SA0951a Oracle Practical: PL/SQL Introduction

Remember PL/SQL does extra things that SQL can’t do alone and therefore expands SQL. It’s especially useful for calculations, updates, audits, actions, verification etc.

In this lab you will try out some examples of anonymous blocks, with embedded SQL, conditional branching (IF) and loops.

Task 1: Block structure

Remind yourself of the PL/SQL block structure (which of the 4 key words are absolutely necessary?):

D……………

B……………

E……………

E……………;

Task 2: A first example

· Type in this block and run it:

Declare

 interest CONSTANT NUMBER (4,2) := 1.15;

 amount number (4,2);

BEGIN

 amount := 100 * interest;

END;

You should get the error message:

Declare

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error: number precision too large

ORA-06512: at line 5

· Can you explain what the problem is? __________________________________

Task 3:

Before doing this create a new table called TEMP with three fields in it as following:

FIRST

VARCHAR2(4)

SECOND
VARCHAR2(20)

THIRD
VARCHAR2(100)

You don’t need to specify a primary key for this table!
Now write a block of PL/SQL which will INSERT the name and job of personnel number 3488 into the TEMP table (into the SECOND and THIRD attributes above).

Run it twice just to see that the insert goes in twice.

Try the command ROLLBACK now and check the TEMP table again.
Task 4: Try this one with partially completed code to help (you fill in the sections with underscores)
I want to know who manages STYLES using a PL/SQL approach.
declare

 manno number(4);

 manname varchar2(10);

 manjob varchar2(10);

 mandept personnel.div%type;

 department branch%rowtype;

-- this anchors a whole row
begin

--the next statement retrieves the manager identifier for STYLES

select __________ into __________ from personnel where surname='STYLES';

-- next statement retrieves the details of that manager.
 select ___________________ into manname, manjob, mandept from personnel

 Where _____________________;

 --the next line retrieves an entire row containing the branch info.
select * into department from branch where ____________________;
-- the next line inserts the div into the FIRST attribute,
-- the name in to the SECOND attribute and should
-- insert a string into the Third attribute.
-- You need to complete the string with the location.

insert into temp values (department.div, manname, manjob|| ' in ' || department.divname||' Division based in ' || _____________);
end;
Task 5: Spot the Errors in this code and correct them by interpreting Oracle’s error detector

The code below is designed to calculate the salary difference between two dates. Type it in exactly as it is (better still, copy and paste it) so that you gain experience with Oracle’s error detector. See if you can get the code working by correcting the numerous errors it contains!
Declare;

v_diff varchar2(3)

v_startdate date="11-JUN-76";

v_enddate data:='4-Apr-84';

begin

 select max(salary)-min(salary) into diff;
 from personnel where join_date between startdate and

 v_enddate;

dbms_output_put_line ('Salary difference between '|v_startdate || and '||enddate|| ' is '||v_diff);

end
Task 6: More SELECT … INTO
Make sure you have run SET SERVEROUTPUT ON (you only have to do this once per session unless you have SET SERVEROUTPUT OFF at any time during the session)

Create a PL/SQL program that will prompt for a surname to be entered. When the surname is entered, the following columns will be selected:

DIVNAME

JOBTITLE

SALARY

Display this as a sensible message
(e.g. STYLES is a CLERK who works in division 10 and earns £865)

Task 7: Another one!
Write a PL/SQL block to return the following information……….

“Give me the average salary for all staff in any city requested by the user”
Think logically about variables, datatypes, SQL commands and output.
Use & to prompt the user at runtime.
Task 8: Ifs ……..
Write a procedure that accepts a score (between 0 and 100) and then grades that score according to the rules below. Give a suitable output message.

80 -100: Grade A

60 - 79: Grade B

40 - 59: Grade C

20 - 39: Grade D

<20: Grade E

Task 9: Loops
a) Execute the FOR..LOOP code below first and examine the output you get. Make sure you understand how the code works (in particular you need to interpret the MOD function – e.g. mod(3,3) is 0 because you get zero when you divide 3 by 3, but mod(5,3) is not because you do not get an integer when you divide 5 by 3)
Begin

 For counter in 1..14 Loop

 If mod(counter,3)=0 then

 Dbms_output.put_line('Loop counter divisible by 3 '||counter);

 End if;

 End loop;

End;

Alter the above code so that EVERY loop counter is printed out with an appropriate message.

b)

CREATE a new table (call it whatever you like) with just one attribute of data type NUMBER(3).
You don’t need to specify a PK either as this is an unlinked table.
Use a WHILE LOOP to insert 6 new numbers into this table. Try putting in the numbers 100, 200, 300, 400, 500 and 600.
Run the procedure and correct any errors until it runs successfully.

Check the contents of the table.
Run it again (you simply need to type “/” at the prompt at this runs the last thing in memory)

Run it again! Check your table contents

Type the ROLLBACK command. Check table contents. See what has happened?
02/11/2009
Page 2

