SA0951a Oracle Practical: PL/SQL Cursors, Procedures, Functions

Task 1: a first cursor

The code below is designed to print out the salaries over 30000 for all personnel. You can type this code in directly if you wish or copy and paste it. What we want you to do is look at the output you get and be able to describe what each line of code is doing.
DECLARE

CURSOR high_salaries IS SELECT snum, surname,salary FROM personnel where salary > 30000;
v_snum

personnel.snum%TYPE;

v_surname

personnel.surname%TYPE;

v_salary

personnel.salary%TYPE;

BEGIN

OPEN high_salaries;

 LOOP

FETCH high_salaries INTO v_snum,v_surname,v_salary;

 EXIT when high_salaries%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(v_snum ||' '||v_surname||' '|| v_salary);

 END LOOP;

CLOSE high_salaries;

END;
Write your brief notes about the code here:

__
Task 2: a cursor with errors
a) The cursor code below is designed to update personnel salaries based on where they work. Only there are lots of errors in it for you to sort out. Good luck, look very, very carefully and try to learn by interpreting the error messages you get. Sometimes they ARE useful! If you don’t get it all sorted right away you can always come back to it. Go onto the next question if you get stuck as you can persevere with this in your own time.
declare

cursor c1 select snum, city from personnel p, branch b where p.div=b.div;

v_city
 b.city%type ;

v_snum personnel.snum%type;

v_salary_1
number=30000;

v_salary_2
number(4):=25000;

v_salary_3 number:=20000;

v_salary
personnel.salary%type;

begin

 open c1;

 loop

 fetch c1 into v_snum, v_city;

 exit where c1%NOTFOUND;

 If v_city='LONDON' then v_salary:=v_salary1;

 elsif v_city='BRISTOL' then v_salary:=v_salary_2;

 else v_sal:=v_salary_3;

 end if;

 update my_personnel set salary = v_salary where snum=v_snum;

 endloop;

 close ;

end;
Task 3: Storing and Executing PL/SQL

In order to store PL/SQL, simply replace the DECLARE word with:

CREATE PROCEDURE average_salary IS

A block which outputs the average result and current date and user is given below.

DECLARE

average NUMBER(7,2);

Begin

SELECT AVG(salary) INTO average FROM personnel;

DBMS_OUTPUT.PUT_LINE ('As of ' || SYSDATE);

DBMS_OUTPUT.PUT_LINE ('The average salary is ' || Average);

DBMS_OUTPUT.PUT_LINE ('Prepared by ' || USER);

END;

· Edit and store this code now as a procedure.

· Run it.

If you've got that, congratulations, you've stored a PL/SQL procedure.

· If you still have compilation errors, check everything very carefully especially spelling and punctuation! Also try the command SHOW ERRORS for an idea of what went wrong.

· Now execute the procedure
Task 4: Changing a stored procedure

Say you now want to get the average salary just for branch 10.

The code you need is

CREATE PROCEDURE average_salary IS

Today DATE := SYSDATE;

Average NUMBER(7,2);

Begin

SELECT AVG(salary) INTO Average FROM personnel WHERE div=10;

DBMS_OUTPUT.PUT_LINE ('As of ' || Today);

DBMS_OUTPUT.PUT_LINE ('Average salary for branch 10 is ' || Average);

DBMS_OUTPUT.PUT_LINE ('Prepared by ' || USER);

END;

· Do the CREATE PROCEDURE process again, adding the WHERE clause as shown above.

· You will probably get the message
" ERROR at line 1: ORA-00955: name is already used by an existing object"
Why?
………………………………………………………………………………..

To solve this problem, you could DROP the procedure first. But there is a better way:

· Use
CREATE OR REPLACE PROCEDURE …….
at the top and try again.

That should have worked.

Note: The words OR REPLACE after CREATE make sure that if the procedure exists already, you can edit it.

Task 5: Procedure with parameter

So we know how to change the stored procedure. What would you do if you want the average for another branch? It's tedious to change the stored procedure every time we want different values. It would be so much nicer to be able to just specify the branch code when we execute the procedure.

The solution to this is to use input parameters. This can be done quite easily, you only need a few changes to the block. They are highlighted in bold below (note how the output is also changed):

CREATE OR REPLACE PROCEDURE average_salary(branchID CHAR) IS

Today DATE := SYSDATE;

Average NUMBER(7,2);

Begin

 SELECT AVG(salary) INTO Average FROM Personnel WHERE div=branchID;

 DBMS_OUTPUT.PUT_LINE ('As of ' || Today);

 DBMS_OUTPUT.PUT_LINE ('The average for branch ' || branchID || ' is ' || Average);

 DBMS_OUTPUT.PUT_LINE ('Prepared by ' || USER);

END;

· Create this procedure now and execute it.
· Run the procedure twice, inserting different values each time.

Task 6: Declaring Procedures within procedures and calling them
Study the code below and write down the output you would expect the program to produce, then execute the main procedure and see if you were right. You’ll need to understand the MOD function in particular. Basically it returns a zero if the result of a division by a specified number is an integer. Be clear about how the control is being passed to and fro between the procedures
create or replace procedure main_proc

is

 v_test number:=4;

procedure inner_proc1

 is

begin

dbms_output.put_line(v_test||' inner procedure one');

end inner_proc1;

procedure inner_proc2

 is

begin

dbms_output.put_line(v_test||' inner procedure two');

end inner_proc2;

 begin

 while v_test <=10 loop

 inner_proc1;

 if mod(v_test,2)=0 then

inner_proc2;

 end if;

 v_test:=v_test+1;

 end loop;

 end main_proc;
Task 7: Function
Study the function and procedure below. They are written to calculate the total mileage for a given division name.

The procedure accepts a division name and then calls a function to calculate the total mileage, which then returns the result to the procedure. The result is printed to the screen.

Your task is to ANNOTATE the code with comments so that you understand what the code is doing.

CREATE OR REPLACE PROCEDURE avemiles(divisionName varchar2)

is

V_divID Branch.div%type;

V_aveMiles
 personnel.salary%type;

BEGIN

SELECT div into v_divID

FROM branch WHERE divname=divisionName;

v_aveMiles:=get_aveMiles(v_divID);

DBMS_OUTPUT.PUT_LINE('Division '||v_divID||' has '||v_aveMiles||' average mileage');

END;

CREATE OR REPLACE FUNCTION get_aveMiles (i_div IN NUMBER)

RETURN number

IS

v_aveMiles Transport.Mileage%type;

BEGIN

SELECT avg(Mileage)

INTO v_aveMiles FROM Transport

WHERE div=i_div;

RETURN v_aveMiles;

END get_aveMiles;

You can TEST the function on its own using the following code:
SELECT get_avemiles(10) from dual;

You can now test the Procedure (which calls the function you have already tested) using the following:
Execute avemiles(‘ADMIN’)

So now you can play around with the code by trying it out on different Division Names to see if it works.
What would you change if you wanted to calculate the maximum mileage for any division?
Task 8: More practice with functions.

Study the code below which uses functions embedded within a main function to do some fairly trivial arithmetic.
Again, see if you can work out what the output from the program function would be by tracing control within the code and record it below. Pay particular attention to the RETURN.
create or replace function calculate

 (v_1 in number, op in varchar2, v_2 in number)

 return number

is

v_return number;

 function add

 return number

 is

 begin

 return v_1+v_2;

 end add;

 function subtract

 return number

 is

 begin

 return v_1-v_2;

 end subtract;

 function multiply

 return number

 is

 begin

 return v_1*v_2;

 end multiply;

 function divide

 return number

 is

 begin

 return v_1/v_2;

 end divide;

 begin

 if op='+' then v_return:=Add;

 elsif op='-' then v_return:=subtract;

 elsif op='*' then v_return:=multiply;

 elsif op ='/' then v_return:=divide;

 else v_return:=null;

 end if;

 return v_return;

 end calculate;

To test the program you can use Oracle’s DUAL dummy table in SELECT statements. For instance, try:
SELECT calculate(2,’+’,3) from dual;

This should call the function and perform the arithmetic for you. Make sure you understand how the ‘calling’ is achieved in the above statement.
Try passing various parameters to test the code works. Try passing a zero for a division for example!

Task 9: The code below is similar in that it calculates an average result.

We know we can calculate the average easily in SQL, but just for illustration purposes see how the function achieves the result then see if you can expand the code to perform the minimum and maximum salary as well.

create or replace function calc_stats

 (OP VARCHAR2)

 return number

is

v_return number;

 function average

 return number

 is

 v1
number;

 begin

 select avg(salary) into v1 from personnel;

 return v1;

 end average;

 begin

 if op='average' then v_return:=average;

 end if;

 return v_return;

 end calc_stats;

Remember to test the code by typing SELECT calc_stats(‘average’) from dual;
Task 10: Developing your cursor skills
Create a routine that could be run each month to insert pension contribution details into a PENSIONS table. So create the table first.

CREATE TABLE MY_PENSIONS

(snum

NUMBER(4),

P_employee

NUMBER(9,2),

P_employer

NUMBER(9,2),

P_date

DATE);

Your code should accept three prompts:

a) the date

b) the amount of employee contribution (less than 10%).

c) the amount of employer contribution (less than 10%).

The calculation you need to consider is simply:

Salary * contribution /12 (as it is a monthly contribution).

You’ll need to declare variables for all of your prompts and for anchoring variables to the datatypes in the PENSIONS table for the insertion of data.

Task 11: Developing function skills
Write a function that calculates tax on a personnel member’s salary.

You should then be able to test your function by typing something like:

SELECT surname, first name, salary, tax(35000,500) from dual; (the two parameters being salary and bonus respectively).
Things you need to know and incorporate (read carefully and try to work out the formulae from the information given):

1. Pass two parameters for salary and bonus

2. Taxable salary is the salary + bonus – tax allowance

3. Tax allowance is a constant at £4335

4. There are two tax limits at £3999 (lower) and £28999 (upper)
5. Salary is tested against these tax limits

6. If salary is less than the lower tax limit then tax is calculated as 10% of taxable salary

7. If salary is between the two tax limits then tax is calculated as 22% of taxable salary

8. If salary is higher than the upper tax limit then tax is calculated as:

22% of the upper limit + 40% of the difference between the taxable salary and the upper limit.
CHAR is the data type matching VARCHAR2

Remember to: SET SERVEROUTPUT ON. Also, the code examples below use the LECT tables. So, if you have used the My_ prefix on your tables, use them.

18/11/2009
Page 7

