this project, the
Mondrian Demo database “FoodMart” is used. Subject to the condition that a Java
Application Server is already installed, configured and properly working, the setup of
Mondrian is done in the following way:

1. Installation of the web application on an Application Server for Java, e.g. Tomcat.
Mondrian is delivered as a WAR-File (Web Application Archive) and can be deployed
in Tomcat using the Tomcat Web Application Manager:

- e e AT IET
G@v@h"p‘!lh:d"ust18D80/maﬁagerlhrm4 R RO T o
Datei BearbeRen Ansit Favorten £xtras ?

g Favorten | 5 ., hitp £ Pressman gnes... 5 MyP2P.eu Footbal schedul... [E] 02 weeless box I - Home 1 Home T LEO Deutsch-Englsches Wh... 2, Microsaft Oulook Web Access
=] fmonoger i d N x| BB - s e sete- Scheet - Btrase @
Jhost-manager Tomcat Manager Applics ” ﬁISuthen ﬁ; — minutes *

Orgerisieren v 4l Amsichton = Neuer Ordner [~}

3rd Step: Dep

Linkfavoriten

Tomcat Manager Appiics . Dokumente

loyment ﬁmshedtbmmw

MR Oesitop

‘i mondrian.dtd

&, mondrian. jor

Name + {-{tngr.. | vy [-Lcse (-]
A aggregates.dtd 3 datasourcesconfig. dtd

22, Olapdf-jdk14.jar

2, mondrian-jdk1 4, jar
& retraweaver-rt.jar

minutes

& Computer

( Jmondrign Mendrian . minutes

\_ B Music

uletzt geandert

B suchvorss
.. Offentich
Deploy directary or WAR file lacated on sarver

Ordner ~
Dateipame: [mondienwer Jeagen ) o]
2nd Stepq Ciron ]) Abbrochen |/
2
WAR flie to doplay LsLSIep Py o
Select WAR file to upload I M’
Deploy |

" Tomeat Varsion

0S Name

i

[T T R okales oranet |

Ion|m® 503 i) Posteingang - windows .. | # xamoo

Fa~ Riow 4
|4 /manager - windows . ) Monekian.doc - Mcrosoft.. | iwdxmm fure.. ]DE‘«%@.‘._ BB 1505

Figure 37: Deployment of Mondrian OLAP Tool on a Tomcat Web Server

2. Connecting to the database can be configured in an XML file called
“datasources.xmi”. The technical recommendation for database connections is JDBC,
e.g. a JDBC ODBC. An ODBC data source with the name “FoodMart” has been created

as a “System DSN”. The connection string is inserted into the configuration XML file:
<DataSource>
<DataSourceName>Provider=Mondrian;DataSource=MondrianFoodMart; </DataS
ourceName>

[...]

<DataSourceInfo>Provider=mondrian; Jdbc=jdbc:odbc:FoodMart ; JdbcDrivers
=sun.jdbc.odbc.JdbcOdbeDriver; Catalog=/WEB-

INF/gqueries/FoodMart .xml</DataSourceInfo>

[...]

</DataSource>

60



Jan David Peters Advanced and Distributed Databases 30/04/2010

The implementation progresses by defining the desired data in the “FoodMart.xml” file.
Dimensions and their links to the database tables are configured as a so called “schema”. it
has been created using the Mondrian online documentation (Hyde 2009, “How to Design a
Mondrian Schema”) and elements from the demo project (Hyde 2009, “Set up test datain a
non-embedded database”).

The “Time” Dimension is defined like this:
<Dimension name="Time" type="TimeDimension"s>
<Hierarchy hasAll="false" primaryKey="time id"»>
<Table name="time by day"/>
<Level name="Year" column="the year" type="Numeric"
uniqueMembers="true" levelType="TimeYears"/>
</Hierarchy>
</Dimension>

Listing 26: Definition for the "Time Dimension"

The “Product” dimension is more complex because it has relations to the “product_class”
table and contains so called levels. Each level aggregates the values below and can be

regarded a category. The configuration works as follows:
<Dimension name="Product">
<Hierarchy hasAll="true" primaryKey="product id"
primaryKeyTable="product">
<Join leftKey="product class_ id" rightKey="product class id"»>
<Table name="product"/>
<Table name="product class"/>
</Join>
<Level name="Product Family" table="product class"
column="product family" uniqueMembers="true"/>
<Level name="Product Department" table="product class"
column="product_ department" uniqueMembers="false"/>
<Level name="Product Category" table="product class"
column="product category" uniqueMembers="false"/>
<Level name="Product Subcategory" table="product class"
column="product subcategory" unigueMembers="false"/>
<Level name="Brand Name" table="product" column="brand name"
unigqueMembers="false"/>
<Level name="Product Name" table="product" column="product name"
unigueMembers="true"/>
</Hierarchys>
</Dimensions>

Listing 27: Definition of the "Product Dimension"

The “Promotion Media” contains only one level that lists all types of media:
<Dimension name="Promotion Media"s>
<Hierarchy hasAll="true" allMemberName="All Media"
primaryKey="promotion id" defaultMember="All Media">

61



Jan David Peters Advanced and Distributed Databases 30/04/2010

<Table name="promotion"/>
<Level name="Media Type" column="media type" uniqueMembers="true"/>
</Hierarchy>
</Dimension>

Listing 28: Definition of the "Promotion Media Dimension"

The Sales data are configured as a cube. Beside the source table, the predefined dimensions
are connected to the foreign key columns. The numbers of sold products are registered in

the “Measure” tag with the aggregation function to summarise the sold numbers:
<Cube name="Sales" defaultMeasure="Unit Sales">
<Table name="sales_fact_1997">
<AggName name="agg_c_special sales fact 1997">
<AggFactCount column="FACT COUNT"/>
<AggIgnoreColumn column="foo"/>
<AggIgnoreColumn column="bar"/>
<AggForeignKey factColumn="product id" aggColumn="PRODUCT ID" />
<AggForeignKey factColumn="customer_ id" aggColumn="CUSTOMER ID" />
<AggForeignKey factColumn="promotion id" aggColumn="PROMOTION ID" />
<AggMeasure name=" [Measures]. [Unit Sales]" column="UNIT SALES_SUM" >
<AggLevel name="[Time] . [Year]" column="TIME YEAR" />
</AggName>
</Table>
<DimensionUsage name="Time" source="Time" foreignKey="time id"/>
<DimensionUsage name="Product" source="Product" foreignKey="product id"/>
<DimensionUsage name="Promotion Media" source="Promotion Media"
foreignKey="promotion id"/>
<Measure name="Unit Sales" column="unit sales" aggregator="sum"
formatString="Standard"/>
</Cube>

Listing 29: Configuration of the Cube

The final step in order to display a pivot table is to create a JSP that contains a JPivot web

control:

<%@ page session="true" contentType="text/html; charset=IS0-8859-1" %>
<%@ taglib uri="http://www.tonbeller.com/jpivot" prefix="3jp" %>

<%@ taglib prefix='"c" uri="http://java.sun.com/jstl/core” %>

<jp:mondrianQuery id="query0l" jdbcDriver="sun.jdbc.odbc.JdbcOdbcDriver”
jdbcUrl="jdbc:odbc:MondrianFoodMart" catalogUri="/WEB-
INF/queries/FoodMart.xml"s
select

{ [Measuresg] . [Unit Sales]} ON columns,

{ ([Product] . [A1l1l Products], [Promotion Medial. [All Media])} ON rows
from Sales
where ([Time].[1997])
</jp:mondrianQuerys>

Listing 30: Java Server Page that displays a pivot table for the example database

62



Jan David Peters Advanced and Distributed Databases 30/04/2010

6.3.4. Test

The example shows the requested data in a JPivot view. JPivot is another open source
project that can be used within Mondrian {Tonbeller AG 2010). It is a comfortable way to
display multidimensional data in a pivot table and contains several features like a chart
generator.

The pivot table needs to be explored in order to separate and sort the data according to the
management’s request:

Product Sales by Category and Promotion Media
Dlwql] E|BIOPE ] 2~ 4] bl BISX]

Kennzahlen

Product | Promotion Mediaj» Unit S8ales
(Al Products)+all Media 266,773
Rl

Slicer: [Year=1997]

back to index

Figure 38: Default view of pivot table; Expand the product tree until "Dairy Products" are visible

63



Jan David Peters

Advanced and Distributed Databases

30/04/2010

Product Sales by Category and Promotion Media

) Kennzahlen
Product Promotion Mediai# Unit Sales
|-l Products +All Madia 266.773
+Drink +All Media 24,597
~Food +AllMedia | 191.940
+Baked Goaods +All Media 7.870
+Baking Goods ' ' +All Media 20,245
+Breakfast Foods |+All Media 3.317
+Canned Foods . +All Media. . 19,026
+Canned Products | +A/ dia 1.812
+Dairy T (+AllMedia ) 12.885
+Deli +All Medla 12.037
+Eggs +all Media 4,132
+Frozen Foods +All Media 26.655
+Meat +All Media 1.714
+Produce #All Media 37.792

. +Saafood +AllMedia 1,764
+Snack Foods +All Madia 30,545
+8nacks +All Media 6.884
+Starchy Foods +All Media 5.262

| +Non-Gonsumable . +All Media 50.236

Slicer: [Year=1997]

Figure 39: Detailed Product Class view; Expand Media in order to get a detailed list of all Promotion Media

Types

Product Sales by Category and Promotion Media

Olwisy| El8IDPEe 2P el
; Kennzahlen
Product Prometion Media » ‘Unit Sales
=All Products *All Madia 266,773
+Drink +4ll Media 24.597
~Food +All Media 191.940
+Baked Goods +All Media 7.870
+Baking Goods +All Media 20.245
+Breakfast Foods {+All Media 3.317
+Canned Foods . . +aAll Media 19,026
+Canned Products+All Media 1.812
@ ZAll Media 12.885
Bulk Mail 189
Cash Register Handout 339
Daily Paper 349
I Daily Paper, Radia 327
| Daily Paper, Radia, TV 454
| . In-Store Coupon 166
No Media o 9.510
Product Attachment 355
Radio 112
Street Handout 301
Sunday Paper 200
Sunday Paper, Radlo 283

Figure 40: Detailed view for Dairy Products and Promotion Media Types; Change view to only display Dairy

Products

64



Jan David Peters

Advanced and Distributed Databases

30/04/2010

[ . Ke len
tProduct [+Promotion Media (= unit Sales ]
+Dairy  [+All Madia T

. Bulk Mail 189
Cash Register Handout 339
Daily Paper 349
Daily Paper, Radio 327
Daily Paper, Radio, TV 454
In-Store Coupon 166
No Media 9.510
Product Attachment 355
Radio 112
Street Handout 301
sunday Paper 200
Sunday Paper, Radio 283
Sunday Paper, Radio, TV 121
TV 179

back to index

Sticer: [Year=1997]

Product Sales by Category and Promotion Media

Figure 41: Drilled view with detailed data; Sort Unit Sales descending

Kennzahlen
+Product[tPromotion Media ¥ Unit galas
+Dairy 134l Media 12.885

No Media 9.510
Daily Paper, Radio, TV 454
Product Attachment 355
Daily Paper 349
Cash Register Handout 339
Dally Paper, Radio 327
Street Handout 301

- Sunday Paper, Radio 283
Sunday Paper 200
Bulk Mail 189

TV 179
In-8tore Coupon 166
Sunday Paper, Radio, TV 121

' ' Radio 112

back to index

Slicer: [Year=1997]

Product Sales by Category and Promotion Media
Dl 8101 ] 17 A i) B

Figure 42: Final view that contains the desired data

65



Jan David Peters Advanced and Distributed Databases 30/04/2010

6.4. Evaluation of Technologies, Tools and Methods

Basically, Mondrian OLAP Tool is regarded as helpful software for analysis of data. Using
JDBC as the driver technology behind makes it quite flexible in terms of the underlying
database management system. Installation and basic configuration of the core system is
practicable for experienced developers with skills on web applications and web server
administration.

Besides the fact, that distinctive knowledge of the data model or data warehouse is essential
for all OLAP activities, a key task for working with Mondrian is the specification of the cube.
Configuration of the so called “schema” might become difficult, especially when dealing with
more complex data structures. Nevertheless, a comprehensively written documentation and
a demonstration for Mondrian are available (Hyde 2009, “Documentation”). It is worth
mentioning that basic knowledge of the MDX query language is indispensable, but Microsoft
provides accompanying documentation in the Microsoft Developers Network (Microsoft
Corporation 2010, “Multidimensional Expressions (MDX) Reference”).

Although being open source software, Mondrian seems to be technically-matured and
reliable. No bugs or compatibility issues have occurred during implementation of the
scenario. Mondrian emphasises that system performance was one of the main development
objectives (Hyde 2007, “Performance”):

- Meaningful usage of existing DBMS functionality

- Extensive usage of caching techniques and garbage collection

- Developers are giving further advice on how to optimise the database for usage with
Mondrian

Mondrian fully meets the needs for the given scenario and is likely to meet most business
requirements for online analytical processing. However, it might concern the management
that the software is an open source project. The reasons could be concerns about reliability,
missing responsibility or nonexistent service and support. Therefore, the Pentaho Open
Source Business Intelligence suite would be an alternative, which includes an extended
version of Mondrian OLAP Tool for commercial usage. It goes without saying that this
software is not available for free. Licenses for the “Pentaho Analysis” software start at
around USD 4,000 and the whole Pentaho BI Suite license starts at USD 10.000 (Pentaho
Corporation 2010, “Pentaho Enterprise Edition Pricing”). Pentaho is highly accepted within
the industry and is used by companies and organisations like Ericsson, NHS and T-Mobile
(Pentaho Corporation 2010).

Another open-source alternative is the BIRT (Business Intelligence and Reporting Tools)
project which is a reporting system that is based on Eclipse (see Chapter 2.2.3.). The
intended usage of BIRT is to integrate reports in web applications. The steps to achieve a
result are (The Eclipse Foundation 2010, “BIRT Overview”):

66



Jan David Peters Advanced and Distributed Databases 30/04/2010

- Access the data source

- Transform data into data sets
- Add business logic if required
- Present the data as a report

Although these key tasks are quite similar to Mondrian, the focus of BIRT rather seems to be
the optical design of the report. Handling of BIRT is a slightly more intuitive than Mondrian
because BIRT delivers a fully developed GUI with corresponding wizards (The Eclipse

Foundation 2010, “BIRT Demo”). )
=il

6.5. References

HYDE, J., 2006-2009. Pentaho Commercial Open Source Business Intelligence [online].
Available: http://mondrian.pentaho.org/documentation/ [accessed 4t April 2010]

MICROSOFT CORPORATION, 2010. Multidimensional Expressions (MDX) Reference [online].
Available: http://msdn.microsoft.com/en-us/library/ms145506.aspx [accessed 4th April
2010]

MICROSOFT CORPORATION, 2010. Comparison of SQL and MDX [online]. Available:
http://msdn.microsoft.com/en-us/library/aa216779(SQL.80).aspx [accessed 4™ April 2010]

PENTAHO CORPORATION, 2010. Open Source Business Intelligence [online]. Available:
http://www.pentaho.com/ [accessed 4™ April 2010]

THE ECLIPSE FOUNDATION, 2010. Eclipse BIRT Home [online]. Available:
http://www.eclipse.org/birt/phoenix/ [accessed 6™ April 2010]

TONBELLER AG, 2010. JPivot — Home [online]. Available:
http://jpivot.sourceforge.net/index.html [accessed 8th April 2010]

67



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69



