
 COMU114/M1G505190: Introduction to Database Development

 page 1

LAB 4: Working with Java

Introduction

Wait a minute! This is a database module, isn’t it?

Well, yes, but databases are often vital components of applications written in popular
programming languages such as Java. In this lab you will look at a Java project, in
BlueJ, which uses the GCUTours database. The Java code will be provided for you.

The data model

In this system, the data model (or domain model) is represented as Java classes and
as database tables. The business logic of the system is carried out by Java objects,
while the database provides permanent storage for those objects. Java objects are
stored in the database and retrieved later when they are needed.

 data model

Java representation

database
representation

tables objects

 COMU114/M1G505190: Introduction to Database Development

 page 2

Task 1
In this task you will create a new Java object and investigate what happens to that object
when the Java project is closed down and then opened again.

1. Start the SEC-XPSP3-JavaApps {2008}{v2.1} virtual machine in VMWare
player. Create a new folder called databases inside My Documents. (You may
find that this VM is located within a folder called SEC-XPSP3-JavaApps
{2009}{v1.0})

2. Download the database file gcutours_app.mdb from your course web site and
save it in the folder My Documents\databases. Open the database in Access.

3. Download all the Java files from your course web site and save them in My

Document. There should be eight Java files altogether.

4. Start BlueJ and create a new project called gcutours in My Documents. Select
the Edit > Add Class from File menu option. Select User.java from the files you
downloaded and click Add. A new class User should appear in the project.
Compile the User class.

5. Create a new User object using the values shown in the figure:

6. Inspect the User object, user1, on the Object Bench to make sure that the
attributes have been set correctly.

7. Now close down BlueJ. Start BlueJ up again and open the gcutours project (you

may not need to open it – BlueJ usually automatically opens the last project you
were working on).

 COMU114/M1G505190: Introduction to Database Development

 page 3

Is the user1 object still in the Object Bench? Why or why not?

How could you get the user that you created back onto the Object Bench
again?

 COMU114/M1G505190: Introduction to Database Development

 page 4

Task 2
In this task you will store a new Java object in a database and investigate whether the
object can be retrieved after the Java project has been closed and opened again.

1. Add a new class called UserDAO to the project using the file UserDAO.java, and
compile this class.

2. This new class is an example of a Data Access Object (DAO) class, whose job is

simply to get objects in and out of a database. The job of UserDAO is to get User
objects in and out of the GCUTours database.

3. UserDAO needs to know where the database file is. Open UserDAO in the BlueJ

editor, and look for the following lines:

Connection c = DriverManager.getConnection(
 "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};" +
 "DBQ=c:/Documents and Settings/student/My Documents
 /databases/gcutours_app.mdb"
)

Make sure the path following “DBQ” matches the location of your database file.

Your project now has two classes. They are closely related, so it’s a good idea to
move them close together in the BlueJ class diagram:

4. Recreate the User object, user1, which you first created in Task 1.

5. Right-click the UserDAO class and select void storeNew(User user).

6. To store user1, type user1 in the box in the Method Call dialog, or click first in
the box then on the user1 object in the Object Bench, and click OK.

 COMU114/M1G505190: Introduction to Database Development

 page 5

The Terminal window should open with a message, which will report what has
happened. This should consist of an SQL query which has been performed, and
a report that 1 row has been inserted. If there is an error message, you should
check first that your database is available in the correct folder on your computer.

Write down the SQL query, and describe what this query does

7. Open the Users table in your database in Access. You should see the following

row which has been added:

8. Now close down BlueJ. Start BlueJ up again and open the gcutours project if it is
not open.

Is the user1 object still in the Object Bench? Why or why not?

9. Right-click the UserDAO class and select User getByUsername(String

username).

10. Enter “ran” in the box in the Method Call dialog and click OK. The method result
is a User object. Click Get in the Method Result dialog. Enter user1 for New
Object Name and click OK. Click Close in the Method Result dialog. A new
object should appear on the Object Bench.

 COMU114/M1G505190: Introduction to Database Development

 page 6

Inspect the new user1 object. What are its properties?

Write down the SQL query, and describe what this query does.

What role has each of the following played in this task: User. UserDAO,
database

NOTE

It looks like you have stored an object in the database. Actually, an Access database
doesn’t really store Java objects. What happens is that a row in a database table
contains the data needed by the Java application to reconstruct the original Java object.

 COMU114/M1G505190: Introduction to Database Development

 page 7

Task 3
In this task you will retrieve many objects of the same type from the database.

1. Right-click on UserDAO and select User[] getAll().

2. Click Get in the Method Result dialog and choose allUsers for the New Object
Name. Close the Method Result dialog. You should see a new object on the
Object Bench with an unusual icon:

3. This looks like a pile of cards, and shows that the object is in fact many objects of
the same type. In Java, this is called an array – allUsers is an array of User
objects.

Write down the SQL query, and describe what this query does.

4. Inspect allUsers. You will see an array of results, numbered 0 to 19, each of
which is an object reference. Highlight any one in yellow by clicking on it, and
click Inspect.

 COMU114/M1G505190: Introduction to Database Development

 page 8

What are the properties of the object? What kind of object is it? Can you
find the corresponding data in the database?

NOTE

The array used here is limited to 20 results for simplicity. In Java, the objects in an array
are counted starting with 0, not 1, so they are numbered 0 to 19. There are better ways
of dealing with an unknown, and possibly large, number of results returned by a query.

 COMU114/M1G505190: Introduction to Database Development

 page 9

Task 4
In this task you will retrieve an object which has an association with another object.

1. Add Package, Tour and Booking classes to your project using the files
Package.java, Tour.java and Booking.java.

2. Add PackageDAO and TourDAO classes to your project using the files

PackageDAO.java and TourDAO.java. For clarity, arrange your classes so that
each DAO class is close to its data model class. Compile all the classes.

3. Right-click on PackageDAO and select Package getByPackageID(int
packageID). Choose a value of 2 for the packageID.

4. Get the Package object which is returned to the Object Bench as package1.
Inspect package1. Check that the field values correspond to a row in the
Packages table in the database.

Write down the SQL query, and describe what this query does.

5. Right-click on package1 and Remove it from the Object Bench.

6. Right-click on TourDAO and select Tour getByTourID(int tourID). Choose
a value of 6 for the tourID.

7. Get the Tour object which is returned and place in onto the Object Bench as

tour1. Inspect tour1. Check that the field values correspond to a row in the Tours
table in the database.

 COMU114/M1G505190: Introduction to Database Development

 page 10

8. What field in the Java object corresponds to the database field packageID? What

does the field in the Java object contain?

9. Highlight the holidayPackage field in the Object Inspector and click Inspect.

What is the packageID of the holidayPackage object?

Write down the SQL queries, and describe what these queries do. Why are
there two queries? What does TourDAO do with the results of the query on
the Packages table?

 COMU114/M1G505190: Introduction to Database Development

 page 11

Task 5

In this task you will see some business logic being done by the Java objects, with the
result stored in the database.

1. Add a BookingDAO class to your project using the file BookingDAO.java.
Compile the class.

2. Use appropriate methods of UserDAO and TourDAO to retrieve the following

objects from the database and place them on the Object Bench.

Type Which object? Name in Object Bench
User username=”vdagama” user1
Tour tourID=7 tour1

3. Inspect these objects and compare with the database to check that they contain

the correct field values.

You saw in task 4 that when you retrieve a Tour object you also get the associated
Package object - let’s get that onto the Object Bench too.

4. Right-click on tour1 and call Package getHolidayPackage(). Place the

result as package1 on the Object Bench. Inspect it to make sure packageID is 4.

What is the value of sales for the package?

Now that you’ve found a user and a tour, you will make a booking for that user on
that tour.

5. Create a new Booking object called booking1, using the values shown in the

figure on the next page.

 COMU114/M1G505190: Introduction to Database Development

 page 12

6. Inspect package1 again.

What is the value of sales now? How has the new value been calculated?

NOTE

This is an example of business logic done by the Java objects – when a booking is
made then the number of sales for the package must be updated.

Now you need to store the booking.

7. Use the method void storeNew(Booking booking) of BookingDAO to store

booking1.

8. Open the Bookings table in the database and check that the new booking has
been stored.

Write down the SQL query, and describe what this query should do.

 COMU114/M1G505190: Introduction to Database Development

 page 13

What is the value of bookingID in the object booking1? What is the value in
the database? What has happened?

9. Look at the Packages table in the database.

What is the value of sales for the package with packageID = 4? Why?

10. Use the method void storeUpdated(Package p) of PackageDAO to store
package1.

11. Look at the Packages table in the database again (you may need to close it and

open it again to see changes).

What is the value now of sales for the package with packageID = 4?

Write down the SQL query (you can write just the first couple of words of
the description field), and describe what you think this query does.

Why is it important to use this kind of query rather than an INSERT here?

 COMU114/M1G505190: Introduction to Database Development

 page 14

Task 6

Additional things to try if you finish the other tasks:

1. The DAO classes contain methods to query the database in different ways.
Experiment with these, and think about how they might be useful.

2. If you feel like writing some Java, note that UserDAO does not have a method to

find users by last name.

Write and test a new method in UserDAO, called getByLastname. How many
results would you expect this to return? This will affect how you write the method.

