SA0951a HOMEWORK

Some SQL and more DDL
We recommend you save all your code in NOTEPAD on your M: drive
This work is to start getting familiar with SQL commands for changing a database. We shall concentrate on SQL much more later but here you are trying to get familiar with the INSERT, UPDATE and DELETE commands to manipulate the data. In addition you will learn some other commands like ALTER and DROP to make changes to the tables. Note specifically here that DELETE gets rid of data in a table and DROP gets rid of an entire table.

Remember the database you are building is this one below.
	PERSONNEL

	SNUM
	SURNAME
	JOBTITLE
	MANAGER*
	SEX
	JOINDATE
	DIV*
	SALARY
	BONUS

	3016
	BROCK
	SECRETARY
	3414
	F
	11-Jul-83
	10
	12288
	

	3107
	HAMILTON
	SALESMAN
	3200
	M
	13-Dec-82
	20
	18534
	4500

	3200
	RAINES
	MANAGER
	3812
	F
	01-Jul-80
	20
	25872
	500

	3215
	TRINGHAM
	CLERK
	3200
	M
	16-Mar-81
	20
	9384
	

	3365
	HUGHES
	ACCOUNTANT
	3414
	M
	17-Nov-83
	10
	23760
	

	3407
	MACRAE
	SECRETARY
	3926
	F
	13-Dec-82
	10
	16200
	

	3414
	WELHAM
	MANAGER
	3813
	M
	22-Jun-87
	10
	25872
	

	3488
	STYLES
	CLERK
	3365
	F
	01-Dec-82
	10
	8652
	

	3698
	FRENCH
	CONSULTANT
	3788
	M
	01-Apr-80
	30
	20184
	0

	3724
	ADYE
	CONSULTANT
	3788
	M
	28-Oct-69
	30
	29400
	825

	3788
	KUMAR
	MANAGER
	3813
	M
	10-Feb-75
	30
	30816
	1586

	3812
	KHAN
	DIRECTOR
	3926
	M
	14-Dec-82
	20
	42000
	950

	3813
	BATE
	DIRECTOR
	3926
	F
	20-Apr-70
	10
	46752
	

	3926
	TOWLSON
	CHAIRMAN
	
	F
	03-Sep-84
	10
	45816
	

	3989
	BRAY
	CONSULTANT
	3788
	M
	24-Sep-73
	30
	18000
	825

	BRANCH

	DIV
	DIVNAME
	CITY

	10
	ADMIN
	LONDON

	20
	SALES
	BRISTOL

	30
	CONSULTING
	LONDON

	40
	TRAINING
	MANCHESTER

	50
	COMPUTING
	BIRMINGHAM

	TRANSPORT

	SNUM*
	REGNO
	MAKE
	MODEL
	MILEAGE
	DIV*

	3107
	G343ALJ
	BMW
	316I
	27216
	20

	3200
	F260PQN
	FORD
	SIERRA
	30986
	20

	3414
	E329WUF
	VOLVO
	340
	28216
	10

	3698
	G181BSS
	FORD
	SIERRA
	18311
	30

	3724
	G213CBS
	FORD
	ORION
	20016
	30

	3788
	G268JFN
	VOLVO
	440
	16485
	30

	3812
	H989TNP
	TOYOTA
	LEXUS
	2193
	20

	3813
	F138RUS
	BMW
	320
	28726
	10

	3926
	G298ALM
	JAGUAR
	XJ6
	21817
	10

	3989
	E156EBE
	FORD
	ORION
	30168
	30

Exercise 1: Getting data into the tables

The simplest method for adding data to a table is to do it one row at a time, using

INSERT INTO <tablename> VALUES (<list data separated by commas>)

Note: Any text strings must be enclosed in single quotes '……'.
 Dates must be in the dd-MON-yyyy or dd-MON-yy format and also enclosed in quotes.
 Numbers and null values are NOT enclosed in quotes.

· Try this:
INSERT INTO My_Branch VALUES (10, 'ADMIN', 'LONDON');
COMMIT;
· Try exactly the same command again, with the same values. What happens? Why?
………………………………………………………………………………………

Now let's say we want to add another branch. Its number is 60 and will be in the city of London. We don't know the branch name yet.

· Try to insert this to the branch table.

Maybe you had a problem doing this? The problem is that Oracle in this case has no idea which columns you want to leave blank! You will have to specify this.

One method would be to put NULL in the appropriate places, like

INSERT INTO My_Branch VALUES (60, null, 'LONDON');

Another method is to specify after the table name the columns you want to fill, like

INSERT INTO My_Branch (div, city) VALUES (60,'LONDON');

· Add Branch 60 to the table, using either of the suggestions above.

· Add the remaining records (query the Branch table for the data values first).

Exercise 2: Inserting several rows

There is no way in SQL that you can type in more than one record at a time; you have to repeat the INSERT INTO for each row.

That is rather annoying. So can we get the data into the tables any quicker?

In this case, yes. The data are already in the corresponding tables owned by me (LECT).

· Try this:
INSERT INTO My_Transport (SELECT * FROM transport);
· Did it work? If not, why not? ……………………………………….
………………………………………………………………………………………….

Use a similar command to "import" all the data into your MY_PERSONNEL table.

· Now try importing data for MY_TRANSPORT table again.

· It should work this time! Why was this?

Remember: As with the table creation, you will have to add data to the tables carefully, in order not to violate referential integrity.

Exercise 3: Commit and Rollback

In Exercises 1 and 2 you added lots of data to your tables. But beware!!!
If you leave Oracle now, they'll all be gone!!!

You need to use the command COMMIT; in order to make Oracle store the data permanently. You can do this at any time and Oracle will apply it to all your database changes since the last commit. The commit command actually tells Oracle that the transaction is now finished. Do it now!

COMMIT; (Remember to do this frequently when you change data in your database.

Note: If you have made any changes accidentally – for example, deleted data you didn't want to, you can use the command ROLLBACK; This will undo any changes since you last used Commit.

Now, we should have all the data into our tables.

We are now going to change the contents of the database. This is dangerous if we make mistakes so …………………… don’t worry because you an simply get the original data back by redoing Exercise 2.

Exercise 4: Updating data

SQL provides the UPDATE statement so data in a table can be modified.

Let's try an example:

The salaries for secretaries are to increase by 100 pounds.

· Type in
UPDATE My_PERSONNEL SET salary = salary + 100 WHERE jobtitle = 'Secretary';

Oracle should respond telling you that no rows have been updated. Why do you think this is?

 ………………………………………………

Yes. Oracle is case sensitive to text contents. So try again by making your own changes.

Remember to COMMIT if you want the change to be permanent.

Note: You can use UPDATE without a WHERE clause, in which case all rows will be updated. More about this when we learn more SQL later.
Now it has been decided that the code for ADMIN should change from 10 to 15.

· Type in
update My_Branch set div=15 WHERE div=10;

This follows exactly the same format as the previous update, but it doesn't work either! Why?

…………………………………………………………….
…………………………………………………………………………………………….

Exercise 5: Deleting data

SQL provides the DELETE statement to delete table contents.

Let's try an example:

BROCK has handed in her notice. Let's delete her record from the MY_PERSONNEL table.

· Type in
DELETE FROM My_PERSONNEL where snum=3016;
Oracle should respond telling you how many rows have been deleted.
Remember to COMMIT if you want the change to be permanent.

Important! You can use DELETE without the WHERE clause, but then all rows will be deleted, so you'll have an empty table!!!

Now the staff member with snum 3200 is also to be deleted.

· Type in
DELETE FROM My_PERSONNEL where snum = 3200;

What error message do you get? ……………………………………………………..

As with data updates, Oracle enforces referential integrity, so you can't delete a member of staff who also acts as a manager! Why? Because every foreign key entry MUST have a matching primary key entry.

So how can we take out this member?

We could perform an UPDATE command that sets those with 3200 in the MANAGER column to NULL. Then that member of staff could be deleted because the foreign keys have been set to null.

Why don’t you try it?

Alternatively, if you want to allow deletions like this in general, there is a way of setting up the foreign keys differently in the first place to allow this – see next exercise.
Exercise 6: Options for Foreign Key constraints
In the last exercise you found out what happens if you try to delete across relationships. It is actually possible to tell Oracle how to handle this – this is done when you create your tables and set the foreign key constraint.

When you created the My_PERSONNEL table, you set the foreign key like this:

CONSTRAINT fk1 FOREIGN KEY (manager) REFERENCES My_PERSONNEL(snum)

Alternatively, you could have used

CONSTRAINT fk1 FOREIGN KEY (manager) REFERENCES My_PERSONNEL(snum)

ON DELETE CASCADE
Or

CONSTRAINT fk1 FOREIGN KEY (manager) REFERENCES My_PERSONNEL(snum)

ON DELETE SET NULL

It is possible to change this even after the tables have been created and hold data.

Exercise 7: Altering tables

The ALTER TABLE command can be used with various options to change the design of an existing table.

	You can:
	You can't:

	· Change the size of a column
	· Make a column smaller than the data in it

	· Delete a column
	· Rename a column

	· Add a column
	

	· Drop a constraint
	

	· Insert a constraint
	(this list may not be complete)

Let's try this out now.

· A new branch, div 70, called Research&Dev in Glasgow is to be added to the database.

Use INSERT to add this branch

You should get this error message:
ORA-01401: inserted value too large for column

This is because the column is VARCHAR2(10) but the name has 12 letters.
So we need to make the name column wider!

· You need to do the following to achieve the change:
ALTER TABLE MY_BRANCH MODIFY (divName varchar(12));
Oracle should respond " Table altered.".

· Now insert the branch as above.

Now back to the problem of referential integrity interfering with deletions. In Exercise 4 we tried to delete "across a foreign key", and saw the error this caused.

Let's assume that

(a) When a worker leaves, the manager column details are also deleted

(b) When a worker leaves, the transport they owned will eventually be assigned to someone else, but initially the snum field is simply made null.

To implement this, we can alter the foreign keys set for the tables My_PERSONNEL and MY_TRANSPORT. This needs two steps – delete the foreign key and create a new one with the appropriate option.

You need to know the name of the foreign key constraint for this!!!! You should be able to look it up from your notes when you created your tables in notepad.
· Plan ahead – how can you test that the changes you are about to make do work?
……………………………………………………………………………………………..
……………………………………………………………………………………………..
……………………………………………………………………………………………..
· Type in
ALTER TABLE My_PERSONNEL DROP CONSTRAINT <constraint_name> ;
but put in the real constraint name, of course!

Oracle should respond "Table Altered".

· Now create the new constraint by typing in (again, use a real constraint name)

ALTER TABLE My_PERSONNEL ADD CONSTRAINT <constraint_name>
FOREIGN KEY (manager) REFERENCES My_PERSONNEL(snum) ON DELETE CASCADE;
Oracle should respond "Table Altered".

· Go through the same process to change the foreign key of MY_TRANSPORT so that snum will be set null automatically when a staff member is deleted from MY_PERSONNEL.

· Check that the changes worked.

Exercise 8 DROPPING tables

The DROP command is used to get rid of tables. If a table is linked to another table though, it will not DROP because of the foreign key constraint. You can disable a constraint using the ALTER command (find out your self about how to enable and disable constraints).
Summary

After completing this sheet you should:

1. have a database completed that contains all key constraints and mimics the database you were given at the top of this sheet
2. have gained some experience with INSERT, DELETE, UPDATE, ALTER, DROP

3. be more confident about referential integrity concepts

4. understand how to copy data from one table to another in one statement

5. be more confident with the Oracle development interface and have your correctcode all saved on your M drive so that you can recover your database quickly if you accidentally delete it!

