Disciplinary Commons Portfolio

J L Bown, University of Abertay Dundee

j.bown@abertay.ac.uk

1 Executive Summary

The portfolio describes a 1st year computer programming module as part of a 4 year programme of study at the University of Abertay Dundee. The course is taken by approximately 80 students over three terms and is one quarter of the course studied at level 1. The module, and consequently the portfolio, has a number of defining characteristics:

· The module is a gentle introduction to object-oriented programming concepts

· A novel space integrating both lecture and laboratory is used for teaching – there is no gap in time between concept delivery and programming activity

· The relative balance of lecture and (supported) laboratory time is 1:4

· The teaching exploits two main highly visual paradigms – a robot and a cow

· Assessment in the first term is continuous and based on observation, with several exercises each week and no formal submission of work required

· Teaching is supported by a novel support tool, SNOOPIE, that provides general guidance on program syntax and semantics and specific guidance on the program structure and construct set required for a particular problem

· No previous knowledge of programming or mathematics is required

· The language used as a vehicle for teaching concepts is Java

The portfolio contextualises the module and outlines the aims, objectives, instructional design, taught content and assessment mechanisms. These aspects are evaluated critically and wider pedagogic issues are addressed.

2 Context

2.1 University of Abertay Dundee

The University of Abertay (UAD), Dundee was established in 1995 and has approximately 5,000 students where the majority are based on campus. 75% of our student intake is from within Scotland, 10% from the rest of the UK and 15% overseas. The campus is centrally located within Dundee and comprises three, adjacent main buildings – the principal teaching building, the library and the student centre – together with various outlying facilities around Dundee. The University is recognised for its investment into IT infrastructure with one PC for every four students (http://www.abertay.ac.uk/About/GoodReasons.cfm).

As a Scottish University, UAD has a strong reputation for innovation. For teaching provision, firsts in the Scottish sector include Computer Games Technology, Computer Arts and Bioinformatics. For research capacity, UAD’s SIMBIOS Centre is best in Scotland for Environmental Research, and the Abertay Centre for the Environment is Scotland’s first centre of expertise dedicated to helping small and medium businesses tackle environmental issues. Some pictures of the City and campus (taken by students) are provided here (web link).

2.2 School of Computing and Creative Technologies

The School of Computing and Creative Technologies seeks to link arts and sciences through computing. To effect this, the School comprises 3 divisions: Computer Arts, Complex Systems and Software Applications. The School has approximately 1,000 students and 50 members of academic staff. Through these divisions, the School offers a wide range of undergraduate and postgraduate programmes (courses) related to Computing - from Computer Games Technology to Computer Arts, with Web Design and Development, Computing, Computing and Networks, Information Technology, and Game Production Management in between http://computing.abertay.ac.uk/site/site/index.cfm).
2.3 Introductory programming module in outline

The module considered here, Object Oriented Programming 1 (OOP1), is positioned within the Software Applications division. Students enrolled on BSc Computing, BSc Web Design and Development and DipHE Computing & IT undertake the course, where BSc Computing constitute the majority. The entrance requirement for these courses ranges from BBBC at Scottish Higher/ CCD at A-Level to BC at Scottish Higher/ C at A-Level (http://www.abertay.ac.uk/Applicants/PDFs/P008to055.pdf). The module is taught at Year 1 of a 4-year degree programme and represents 25% of the particular programme of study. The module is taught over the full year and assessment moves from continuous laboratory observations to larger coursework as the year progress. The module assumes no prior knowledge of programming. The Java programming language is used as a vehicle for teaching object oriented programming concepts, including fundamental data and constructs, methods and simple objects. The full description of the module is presented in Appendix 1.

Students on BSc Computing will continue Object Oriented Programming as a theme throughout their course. Years 2 and 3 (pre Honours) continue with Java, exploring the object model and operation of the JVM in a general sense, and then consider a series of case studies including Swing. Within years 2 and 3, consideration is also given to the .NET Framework. In the final year, students exploit their knowledge of programming in a project (50%) and are exposed to compiler development methodologies and Enterprise Internet Technologies including ASP.NET, XML, SMS and security issues. Appendix 2 provides the course structure for BSc Computing programme, since this relates to the majority of students.

For students on BSc Web Design and Development and DipHE Computing and IT, OOP1 serves as an overview to the concepts software development generally including core programming constructs and the use of algorithms. Students go on in later years to develop interactive web sites with a wide range of enabling technologies. Topics covered include the use of sound, photography and animation in content deployment and underlying networking technologies.

2.4 Staffing and operational details

2.4.1 Principal tutor

OOP1 is led by Dr Jim Bown. Dr Bown is a member of the Complex Systems division, and has been a lecturer for 6 years. He teaches OOP1 and OOP2, where the latter is taught to BSc Computing students only. Dr Bown also supervises all BSc Computing Honours Projects. Dr Bown has a first degree in Computing and a PhD in Ecological Modelling. His research interests are centred on the computational modelling of complex communities, and he is exploiting the modelling approaches developed in other areas including healthcare systems, educational research and computer arts.

2.4.2 Teaching space

To enhance the teaching provision of OOP1 and other practical modules taught in years 1 and 2, Dr Bown has designed a specialised teaching laboratory space. The space facilitates a seamless link between lecture and practical. A large room (Figures 1 and 2) containing 50 PCs, 1 teaching PC and 3 data projectors allows Dr Bown to punctuate delivery of lecture material throughout a laboratory session. Within this lab the use of flat screen LCDs and most PC boxes being placed on the floor improve desk and visual space.

[image: image1.emf]5

8 8 8 8

5

8

Figure 1: Schematic of the room, highlighting the distribution of desks and audio-visual facilities.

[image: image2.jpg]

Figure 2: Photograph of the lab in use. Some students elected to escape for the taking of the photograph.

2.5 Teaching philosophy

Teaching fist year students offers a mix of opportunities and challenges. At the point of enrolment, students are motivated to undertake their work and excited about the different approaches used at university rather than secondary school. This motivation should be capitalised on by making programming exercises engaging and where possible related to (their) real world concepts. As noted below, students live in a highly interactive and visual world and this should drive the selection of metaphors used. The secondary school system makes use of continuous assessment and this should be accommodated in assessment strategies at first, introducing larger work units as the programme of study develops. The laboratory atmosphere should be relaxed with, where possible, a high staff to student ration to allow for one-to-one questions. Finally, students learn to program by programming – lectures serve to orientate and rationalise the material taught. The main learning experience is in the laboratory.

3 Module design and implementation

3.1 Aim

The aim of OOP1 is to enable students to develop simple programs that illustrate fundamental programming concepts. See Appendix 1 for the formal specification of the module aim.

3.2 Objectives

By the end of this module students should be able to:
1. Create and run programs using an integrated development environment.
2. Use appropriate data types and control structures.
3. Design, implement and extend objects in terms of interface, function, and data.
4. Incorporate predefined objects into new programs.

See Appendix 1 for the formal specification of the module objectives.

3.3 Instructional design

3.3.1 Teaching model

Each student receives 4 hours a week of support over a period of 28 weeks. This is distributed across three terms of 12, 12 and 4 weeks. In general, the relative balance of lecture and laboratory time is 15%-20% lecture time (40 minutes) and 80-85% laboratory time – hands-on learning (200 minutes). The sessions comprise two groups of 30-40 students supported by 2 members of staff. The 4 hours a week of contact is split into 2 hours on a Wednesday and 2 hours on a Monday (see Appendix 1 for contact specification). The lecture material is provided within the Wednesday class, together with introductory exercises on the material. Assessment of the material is undertaken on the following Monday. A PhD student specialising in educational research supports Dr Bown during the Wednesday ‘teaching’ class. A Teaching Fellow is supported by a PhD student for the Monday ‘assessment’ class. Lectures and laboratories are delivered in the same 50-seater room.

3.3.2 Concept delivery

3.3.2.1 Lecture model

Lectures last up to 40 minutes and are structured in the following way:

1. Rationale for the topic in context of teaching tool where appropriate:

· Expressed either as a limitation of what we could not do previously, or

· as a desire to do something new

2. Concept introduction

· The abstract mechanism for implementation is presented

3. Problem framing

· A particular goal is established that related to the rationale

4. Concept grounding

· The mechanism is linked to the problem, usually in pseudo-code

5. Concept implementation

· The worked through example problem solution is presented

6. General issues

· Wider issues relating to the concept are discussed

Appendix 7 contains two videos of lectures. Appendix 4 contains 4 examples of lectures; two from term 1 and two from term 2.

3.2.2.2 Laboratory model

Laboratories are broken down into the 1st lab (80 minutes) [Wednesdays] and the 2nd lab (120 minutes) [Mondays]. The first lab focuses on concept delivery and not assessment, and seeks to reinforce the lecture material. Since the module leader and a PhD student undertaking research in student learning of programming staff the lab, both highly ‘concept’ aware and tuned to the difficulties that some students have in engaging with concepts for the first time. Exercises undertaken in this lab are largely formative or, if summative, introductory in nature. Students are encouraged to ask ‘stupid’ questions because the 1st lab staff are not marking the material. No record of progression through material is maintained.

The second lab focuses on tasks, where completed tasks contribute to assessment. A teaching fellow and PhD student with good Java programming knowledge well beyond the material covered staff this lab. This gives the strong students an opportunity to explore with support beyond the scope of the module. The ethos of this lab is to target the assessment, and staff maintain a clear record of task completion. Students are expected to have grasped the essentials of the week’s activities and generally seek guidance in a more informed way than in the 1st lab.

3.3.3 Assessment

Assessment is tightly coupled to the instructional design. Associated with each lecture is an assessment exercise – in term 1 there is a weekly mapping between the two; in term 2 this is extended to relate multiple lectures to the assessment.

The first set (1, 2 or 3) of exercises is formative in nature and involve the (almost) immediate transport from the material, including program solution, presented to a new problem. These are a mix of the teaching tool focused questions, which always come first, and generic questions. These questions aim to reinforce the material presented in the lecture. The second set (4) of exercises is summative. The first two exercises typically involve extending the formative or lecture exercises to address a more difficult but related problem. The second two exercises are more challenging and require exploitation of the general concepts covered in a distinct manner. These latter questions aim to promote independent investigation. Appendix 5 contains 4 examples of tutorial questions; two from term 1 and two from term 2.

3.4 Content

3.4.1 Overview

Terms 1 and 2 are teaching terms. Term 3 is generally an exam period and for this module an opportunity to complete a final case study (see below) and make good any outstanding work. The module seeks to introduce a range of simple programming concepts, and assumes no previous knowledge of programming. No textbook is used to support the material. This is a combination of the use of in-house material and the complexity of the available textbooks. (N.B. Head First Java is used in year 2).

A key issue in teaching is student engagement, and this may be effected through satisfying expectation. As a consequence of the Internet and computer games, students are used to visual environments when they interact with computers. They also have an expectation to write visually engaging computer applications by the end of their course. To meet this expectation, the module exploits two highly visual and interactive teaching paradigms from the outset. Method use, constructs and data are explored via a Robot and a Cow respectively, and these paradigms are pervasive to the first term. To ensure the more abstract ideas are being understood, paradigm-free examples and exercises are threaded through the material.

The most challenging part of the course is the writing of methods. This is addressed at the end of term 1 and the beginning of term 2. During the coverage of methods, no practical use is made of the Robot or Cow. The intention here is to ensure that a ‘fundamental’ understanding is achieved without any glossy supporting material. This understanding then eases the rest of the module. The teaching of objects reintroduces the first object that students experienced – the Robot. Coverage is limited to simple objects, including a bank account, and extensions to the Robot. Concepts of inheritance and encapsulation are touched on; exploration of object references, constructors, polymorphism, abstract classes and interfaces are left until year 2.

The final part of the course continues the theme of visual programming aids. Two board games are introduced – Noughts and Crosses as a tutorial, Connect 4 as assessment. To provide the more able students with a challenge the assessment framework allows the writing of an artificially intelligent computer player.

3.4.2 Programme design

In term 1, the module covers basic programming constructs within an object-oriented framework. In the first four weeks the concepts of sequence, unconditional iteration, conditional iteration and selection are introduced. In the fifth week an exercise that integrates across these concepts is introduced. Throughout these five weeks a single, bespoke paradigm is used to introduce these constructs. This paradigm is an intuitive software package that simulates a robot moving around a room. The robot may move forwards, turn left and right, and is able to checking for obstacles and the colour of the floor immediately ahead. While rich exercises may be drawn from the robot package to ensure breadth in learning more conventional exercises are threaded into the assessment exercises. Object state and behaviour taught on the back of this paradigm. When introducing new features of the robot required to support new construct exercises these features are described in terms of the existing object and how its function and data are enhanced. Other objects introduced on a ‘need-to-know’ basis as driven by particular exercises, e.g. random numbers, GUI for keyboard input. For the latter half of term 1, a second paradigm – a multi-stomached cow – is used to teach data generally and arrays in particular. The cow software is much richer in data than the robot and is introduced partly to move away from robot material. Again, conventional exercises are mixed in to cover the same concepts. The cow is also used to introduce strings and switch statements. Largely because of the specific software used there is no recommended text in term 1.

Term 2 focuses on method and object writing. The module begins with a series of exercises to write simple methods. These term 2 programs are much more straightforward than the construct-based exercises of term 1 and so the focus is very much on method writing and not problem solving. The range of methods covered in the first four weeks is from simple ‘void’ methods with no parameters to complex overloaded methods with return types and array parameters. Once methods are covered, the module explores the writing of simple objects, addressing the concepts of multiple classes and multiple files. Again, the initial exercises are very simple so as not to obscure the associated concepts. To allow more complex program development, a set of exercises are included to extend the robot software. The final taught component considers larger scale software development through a case study. Students are presented with an implementation, distributed across several classes, of noughts and crosses including visualisation of the board. The case study is to convert the noughts and crosses game into a ‘Connect 4’ game. Classes controlling the rules and dialogue with the user require modification. Additionally, students are encouraged to attempt a complex extension to this game – the inclusion of an artificially intelligent computer player. In this term, all students are encouraged to identify, with guidance, a book within the library to assist in their learning. This Connect4 work typically runs into term 3. Those students that are progressing to OOP2 are guided toward the year 2 set text. For the complete delivery schedule, indicating content and timing, see Appendix 3.

3.4.3 Detailed content

The first block comprises five weeks and covers fundamental constructs in programming. The focus is on ‘hands-on’ building of short, simple programs that perform very specific tasks. Constructs covered are:

· Sequence

· Selection – for, while, do … while

· Iteration – if … else

The concepts are introduced via the Robot programming paradigm, and are then reinforced in simple, generic programming exercises. Additional coverage is devoted to the use of the IDE (JCreator). Limited coverage of ‘int’ is given to the more abstract concepts of data.

The second block comprises 4 weeks and focuses on data storage. The main vehicle for exploring data concepts, including primitive types and arrays, is a single- and multi-stomached Cow. This also has the benefit of moving the students away from the ‘comfort’ of the Robot software. Using the platform of arrays of integers, Strings and their methods are introduced. The concepts and constructs covered are:

· Primitive types (integer, double, boolean, char)

· 1D arrays (integers)

· Strings and key string methods

· Use of for loop with arrays and strings

· Switch statement

Again, the concepts are introduced via the Cow initially and reinforced with simple, generic exercises. At the very end of the block, simple (void) methods are introduced in preparation for term 2.

Block 3 is four weeks in length. The most challenging concepts of the module are delivered here – methods. No paradigms are used to support delivery of these concepts. In block 2 students were writing programs of 10s of lines. To explore methods, exercises are as simple as possible in the early stages. By week 3 of block 3, programs return to a complexity similar to block 2. The concepts covered are:

· Return types (void, int, double, boolean, String)

· Parameters and arguments

· Arrays as parameters

· Method overloading to enforce the idea of signatures

The block concludes with a laboratory test, where students are required to develop programs in an ‘exam’ environment.

Block 4 focuses on objects, with two lectures. The first covers objects as wrappers for cohesive methods. Particular attention is centred on the use of multiple files. Given a thorough understanding of methods objects simply have a name and {}. The second introduces the idea of extending objects, and the Robot software is again exploited. The Robot class is deliberately simple to support simple extensions – for example, robots may move forward, turn left and right but not move backwards; students are required to implement a back method. The concepts covered are:

· The need for objects

· Writing an object, including simple constructors

· Using an object (from within main)

· Extending objects – an introduction

Again, a (written) class test is used to ensure engagement with material.

Block 5 is case study led, and comprises three lectures. In the first week students are provided with an overview of a multi-object implementation of Noughts and Crosses. Included in the implementation is a graphical display of the board. In the second week students are advised on the steps needed to convert the implementation to Connect 4. The final lecture presents an optional exercise where students are given a framework for implementing an artificially intelligent player for Connect 4.

3.4.4 Detailed assessment
All work is assessed through weekly observation. Each week, a tutorial sheet is issued with 5 to 7 short questions, where 3 or 4 of those questions contribute to the student grade. The first one or two exercises are formative are often immediately accessible from the lecture material. The last exercise is more typically challenging than the others, and requires independent thought and so is not immediately accessible from the lecture. Block 1 requires up to 12 programs to be completed and block 2 up to 16 programs. Student achievement record is maintained throughout the term in the form of a checklist of completed, ‘signed off’ programs. Feedback on program structure, layout and any problems encountered is given during development and at signing off. Tutors must be satisfied of ownership and understanding at the point of signing off. The grading scheme is transparent and based on number of exercises completed. No formal submission of work is required in term 1. Indeed, to encourage attendance, no formal submission of work is allowed and so students must show their work.

In term 2 there is a move to both larger coursework exercises and formal submission of work. Students are required submit paper copies of their programs and email an electronic copy. Blocks 3 and 4 still comprise a series of exercises but these are more substantial and the tight link of weekly lecture material coupled to weekly laboratory material is relaxed. Block 3 comprises twelve exercises, and block 4 eight exercises. In each case, the later exercises within the block are more challenging than the earlier problems posed. Block 3 also has a short class test. The grading scheme is again based on the number of exercises completed. Block 5 is a case study that extends over six weeks and across their Easter break. This work is the largest piece of software development that first year students undertake. The program developed requires some documentation in terms of the operation of two key methods that students must implement and the testing of those two methods. Those students attempting the extended artificially intelligent player exercise are required to document their solution in the same way. The grading scheme takes account of the quality of code and documentation.

4 Module evaluation

4.1 Aim

To enable students to develop simple programs that illustrate fundamental programming concepts.

The aim of the module remains free from both a particular paradigm and a specified language. Consequently, the remit is defined to be simply fundamental concepts. This remit serves the increasing number of programmes of study that this module feeds. This is increasing from three to six next academic session, and there is no need to revise this aim.

4.2 Objectives

1. Create and run programs using an integrated development environment.
2. Use appropriate data types and control structures.
3. Design, implement and extend objects in terms of interface, function, and data.
4. Incorporate predefined objects into new programs.

The objects noted in objectives 3 and 4 remain language independent but do prescribe an object-oriented paradigm. This is consistent with the direction of the courses in which this module sites since the module provides a generic, introductory module that links into later modules on Java, C# and VB.NET. Objective 1 assumes the use of some IDE. Students are increasingly less aware of a command-line environment and there is no desire to introduce this in an already challenging module (it is introduced later for some students). The IDE selected in implementation is JCreator. This is a free software product with a much more straightforward interface than alternatives, for example JBuilder. With a small amount of effort, students can operate JCreator effectively. The class path does setting for object libraries (Objective 4) does pose a problem although the support tool (5.1) does address this issue. The incorporation of predefined objects (Objective 4) allows the teaching of concepts through the bespoke paradigms and this is important for two reasons: First, students enjoy writing software using these paradigms and this promotes engagement; second, the development of industry software is increasingly dependent on external libraries and so an early adoption of this concept is clearly beneficial.

Objective 2 is a clear requirement of any programming course. The inclusion of basic data types and the core control structures are necessary to architect solutions to programming problems generally. To engage with the concept of OOP it is also necessary to design and develop objects (Objective 3) to demonstrate the ideas in operational programs. The extension of objects is an opportunity to take ownership of the robot software given in term 1; students recognise the value in extending the object to allow functioning that is a clear shortcoming – for example the robot is (deliberately) designed to only “move()” one square forwards and students are motivated by the obvious need to extend the object to allow “move(n)”. Students must then redesign the robot to provide this and other functionality. Those students that undertake the extended exercise to develop the artificially intelligent player must, given a very basic (random move generator) framework, design and implement a scheme to offer a computer opponent of some credence.

A deliberate omission from the objective list is any explicit reference to problem solving, and there are two separate reasons for this. The base line module objectives require a student to take a well-prescribed problem, where the key stages are already defined, and implement a programmed solution to that problem in terms of the key stages. Thus, a large part of the problem solving has been done in some questions. Of course, there is still a requirement for problem solving in the more challenging questions and students are guided through this process on an individual basis. Second, there used to be a taught problem solving module, although the content of this has been moved to year 2. As a result, any learning outcomes making explicit note of problem solving were associated with this module.

4.3 Instructional design

4.3.1 Teaching model

Four hours per week is standard for a 1st year module at UAD. (N.B. These are four year degrees with Scottish Higher entry). With four modules per term this leads to 16 hours contact per week for a programme of study and this seems appropriate. Programming at an introductory level is an inherently practical activity – one only learns by doing. As a result, two years ago 1-hour lectures at some arbitrary point in the week were replaced with shorter lectures immediately in the laboratory context. This was done to make the link between lab and lecture as seamless as possible. There is no pressure to make lectures towards an hour; indeed one is only 15 minutes. This works well and affords a stop-start approach where useful. This stop-start approach is explicitly designed into only three lectures but the ad hoc switching to code examples is common.

More typically, general problems with assessment may be shared among the class using the lecture facilities. A typical manifestation of this is the production of short presentations within the lecture to highlight key emergent issues on Wednesday sessions. Both peer observers commented on the very open dialogue between staff and students because of this teaching model (Appendix 8). The potential problem of students typing during the lecture is avoided by assuming a firm standpoint on this from the outset.

The first, obvious downside is that the lecture may only be delivered to groups of up to 50; currently the lecture must be delivered twice. Second, because of the three data projectors the room has limited whiteboard space and small group tutorial are difficult. Also, there is a tendency, as highlighted through the peer review process (see Appendix 8), that the lectures are now too short. This brevity, driven by the desire to get the students started, could come at the expense of using more examples to support the teaching.

4.3.2 Concept delivery

4.3.2.1 Lecture model

Here, each of the four case studies (lectures 2 and 4 from each of terms 1 and 2) are pitched in terms of structure against the structure posited in 3.3.2.1, and repeated here for the lecture model:

1. Rationale for the topic in context of teaching tool where appropriate:

· Expressed either as a limitation of what we could not do previously, or as a desire to do something new

2. Concept introduction

· The abstract mechanism for implementation is presented

3. Problem framing

· A particular goal is established that related to the rationale

4. Concept grounding

· The mechanism is linked to the problem, usually in pseudo-code

5. Concept implementation

· The worked through example problem solution is presented

6. General issues

· Wider issues relating to the concept are discussed

Lecture 2, term 1 on for loops follows this model closely. Slides 2-7 detail the need for iteration in programs by demonstration. In slides 9-12 the syntax of the for loop is introduced and described. Slide 13 poses a very simple problem and outlines the solution for this problem in pseudo code. A commented solution is provided in slides 14-17. The remainder of the slides consider the importance of the { } in determining the scope of the loop, semantic issues using the for loop and there is some (light) introduction to the use of integer variables with in the loop. The final slides introduce the facilities offered by the software support tool used in the module (see section 5.1).

Lecture 4, term 1 also adheres largely to the model. Lecture 4 introduces two concepts: first the if statement; second the ability of the robot to determine the colour of the tile in front of it. As a result, the lecture model is repeated (twice) within a single lecture. In the first case, the rationale is provided in slides 2 and 3, although this is supported by oral material beyond the slides. The concept introduction is provided in slides 4 and 5, and slide 6 poses both a very simple problem and an outline solution. Slide 7 presents the commented solution to this problem. Issues relating to scope and layout are covered in slides 8-13. On slide 14, the next concept is introduced. The rationale for being able to determine the colour of a given tile in a multi-coloured tile environment where students are already aware that tile colour confers meaning is obvious and is only orally stated. On slide 15, the necessary syntax and commentary provides detail on the abstract mechanism. Slides 16 and 17 provide a simple problem, pseudo code and implementation. Next, at odds with the model, another example is introduced. The tutorial exercises are, in week 4 and as the range of constructs increases, becoming more challenging and so the process of problem solving (sic) via key stage identification is illustrated. The pattern of problem framing (slide 18), concept grounding (slide 19) and implementation (slides 20-22) presentation is repeated. Finally, from slide 23 onwards, issues such as ‘if else if’ and the support tool support are discussed.

The more general pattern of lectures in term 1 closely follow this lecture model. The term 1 lectures are, based on observations, comments from students and performance, meeting the goal of explaining the concepts and supporting tutorial work.

Lecture 2, term 2 is the second lecture on methods this term. The preceding material introduced void methods only. This lecture does not adhere to the model, and here the departures are noted. Reflection on this follows lecture 4, term 2. The lecture identifies (slide 2) coverage of scope, passing by value and return types but offers no clear rationale for the reason for any of these. There is, on slides 3 and 4, some commentary on the limitations of void methods, and so a hint toward return types, but the slides move directly into scope (slides 5 and 6) as an initial possible mechanism for addressing the limitations of void methods. The link is not explicit and so there is no rationale for considering scope at this point. An implementation of scope is provided within the context of a method introduced in the preceding week but this is not structured in any obvious way. The link between scope and passing by value (slides 7-11) is conceptually obvious to the initiated but again is not explicit. This concept is illustrated by annotated example, in contrast to the rationale / problem driven approach of term 1. The treatment of return types does assume the lecture model, using the rationale established early on, the abstract mechanism in terms of syntax (slide 12), the statement of the problem (13 and 14) but then the lecture collapses into a series of examples. The broader, general issues section (as in the lecture model) here constitutes methods calling methods.
Lecture 4, term 2 is the first coverage of objects. Two concepts are introduced: first the writing of objects; second the extending of objects, where the robot is reintroduced. As a result, the lecture model is repeated (twice) within a single lecture, although the structure is not wholly adhered to for the second concept. The rationale for writing objects is never stated in the lectures. It is commented on to a limited extent in the previous lecture and orally here but this omission is a clear shortcoming of this lecture. The concept is introduced and the mechanism for implementation explained through a trivial example. In slides 2-11 the aim is to illustrate that writing objects is not difficult and the operational details required by the mechanism are explored. A first problem, a bank account, is framed and the goals established in terms of the required functionality in slide 12; no further grounding to the (very familiar) example problem is presented. Slides 13-16 cover implementation of both the object and a program that uses it. General commentary on limitations of the implementation and the role of constructors follows. The second concept of object extension is covered in slides 20-23, although here the model is not followed rigidly. The rationale and framing is provided but the concept introduction and implementation are mixed on the same slides. In this case, it was felt that since the concept is implemented by a single word (extends) the implementation offered sufficient introduction.

In term 2, the lectures on methods, lectures 1 to 3 where lecture 2 is analysed here, do not adhere to the model seen to be successful in term 1. In each case there is a distinct lack of problem to be solved and so the problem-led scheme of term 1 cannot be followed. Whether this is a necessity because of the nature, and in particular the fine-grained mechanistic detail, of the material covered is discussed in section 6. Later lectures in term 2, from week 4 (above) onwards recover largely this scheme as they tend again to be centred around problems.

Generally, the lecture model can scale to any length, and lectures range from 15 to 45 minutes. The presentation of completed solutions in lectures is well received and seen as a valuable resource for completion of the exercises. A downside of the provision of worked solutions is that weaker students are too heavily steered by these for all questions and need encouragement to step back from the code and design the solution.

4.3.2.1 Laboratory model

In term 1 the division between laboratory days, i.e. Wednesday for teaching ands Monday for assessment, has been very useful. At first students needed reminded of the concept but once the (perceived) unusual situation of the module tutor not marking student work was accepted this eased the barrier between the principal deliverer and students. Further, one peer observer commented on the appropriateness of the staff, being relatively junior and very personable, selected to support the module.

In term 2 the one-to-one coupling between lecture and laboratory sessions is relaxed to allow for larger assessments that span multiple lectures. Consequently the distinction between the two sessions is less clear. However, the student-staff interaction pattern from term 1 seems to persist.

4.3.3 Assessment

The link between the worked examples in the lecture and the formative assessment is usually tight, and particularly so in term 1. This can give students a way in to the assessment, and some confidence in exploitation of the concept. As noted in the lecture model this tight coupling can be problematic for weaker students. For example, lecture 4, term 2 (Appendix 4) considers the if statement and this is introduced via two (Boolean) robot methods, one to test if the tile ahead is an obstacle and one to test if the tile ahead is a particular colour. Students are shown a worked example of the robot program identifying whether an obstacle tile is black (obstacles may be black or blue), and the required if statement code follows a while loop to reach that obstacle. The first formative and first summative exercises in the associated tutorial draw on this example. This first formative exercise requires the robot to remain on a series of yellow tiles, with right turns only in that trail, until a green tile is encountered. Thus, rather than the if statement (for a black tile) following the while loop (until an obstacle), the if statement must be positioned within a while loop (until a green tile). This is not a large jump in concept, drawing heavily on the lecture material, and so appropriate for a first exercise on if statements. The lecture also introduces briefly the if else if else concept, and this is required in the first of the assessed exercises, where the robot is again required to follow the trail but this time there may be left and/ or right turns.

The second of each of the formative and summative questions (questions 2 and 5) link into another example in the lecture. Here, students are presented with another robot program that scans a single column of tiles looking for blue tiles, and the program prints out a message when a blue tile is encountered. In the second formative exercise students are required to revise this program to count the number of blue squares in a single column. Students are also reminded how to add to a counter in the lecture. In preparation for the second summative question (question 5) students are shown an extension to the tile colour display program where black and blue tiles are identified by the robot. In question 5, the students must extend their blue tile counting program to accommodate other colours – a direct analogy to the lecture extension. An additional requirement is that students are required to provide a facility whereby the column to be scanned should be entered, and the robot should move to that column. In the lecture, there is a worked example of the robot moving to a specific (hard coded) column, and in the previous week students are introduced to reading from he keyboard. Again, existing and proximate concepts must be recombined to derive a solution.

Questions 3 and 6 (the final questions of each formative and summative exercise blocks respectively) are not robot questions, and an example of an if statement not related to the robot is shown towards the end of the lecture. The only complexity associated with question 3 is the requirement of an if construct with four alternatives (three alternatives are shown in the lecture), and this question combined with question 1 is a good orientation to the first of the assessed exercises (above) that also requires a number of alternatives. Question 6 serves to differentiate among students – not all undertake the exercise – as it is more complex and not linked strongly to the lecture. Note, there are no new concepts in this question.

Students are provided with 6 or 7 exercises per week in first term. These exercises are necessarily short and students are then able to address the material in small chunks. This can promote confidence in typically unconfident students. In term 2, there is a steady drift towards larger assessment exercises, where finally one assessment is issued over several weeks. This drift is appropriate to ease the transition from school to university. The disadvantage is the large volume of exercises to administer but this is not a conceptual problem for students. Student interaction is encouraged in the laboratory in the first term for both formative and summative assessment. In each case the opportunity to discuss with each other any problematic areas is highly beneficial. This poses no problems for summative assessment since where there is doubt in ownership and/ or understanding the student is required to discuss the developed solution.

It is important to note that, beyond this fine-grained analysis, the assessment strategy does meet the intended learning objectives.

4.4 Content

4.4.1 Overview

Term 1 works well, with good attendance and active engagement on the part of the students. Feedback on the robot and cow is largely positive and there is an air of disappointment when the exercises, and the robot exercises in particular, end. Of course, under the current scheme the end of the first term coincides with the beginning of the most problematic area of teaching – methods – and section 6 considers this issue. The lack of textbook in term 1 is not seen as a barrier to learning. A fundamental challenge to students with respect to textbooks is that without any hands-on grounding programming concepts are difficult to grasp from a book. Students are encouraged at the end of term 1 to go the library, which is well stocked in introductory programming textbooks, and identify a book in a preferred style. A few suggestions are offered, but there remains no requirement for a textbook and no link to any specific textbook until year 2.

In term 2, some students find the abstraction required to understand methods a natural progression from the constructs of term 1. However, some students struggle to form an appropriate understanding. In part this is due to the complexity of the topic; in part this is due to the way it is taught (see sections 4.3.2 and 6). The first part of term 2 is the target area for redevelopment following this evaluation. The second part of term two is smoother, with the reintroduction of more problem led work and the return of the robot.

In term 3 attendance is generally poor. Students are busy with many assessments and, given the issue of the coursework for this module is towards the end of term 2 and before the three-week break between terms 2 and 3, some have already completed the work. A positive aspect of this is that those students who require additional support for this work or earlier assessment exercises may receive more focused tutor guidance.

4.4.2 Programme design

In term 1, the module focuses initially on basic programming constructs within an object-oriented framework. This up-front treatment of constructs leads to a problem set for assessment that focuses on function rather than data. Constructs are introduced across successive weeks and this allows for progression in complexity of the problem set. Indeed the robot paradigm exploits only one integer variable for all five weeks. This focus on function allows for the specification of problems in terms of operation and this eases the translation from problem statement to operational code. Further, the operation of constructs can be explored in a problem-led, task-oriented manner. The inclusion of non-robot exercises makes a valuable contribution to the teaching process, and since these are less tightly coupled to the lecture material offer a stronger test of student understanding. After the first five weeks, the module moves focus toward data through the second paradigm of the multi-stomached cow. The cow is used for less time than the robot and is generally less well received. It is a highly visually engaging object but is far richer in data and consequently complexity than the robot. The mix of cow-focused and more conventional exercises works well, although as with the robot students much prefer the cow exercises.

Terms 2 and 3 focus on method and object writing. That the module goes back to basics is perhaps the underlying problem. The idea behind the scheme is that once the mechanics of method implementation and usage are grasped object implementation (at this level) is trivial. While this may be true, the mechanistic style used to teach methods does not work. Students feel the method exercises lack any sense of purpose. Once objects are covered, for some students only then do methods make sense. This is a challenging problem as there are technical issues associated with method implementation that require some mechanistic coverage. However, this coverage should be within the context of problem-led material.

4.4.3 Detailed content

The assumption made in the first part of term 1 is that a week-by-week introduction of constructs with only essential coverage of data is appropriate. This assumption no doubt stems from my own imperative (C) background and it is not clear that this is consistent with the OOP paradigm. The alternative is to present a genuine ‘objects (and their state) first’ approach and bring in constructs as and when to they are needed to support object function. Section 6 introduces a hybrid model as a potential way forward.

4.4.4 Detailed assessment

In the first term, the assessment mechanism (blocks 1 and 2) works well. The large number of small exercises allows students to undertake immediately manageable tasks and it is typically easy to evaluate the correctness of the program developed, i.e. the students know when they have completed the task. Informal discussions with students support the judgement that many small exercises is an assessment model consistent with their expectations. The intended gradation in each of the exercises in term 1, where the former exercises are more simple and relate more tightly to the lecture and the latter are more challenging and seek to differentiate students, works well in that a spread of grades is achieved and this spread is driven by some students failing to complete the more challenging exercises.

In the second and third term, as noted, there is a trend toward increasingly larger exercises. The introductory exercises on methods (week 1 of term 2) are of a similar scale to term 1 questions. After week 1, however, the problem set becomes more complex such that most students cannot complete all of the exercises within the week of issue. (As per the delivery schedule – Appendix 3 – there are specific weeks allocated to catch-up to accommodate this instructional design). The exercises related to methods (blocks 1 and 2) suffer from the flaw noted in 4.4.2 and discussed in more detail in section 6. While a problem-led focus is lacking again the intended gradation does provide a spread of grades representing different levels of ability. The assessment in blocks 4 and 5 operates better with clear problems being stated and students working towards solutions. The optional exercise in block 5, allowing students to obtain an A grade, is well received. Since this is separated out, students with less programming aptitude can make a clear decision not to undertake this work and focus more on developing a baseline understanding.

The student performance emerging from this assessment strategy is consistent with expectation. The majority of students achieve B and C grades, with a small number of students attempting and achieving the optional extension work. It should be noted that in almost all MF (marginal fail) cases the students had disengaged with the module in term 2 and the grade reflects their efforts in term 1. Further, all students that failed this module with CF or LA performed equally poorly in other modules.

5 Additional support

5.1 SNOOPIE

In recognition of the difficulties that students have when programming, a doctoral research project undertaken at the University of St Andrews has developed a novel support tool, SNOOPIE, for students. SNOOPIE recognises two fundamental problems that novices have in developing programs: first formulating a (working) program at all and second formulating the right program to address the problem. Compiler error messages are notoriously obscure, and to assist program formulation SNOOPIE captures those errors and expands them with text related to the current teaching material, drawn directly from dialogue with students. Messages thus encapsulate both the compiler error and an extension sensitive to the novices (note, extensions provided may be changed over a term). SNOOPIE also parses the program for common (semantic) errors, for example ‘;’ at the end of for and if statements and failing to update loop counters. SNOOPIE also provides more sophisticated support in the way of problem formulation. It is able to parse a student program and identify the presence or absence of key components at any degree of granularity, for example ‘a void method called x that takes 2 int parameters’ and ‘a nested for loop where the inner loop repeats 3 times and the outer twice’. Moreover, these program checks may be structured to allow progressive support through an exercise. Note, the tool support reduces over time

SNOOPIE has made a valuable contribution to the teaching process on a number of levels. First, some students on the module have used SNOOPIE regularly. They have felt well supported by the tool and have used it to guide their solution development over the course of the module. Other students have used SNOOPIE when the Java compiler was of no help to them. Additionally, for these students, the tool was an invaluable communication aid. Perhaps the biggest benefit, although immeasurable and anecdotal, is the sense of support offered by the tool for those students who found programming difficult but did not want to “pester” the lecturer. The supportive messages could be used to structure a clear dialogue with the student. A final group of students wanted to learn with no additional help and did not use the tool.

5.2 Tutorial sessions

During term 2 supportive tutorial sessions were introduced to the module. The support was offered by a PhD student and was for one hour per week in a computer-free room. The focus of the tutorials was Java methods, and a mix of examples from the tutorial sheets and bespoke activities were used. While the provision of these tutorials was noted regularly in the lecture and intimated to students on an individual basis, uptake was limited to between five and ten students. Those students that did attend felt the tutorials were of substantial value, evidenced by their return. Notably, the tutorial was on a day where some students had no other classes.

6 Summary and reflection

The process of the commons has impacted on both the module and the module leader in a number of ways. With regard to the module, the externalising of the key characteristics of the module, i.e. the major sections here, has been most instructive and validatory. A concern that the module tutor had was that, by teaching in Scotland with the four year degree programme, there would be a drive to teach too much in year 1 (and year 2) and be far out of step in terms of content with the end of the first year of UK degree programmes outwith Scotland. The operational insight gained into programmes of study at a range of other institutes has assured the deliverer that the key characteristics of year 1 are appropriate and that the end point of year 2 is broadly consistent with the equivalent point elsewhere.

The five main strengths of the module noted are: (i) the teaching paradigms (robot, cow, connect4) are seen as good at an introductory level; (ii) the specially designed space and selected staff provide a good operational underpinning to the taught material; (iii) the integrated lecture-laboratory setting facilitated by the dedicated space is highly appropriate to the teaching of introductory programming; (iv) the assessment model, moving from frequent observational assessment to larger written work is useful; (v) the support tool is making a valuable contribution to the laboratory experience. These strengths are evident in the portfolio and require no further comment.

The four main weaknesses have been identified as: (i) the lack of textbook; (ii) the teaching of methods; (iii) the brevity of lectures; (iv) the lack of white/blackboard facilities. The response to each weakness is detailed in turn below.

The focus on module specific teaching paradigms, and most notably the robot, attracts the constraint of a lack of textbook. It is, of course, the case that students use textbooks as a core part of their learning. Two factors motivate the choice. First, the robot supports a constructs-first approach. Other robot-centric books take an objects-first approach and constructs come in later on. Thus programs are rich in data but limited in function. Function is linked directly to the task of doing, and then how students learn, and so construct-first affords a wide range of function/ task centred programs from the outset. Second, as a result of the 4-year degree system, there is a unique opportunity to provide a gentle orientation to programming in the first year, while taking a more structured and formal approach in year 2. Indeed there is a prescribed textbook in year 2, and the instructional design is strongly linked to this resource.

The teaching of methods is the most problematic area of the course. Students find the concepts and complexities involved challenging – they are required to learn new syntax and semantics concurrently with new program schematics and strategies for implementation. Ironically, as discussed in section 4, this is where the lecture model evidenced as successful in term 1 collapses. The underling issue is that methods are currently taught in terms of the mechanics with no reference to a problem set, and this is because the mechanics are complex. Further any problem able to reveal the real benefit of methods would most likely be complex. However, with no problem-base students are unable to see the purpose of methods and feel the programs they are now writing are of no value. Consequently, there is a failure to engage. As a result, the module leader will revise those first three lectures and seek to identify an appropriate problem set through which the value of methods may be elicited.

One mechanism to address this problem is to introduce a hybrid model of delivery (section 4.3.3). In the first term, the recognised success of the construct first scheme leading to students being able to develop single method programs of some complexity exploiting those constructs should be capitalised upon and no change is proposed here. In term 2, however, a more radical step is possible. Having taught the underlying constructs, students could be presented with an objects-first approach from the outset in term 2. Thus methods would be taught within the context of objects and this would address the method value issues outlined above. Constructs could be drawn on, and even refreshed, whenever needed to support method development within objects. This allows the presentation and development of non-trivial objects that combine state and behaviour from the outset and so a rich set of problem led exercises may be formulated.

One of the benefits of the integrated teaching space is option to have long lab sessions and short lectures. However, through peer review it was noted that reducing some lectures to the bare essentials lost some value to the learning experience. It was suggested that increasing the lecture could accommodate more examples and reference to the support offered by SNOOPIE, particularly for methods. As a result, the shorter lectures will be examined and opportunities identified for the inclusion, and in some cases reintroduction, of additional teaching material to better exemplify concepts and support learning.

The lack of white/blackboard facilities impinges on delivery. Within the lecture part, PowerPoint presentations and Java demonstrations are possible using the 3 data projectors. However, with a class size of up to 50 and a large, shallow room interactive ‘chalk and talk’ to the whole class is precluded. This is possible, and does occur, with smaller groups as there are whiteboards available in the room but this cannot be integrated into the main delivery. In response, a tablet will be requested as part of the core IT provision within the room. This tablet will allow hand-written code and sketches of concepts to be seen by the whole cohort.

With regard to the module leader, the Commons has introduced a conceptual shift. As a research led academic externality and critical evaluation of the work undertaken are simply assumed under the research process. Until the Commons, despite the challenges posed by teaching generally, and teaching introductory programming in particular, and despite the recognition of the value of externality in research, this concept was never adopted in a teaching concept. Teachers generally are meant to reflect critically on performance to seek improvements. With no context within which this self-reflection may be undertaken, aside from successive versions of the taught module considered, the value of that reflection is limited. In Higher Education this reflective process is further impeded by a lack of requirement for any teaching qualification. The Commons has both provided that reflective context and a framework within which to undertake that reflection. Clearly, this impacts more widely than this particular module. Indeed some good practice gained from other colleagues at the Commons has contributed to the teaching model used in teaching year 2. There have been additional collaborations, both in educational research and in research rather closer to home.

Accordingly, involvement in the commons has had an impact more extended than this module-centric portfolio is able to capture and of clear long-term value.

Appendices

1 Module descriptor

[image: image3.wmf]Acrobat Document

2
BSc (Hons) Computing programme structure

BSc (HONS) COMPUTING

	Stage 1 – Certificate of Higher Education (Cert. HE) Computing
	FT

	Semester
	Module Code
	Title
	CR

	1
	SA0711A
	The Personal computer
	15

	1
	SA0751A
	Database Implementation and Design
	15

	1-2
	SA0701A
	Team-Based Problem solving
	30

	1-2
	SA0721A
	Object Oriented Programming 1
	30

	2
	IT0840A
	Gathering Information
	15

	2
	SA0731A
	XHTML & CSS
	15

	Stage 2 – Diploma of Higher Education (Dip HE) Computing
	FT

	Semester
	Module Code
	Title
	CR

	1
	SA0831A
	Dynamic XHTML
	15

	1-2
	SA0801A
	Software Engineering Issues 2
	30

	1-2
	SA0821A
	Object-Oriented Programming 2
	30

	1-2
	SA0822A
	Rapid Applications Development
	30

	2
	SA0811A
	Understanding Program Execution
	15

	Stage 3 – Scottish Bachelor Degree (BSc) Computing
	FT

	Semester
	Module Code
	Title
	CR

	1
	SA0921A
	Component Based Solutions
	15

	1
	SA0923A
	Moving to OO with Java
	15

	1
	SA0922A
	Software Execution Models
	15

	1
	IT0921A
	Software Project Management
	15

	1-2
	SA0931A
	Internet Development
	30

	2
	SA0901A
	Group Project
	15

	2
	SA0909A
	Software Engineering Issues 3
	15

	2
	SA0951A
	Database Programming
	15

	Stage 4 –Bachelor Degree (BSc) Computing
	FT

	Semester
	Module Code
	Title
	CR

	1
	SA1001A
	Software Engineering Issues 4
	30

	1
	SA1032A
	XML Technologies
	15

	1-2
	SA1021A
	Languages and Compilers
	30

	2
	SA1000A
	Industrial Project
	30

	2
	SA1033A
	Enterprise Internet Solutions
	15

3 Delivery schedule

	Week
	Title
	Coverage

	1
	robby the Robot
	IDE, sequence

	2
	robby's legs
	For loops

	3
	robby's eye
	While loops

	4
	robby's other eye
	If … else Statement

	5
	
	Integration of control structures

	6
	Catch-up*

	7
	daisy the simple Cow
	Primitive Data, Switch statement

	8
	daisy the complex Cow
	Arrays

	9
	Programming with strings
	Strings

	10
	Introduction to methods
	Methods

	11
	Catch-up*

	12
	

	13
	

	
	TERM 2
	

	1
	Introduction to methods
	Void methods, parameters

	2
	More complex methods
	Scope, return values

	3
	Methods and arrays
	Overloading, signatures, arrays

	4
	CLASS TEST

	5
	Catch up*

	6
	Writing objects
	Encapsulating methods in a class

	7
	Extending objects
	Data encapsulation, ‘extends’

	8
	Catch up*

	9
	Noughts and crosses
	Case study on multi-class solution

	10
	Connect 4
	Overview of major assessment

	11
	AI in Connect 4
	Coverage of optional exercise

	12
	Catch up*

	
	TERM 3
	

	1
	Term 3 is a continuation of Connect 4 assessment activity and an opportunity to make good any outstanding work.

	2
	

	3
	

	4
	

* During any catch-up sessions, the lecture time is given over to supporting lab activity

4 Four sample lectures (Lectures 2 and 4 from each term 1 and 2)

[image: image4.wmf]SA0721A

Object Oriented Programming 1

Lecture 2:

robby’s legs

[image: image5.wmf]SA0721A

Object Oriented Programming 1

Lecture 4:

robby’s other eye

Lecture 2, Term 1

Lecture 4, Term 1

[image: image6.wmf]Programming Concepts

Lecture 2

Methods: Scope, passing by value

and return values

[image: image7.wmf]SA0721A

Object Oriented Programming 1

Introduction to Objects

Lecture 2, Term 2

Lecture 4, Term 2

5 Four sample assessments (Tutorials 2 and 4 from each term 1 and 2)

Tutorial 2: For Loops (Week 2, Term 1)

Formative exercises (Wednesday):

1. a) Write a program, Tut2_1.java, to create a robot, robby, in room 0. Make robby move forward five spaces, turn right and move forward a further five spaces. Attempt this program using a sequence of statements – no for loops.

b) Copy the code from Tut2_1.java into a new program called Tut2_2.java. Revise the program to make use of for loops. The program should now be much shorter.

2. Write a program, Tut2_3.java using a for loop, to display your name 5 times.

Assessed exercise (Monday):

3. Write a program, Tut2_4.java, to create a robot, robby, in room 2. Plan and implement a series of moves and turns so that robby is able to reach position (11,13) whilst avoiding the obstacles using for loops. Use the room design sheet provided (below) to draw the route plan. Translate this plan into the series of required moves and turns.

4. Write a program, Tut2_5.java, to make robby walk around the perimeter of the room. Use the skeleton given in the lecture notes that discusses a nested for loop of walls outside steps.

5. Write a program, Tut2_6.java, using nested for loops to display the 1,2,3 and 4 times tables.

Tutorial 4: If Statements (Week 4, Term 1)

Introductory (Wednesday)

1. Write a program, Tut4_1.java, to make robby follow the trail of yellow tiles present in room 4. This trail is a clockwise spiral and so only has right turns. robby should stop moving on the green tile at the end of the trail.

[image: image8.png]Robby 2D [_[C1x]

File Settings Help

[| [evtr iavintonta s et [-

2. Write a program, Tut4_2.java, to make robby count all the blue squares in a single column in room 7. Robby is allowed to walk through blue squares (normally robby should walk round them) for this counting exercise. Display the number of blue squares found at the end.

3. Write a program, Tut4_3.java that asks the user to enter the total number of days in the month. If the user enters 28 or 29, the program will display ‘the month is February’, if the user enters 30, the program will display ‘the month is April, June, September or November’ etc. If the user enters 31, the program will display ‘the month is January, March, May, July, August, October or December’. For all other numbers, the program should display an error.

Assessed (Monday)

4. Write a program, Tut4_4.java, to make robby follow the trail of yellow tiles present in room 5. This trail weaves from side to side, and so has both left and right turns. robby should stop moving on the green tile at the end of the trail.

[image: image9.png]Robby 2D [_[C1x]

File Settings Help

[| [evtr iavintonta s et [-

Optionally, consider extending this to the trail present in room 6. This trail has both left and right turns, together with junctions and dead ends. robby should stop moving on the green tile at the end of the trail.

5. Write a program, Tut4_5.java, to make robby count all the white, blue, yellow and green squares in a column in a room. The column to be counted should be chosen by input of a number from the keyboard (using the GUI). robby is allowed to walk through blue squares (normally robby should walk round them) for this counting exercise. Display the number of white, blue, yellow and green squares found at the end. Develop the solution using one room, and then test your solution in another room.

6. Write a program, Tut4_6.java for the local swimming pool that displays the admission cost for a group of people based on their age. The program should continue to prompt the user to enter an age until –1 is entered then display the total number of people in the group and the total cost for that group. Admission fees are as follows:

· under 16’s - £2.50

· over 65 -£3 and

· all other swimmers - £5.

A 20% discount should be applied to groups of more than 6 people.

Tutorial 11, Return values and methods (Term 2, week 2)

1. The following code fragment is the main method for a simple program, Tut11_1.java. The program reads in the ages of three people. Each age is checked for validity. If all ages are valid the program will then calculate the age of the oldest person and the average age (which is to be represented as a double).

The method names highlighted in bold require implementation. The first takes an integer parameter and returns true or false depending on whether the age is valid, i.e. between some sensible limits. The remaining methods both take three parameters, all integers. Oldest displays the highest age value; average returns the average of the ages.

Implement the following methods, highlighted in bold:

public class Tut11_1 {

public static void main(String[] args) {

GUI gui = new GUI();

int age1 = 0; int age2=0; int age3=0; double average=0;

age1=gui.getInt(“Enter first age”);

age2=gui.getInt(“Enter second age”);

age3=gui.getInt(“Enter third age”);

if (!isValidAge(age1)) // check value is within a sensible range

{

gui.putText(“Age 1 is not valid”);

}

else if (!isValidAge(age2))

{

gui.putText(“Age 2 is not valid”);

}

else if (!isValidAge(age3))

{

gui.putText(“Age 3 is not valid”);

}

else

{

oldest(age1, age2, age3); // display highest age value

average=averageAge(age1, age2, age3); // evaluate average of ages

gui.putText(“Average age is “ + average);

}

}
If you are struggling to get started, comment out all the code within the main method. The support tool will guide you through the development of methods other than main.

2. In the evaluation of a cutting tool used to slice rods of fibreglass to a specific length, it is important to know the approximate shape of the shards of fibreglass that break off from the rod during the cutting. In an optimal process almost no fibres are broken off. However, the process is rarely optimal and the shape of the shards provides information on the quality of the fibreglass and the effectiveness of the cutting tool. If the shards are largely cylindrical then the fibreglass is too weak for cutting and is breaking up along the body of the rod. If the shards are wedge-shaped then the problem lies in the cutting tool - the fibreglass is resisting the damage caused by the tool.

Below is a second program, Tut11_2, skeleton to classify one shard into cylinder or wedge. It reads in the length and diameter of one end of each lost shard in mm - both relatively easy to measure. From this, the program calculates the approximate volume, assuming the shard is cylindrical - volume=π×(diameter/2)2×length, where π =3.142. From the approximate volume, an approximate weight may be derived using a volume to weight converter of 1mm3 to 0.05g. This approximate weight is compared against the actual weight. If the difference between weights is above 0.1g then the shard is wedge-shaped, otherwise it is cylinder shaped. Again, complete the program by writing the method headers and code associated with those methods highlighted in bold (as in 1).

public class Tut11_2 {

public static void main(String[] args) {

GUI gui = new GUI();

double length=0; double diameter=0; double act_weight=0;

double est_volume=0; double est_weight=0;

length=gui.getDouble(“Enter length”);

diameter=gui.getDouble(“Enter diameter”);

act_weight=gui.getDouble(“Enter actual weight”);

if (!isValidDimesions(length,diameter))

 // check len is within the range 1mm to 20mm, dia is in range 0.1mm - 1mm

{

gui.putText(“Dimensions are not valid”);

}

else

{

est_volume=eval_volume(length,diameter); // estimate volume

est_weight=eval_weight(est_volume, 0.05); // estimate weight, density 0.05

wedge_or_cylinder(est_weight, act_weight); // display if wedge or cylinder

}

}
3. The lecture provided an implementation of a method higher(int a, int b) which returns the higher of a or b. Write a new method, highest4 that takes four integers as parameters and returns the highest of those four. Importantly, highest4 should make use of the pre-written higher method. Write a program called Tut11_3 to use the new method highest4 (and higher).

4. Write a new method highest10 that returns the highest of 10 integers. Again, write this method in terms of higher and highest4. Write a program called Tut11_4 to use highest10.

Tutorial 13: Introduction to objects (Term 2, week 4)

Question 1 Simple object:

The following program shows the use of an object called simple, of class Simple. Implement the class Simple.

In particular:

public class T4_1 {

public static void main(String args[]) {

Simple simple = new Simple();

int some_answer=0;

// simple’s methods

simple.method1();

simple.method2(1,2);

some_answer=simple.method3(5);

System.out.println(“The value of some_answer is ” + some_answer);

 }

}

The class Simple has three methods, method1, method2 and method3!

method1 displays the following text, using System.out.println, as follows:

method1 in simple called

method2 takes two parameters and displays the two parameters and their product (multiplication), using System.out.println. For example, with the method call in T4_1:

The product of 1 and 2 is 2

method3 takes one parameter and return the square of that parameter. For example, with the method call in T4_1 method3 will return 25. Note, this method does not print anything out.

Question 2 Bank account:

The following program shows the use of an object called myAccount. This object is an instance of the class Account. Implement the class Account. This has been provided in the notes

In particular:

· The constructor should initialise the (integer) balance to 0.

· The method showBalance() should display textually the current balance.

· The method makeDeposit(aDeposit) should increase the balance by the (integer) value of aDeposit.

· The method makeWithdrawal(aWithdrawal) should decrease the balance by the (integer) value of aWithdrawal.

public class T4_2 {

public static void main(String args[]) {

Account myAccount = new Account();

myaccount.showBalance();

myaccount.makeDeposit(150);

myaccount.showBalance();

myaccount.makeWithdrawal(50);

myaccount.makeWithdrawal(50);

myaccount.makeWithdrawal(20);

myaccount.makeWithdrawal(10);

myaccount.showBalance();

myaccount.makeWithdrawal(50);

myaccount.showBalance();

}

}

Question 3 Revisions to Account:

Make the following revisions to the Account class:

· Allow bank account objects of class Account to be made with an initial balance, for example to make a new account with an initial balance of £30:

· Account myacc = new Account(30);

· Again, see the notes

· Allow real number transactions (rather than just integers) – pounds and pence

· Provide an overdraft facility

· Display the balance using the GUI (rather than textually with System.out.println …)

· Allow users to enter amounts to deposit and withdraw via the GUI using overloaded implementations of the methods makeDeposit and makeWithdrawal
Question 4: Simple Robot class extension

Write a program NewRobot.java that extends the Robot class. The extension provides the original Robot class with two new methods:

· move(n), where n is an integer

· back()

The method move(n) should move the robot forwards n squares, or until there is an obstacle ahead. Should the robot encounter an obstacle, the robot should stop. (Look in the notes for a partial implementation of this method.)

The method back() should move the robot one square backwards, regardless of whether there is an obstacle behind the robot or not.

The following program shows an example usage of the new methods:

import SE111aClasses.*;

public class T4_4 {

public static void main(String args[]) {

NewRobot robby = new NewRobot();

Room room = new Room();

Picture picture = new Picture(room, robby);

robby.move();

picture.draw(room, robby);

robby.move(4);

picture.draw(room, robby);

robby.back();

picture.draw(room, robby):

}

}

Tutorial note: Rounding doubles to ints

public class round {

public static void main(String args[])

{

GUI gui = new GUI();

int roundedVal=0;

double aMeasure=0;

 while (true)

 {

 aMeasure=gui.getDouble("Enter the measurement to be rounded");

 // int roundedVal is the rounded (smoothed) value of double aMeasure

roundedVal=myRound(aMeasure);

gui.putText("The rounded measure is " + roundedVal);

 }

}

// INCLUDE THIS METHOD IN YOUR PROGRAM

public static int myRound(double aVal)

{

return((int) Math.round(aVal));

}

}

6 Example student solutions

Tutorial 2, Term 1

[image: image10.wmf]Tut2_1.java

EMBED Outlook.FileAttach[image: image11.wmf]Tut2_2.java

EMBED Outlook.FileAttach[image: image12.wmf]Tut2_3.java

EMBED Outlook.FileAttach[image: image13.wmf]Tut2_4.java

EMBED Outlook.FileAttach[image: image14.wmf]Tut2_5.java

[image: image15.wmf]Tut2_6.java

Tutorial 4, Term 2

[image: image16.wmf]Tut4_1.java

EMBED Outlook.FileAttach[image: image17.wmf]Tut4_2.java

EMBED Outlook.FileAttach[image: image18.wmf]Tut4_3.java

EMBED Outlook.FileAttach[image: image19.wmf]Tut4_4.java

EMBED Outlook.FileAttach[image: image20.wmf]Tut4_5.java

EMBED Outlook.FileAttach[image: image21.wmf]Tutorial4_5.java

EMBED Outlook.FileAttach[image: image22.wmf]Tutorial4_6.java

Tutorial 2, Term 2

[image: image23.wmf]Tut11_1.java

EMBED Outlook.FileAttach[image: image24.wmf]Tut11_2.java

EMBED Outlook.FileAttach[image: image25.wmf]Tut11_3.java

EMBED Outlook.FileAttach[image: image26.wmf]Tut11_4.java

Tutorial 4, Term 2

[image: image27.wmf]Tut12_1.java

EMBED Outlook.FileAttach[image: image28.wmf]Tut12_2.java

EMBED Outlook.FileAttach[image: image29.wmf]Tut12_3.java

EMBED Outlook.FileAttach[image: image30.wmf]Tut12_4.java

7 Module summary information

[image: image31.png]Humber of students

Grades for 2005-2006

DSerest

Grade

Grades A, B, C and D are passing grades.

MF (marginal fail) represent performance that is recoverable by resit.

CF (clear fail) and LA (little achievement) represent early disengagement with the module.

IN (incomplete) is reserved for those students who have had a personal issue that noticeably impacts on their performance. These students are entitled to resit without prejudice.

8 Peer review forms

Peer Feedback Form

	Class
	SA0721A OOP1

	Date
	06/03/06

	Aims
	

	Particular aspect on which feedback is requested
	

Things which you did well

The combination of lecture and practical in a single session seems appropriate for the class size and room layout. Slides were clear, balanced, and well commented upon – lecturer did not read them out loud, but interpreted the aim of the code for example. Lecturer seeks eye contact, and the pace was appropriate, too (although with no feedback sought in the form of questions or comments, this may be difficult to measure). Discussing a solution to a problem (noughts and crosses), then asking students to use it to solve a different, related, problem is a nice way of providing support, but letting the student have the feeling that s/he provided almost the entire solution to that new problem.

Things which you did less well, and suggestions for improvement

· Maybe encourage questions to gauge pace. How about asking: “this is what we need – what can we do?”; encourage brief and guided discussion (suggestions), then quickly sum up and show solution.

· Low-level tricks, which are not the focus of the lecture – but could apprear tricky to students – could be pointed out, so they could think about them, and maybe ask questions later (e.g., the nextplayer =! nextplayer stuff).

· Pointing at 1 out of 3 screens leaves 2/3rds of the students out – better use the mouse? Alternatively, if you want students to look at the lecturer, switch off the 2 side screens.

Other comments

The tool used in tutorials, which provides students with syntax, semantic and pragmatic analysis of their code, is of great help to first timers. Also, how about using the support tool in the lectures?

Peer Feedback Form

	Class
	SA0721A OOP1

	Date
	25/01/06

	Aims
	Arrays as parameters

	Particular aspect on which feedback is requested
	Is there a difference in delivery between the 9-11 session and the 11-13 session?

Things which you did well

· Created an excellent teaching environment (layout of room; 25 minutes lecture + 1 ½ hours own work + 2 hours of own work on a different day; support by assistants)

· Lectures short; good to follow; well delivered

· Good working atmosphere; a bit of fun but students concentrated

· Difference: Lecture 1 – 50 mins with interaction; Lecture 2 – 40 mins with less interaction and tougher (less) delivery for the Computing students

Things which you did less well, and suggestions for improvement

· Nothing really important

· Make students work on material delivered in the lecture directly after the lecture? (done in term 1; deliberately changed for term 2)

· Delivery of lecture a bit quick, however there is plenty of opportunity to digest the material

· Make the third projector work – this was faulty on the day of peer observation

Other comments

· Groups, especially the second one seemed to be very homogeneous – influence of the lecturer?

· Seems to be the perfect teaching model / instructional design to me as an overall comment
18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

_1212925140.unknown

_1212925213.unknown

_1212926348.unknown

_1212926351.unknown

_1212926352.unknown

_1212926350.unknown

_1212925216.unknown

_1212926346.unknown

_1212926347.unknown

_1212926344.unknown

_1212926345.unknown

_1212925217.unknown

_1212925215.unknown

_1212925211.unknown

_1212925212.unknown

_1212925142.unknown

_1212925210.unknown

_1210678634.ppt

SA0721A

Object Oriented Programming 1

Introduction to Objects

Objects for programming

		Objects have methods and state

		Methods – things that they can do

		State – things that they know

		They have other aspects too

		An initial state when they are made

		Objects may have a parent

		This is a new idea

robby the Robot

		robby had methods

		move(), left(), right(), is_obstacle_ahead() etc.

		robby had state

		steps was robby’s rather small brain

		robby can help us understand objects

		First a more abstract treatment

Writing a first object

public class Simple

{

}

That’s it!

Each week you have written an object

Every program you have written is an object

… everything in Java is an object

More detail in Simple

public class Simple

{

	public void method1()

	{

		System.out.println(“Method1 in simple called“);

	}

	// no word static in method header – yucky story

	// to do with no main method in class file

} // end class Simple

Our first object

		The object simple may be created by:

		Simple firstObject = new Simple();

		Robot robby = new Robot();

		Creates an object called firstObject

		Simple is not the object!

		Simple is the class – the type of object

		Robot is the class of robby

		Convention:

		Type names begin with an upper case letter

		Object names begin with a lower case letter

Classes and objects

Simple.java

public class Simple

{

 public void method1()

 {

 System.out.println(“in method1”);

 }

}

MyProg.java

public class MyProg

{

 public void main(String args[])

 {

 Simple s = new Simple();

 s.method1();

 }

}

Objects and classes

		Everything in Java is an object

		Objects are defined in classes

		The class file specifies the shape of the object

		Sort of like a blueprint for a house or mould for a toy

		From one blueprint / mould you can make many objects

		There is a (boring) debate about whether a class is an object – chicken and egg really

Using the class Simple

		An important thing to note …

		The class Simple DID NOT have a main method

		Simple is not a class you can run

		Like robby, it is a class you can use

		Programs may comprise many class files

		Only the one with main in it is run

		The others are used

		Main is where the program begins running

Using the class simple

public class myprog {

	public static void main(String args[]) {

		

		Simple myobj = new Simple();

		myobj.method1();

			// use the method in simple

	}

}

Some operational points

		When writing a class file

		There should be no main method

		The file should be stored in the same directory as the file which will run it

		The file should be compiled, but not run

		This makes a .class file which is what Java wants

		When writing new objects you will have (at least) two files

		One defining the object (write and compile this first)

		One using the object (won’t compile without the other) – this contains main method

A simple object, a bank account

Defining the object

Writing the object

Using the object

Defining the object

		A bank account object should have a number of properties

		Data for the account balance

		This should start at £0

		A method to see the balance

		A method to make a deposit

		A method to make a withdrawal

Writing the object (1)

public class Account {

	int balance; // data to store the balance

	public Account() {

		// special method – constructor, no type

		// initialises object; same name as object

		balance=0;

	}

Writing the object (2)

public void showBalance()

{

	System.out.println(“The balance is “ +balance);

}

// Note that showBalance does not need balance

// as a parameter – balance is part of the object

// and may be used by all the methods in that

// object – An instance variable (no word static)

Writing the object (3)

public void makeDeposit (int amount)

{

	balance=balance + amount;

}

public void makeWithdrawal (int amount)

{

	balance=balance - amount;

}

} // end class Account

Using the object

public class exampleUse {

	public static void main(String args[]) {

		Account myAccount = new Account();

		myAccount.makeDeposit(50);

		myAccount.makeWithdrawal(30);

		myAccount.showBalance();

	}

}

Comments on the object

		The constructor is important

		We have not used it really (next slide)

		The functionality of the Account object is hidden from the main program (just like robby)

		You don’t need to know how makeDeposit works to use it – you just need to know the interface

		The functionality of the method for making withdrawals is simplistic

		No concerns about going overdrawn

Using the constructor

		Some banks give you money when you open your account

		We could write the constructor method to allow you to do this

		Calls like the following would be valid

		Account myAcc = new Account(20);

		Would put £20 in the bank on opening the account

The new constructor code

public Account (int initial)

{

	balance = balance + initial;

} // remember, balance is part of Account

// we could leave both methods in the code

// an overloaded constructor – use one or the other

Extending robby the Robot

Extending objects

Extending robby

Using the new robby

New improved robby

		Last semester most students wanted to be able to say

		robby.move(5);

		Object orientation allows us to do that without having to rewrite all of robby

		We are able to simply extend the robot class to provide another version of move

		Overloading again – see, it is useful

		So the original version of move is still available

Extending robby

import SE111aClasses.*; // this bit is important!

public class MyRobot extends Robot {

	public void move(int moves)

	{

		int i=0;

		for (i=0; i<moves; i++) {

			move(); // use robot’s existing move

		}

	} // end move method

} // end class myRobot

Using the new and improved

import SE111aClasses.*;

public class exampleUse {

	public static void main(String args[]) {

		MyRobot robby = new MyRobot();

		robby.move(5);

	}

}

// the room and picture are not included for space

I bet …

		We could do other extensions to robby

		robby.back();

		robby.walkToWall();

		robby.whatever();

		Sounds like an assessment exercise …

_1212925138.unknown

_1212925139.unknown

_1212925136.unknown

_1212925137.unknown

_1211340518.ppt

SA0721A

Object Oriented Programming 1

Lecture 4:

robby’s other eye

Choice in programming

		Conditions in programming are either:

		true

		false

		we saw this with while loops

		Choice in programming is based on conditions being true (met) or false (unmet)

If

		If a certain condition is true

		do something

		Otherwise

		do something else

		This allows programs to do different things depending on the condition

		so far, our programs have always done the same thing – no alternate branches

if, in Java

if (condition)

{

	do something

}

else

{

	do something else

}

Programming

books call this

selection

if and robby

if (robby.obstacle_ahead(room))

{

	robby.right();

}

else

{

	robby.move();

	picture.draw(room, robby);

}

If the condition is true the first ‘block’ of Java program is executed

Otherwise, if false, the

second ‘block’ of Java

program is executed

Problem - walking around the room

make objects

walk for ever

		if obstacle ahead

			turn right

		otherwise

			move forwards

		A very simple solution

		there are others …

For ever is a new idea:

robby just keeps going,

looking at the square

ahead and deciding what

to do

We don’t have a way of

telling robby he is back at

the beginning of the room

An aside

		Can you identify whether robby is back at the start or not based on what we know already?

		What about robby.steps, and a for loop ?

		Or another if statement

		If the tutorials are too straightforward, make up your own problems and solutions

		student-led learning (what you are supposed to do!!)

// walk for ever

while (true)

{

	//if obstacle ahead

	if (robby.obstacle_ahead(room))

	{

		//turn right

		robby.right();

		picture.draw(room, robby);

	}

	//otherwise

	else

	{

		//move forwards

		robby.move();

		picture.draw(room, robby);

	}

}

Note, the comments

written earlier tell me what to program (roughly)

Observe the colour

coding and indentation

of the { and } brackets

These brackets must

match up !!

Missing { and } What does this do?

while (true)

{

	if (robby.obstacle_ahead(room))

		robby.right();

		picture.draw(room, robby);

	else

		robby.move();

		picture.draw(room, robby);

}

Note, comments

removed for the

slide - keep your

 comments in

Missing { and }

		Error - why?

		when { and } are omitted the code up to the first semi-colon, ; is executed

		here robby.right();

		the else does not have an associated if (since the if finished at robby.right();)

		same reason why you don’t put a ; at the end of a for or while loop line

Restructuring the code

This is a bit better - 1 less line to get wrong

while (true)

{

	if (robby.obstacle_ahead(room))

	{

		robby.right();

	}

	else

	{

		robby.move();

	}

	picture.draw(room, robby);

}

Missing { and }

		What does this do …

while (true)

{

	if (robby.obstacle_ahead(room))

		robby.right();

	else

		robby.move();

	picture.draw(room, robby);

}

		It works - easy to get lazy / ‘clever’

while (true) {

	if (robby.obstacle_ahead(room))	robby.right();

	else robby.move(); picture.draw(room, robby); }

True and false

		Java has special words, true and false

		lower case only

		These words can be used in conditional expressions

		their use is very restricted - here while(true)

		e.g. if (true) { } else { } appears redundant

		useful in testing

robby’s other eye

		robby can see if an obstacle is ahead of him

		a better eye than obstacle_ahead

		he can also see the colour of the square ahead

		squares may be of colour:

		black - perimeter wall

		white - empty square

		blue - interior obstacle

		green - coloured floor tile (used as a target)

		yellow - coloured floor tile (used as a path)

		Java is case sensitive

		all colours should be typed in lower case, and in “ ”

robby.ahead_is_colour

robby.ahead_is_colour(room, “black”)

This is true if the square in front of robby is black, otherwise it is false

Identifying obstacles

		Walk up to an obstacle and state the colour:

while (not an obstacle ahead)

	move forwards

now there is an obstacle ahead - it must be black or blue (only)

	if (the colour ahead is black)

		output ahead is the perimeter wall

	otherwise colour ahead must be blue

		output ahead is an interior obstacle

//while (not an obstacle ahead)

while (!robby.obstacle_ahead(room))

{

	//move forwards

	 robby.move();

	picture.draw(room, robby);

}

//now there is an obstacle ahead - it must be black or blue (only)

//if (the colour ahead is black)

if (robby.ahead_is_colour(room, “black”))

{

	//output ahead is the perimeter wall

	picture.printStatus(“ahead is the perimeter wall”);

}

//otherwise colour ahead must be blue

else

{

	//output ahead is an interior obstacle

	picture.printStatus(“ahead is an interior obstacle”);

}

Another problem:

		Make robby scan up a column checking for blue tiles … Room 2 has a convenient column of blue tiles, column 9

		we can address this problem in three stages

		make objects robby, room(2), picture

		move robby to the correct column (9)

		scan the column square by square

		if any squares are blue, output blue found

		otherwise do nothing

In more detail

make objects robby, room(2), picture

move robby to the correct column (9)

	turn robby right

	move robby forwards eight steps

	turn robby left

scan the column square by square

if any squares are blue, output blue found

otherwise do nothing

move forwards

// File: scan.java

// A program to make robby scan a column for blue squares

// Written by J.L.B, 14th June 2001

import SE111aClasses.*;

public class scan {

public static void main(String[] args) {

//make objects robby, room(2), picture

Robot robby = new Robot();

Room room = new Room(2);

Picture picture = new Picture(room, robby);

//move robby to the correct column

// turn robby right

robby.right();

picture.draw(room, robby);

// move robby forwards eight steps

for (robby.steps=1; robby.steps<=8; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

// turn robby left

robby.left();

//scan the column square by square

picture.printStatus(“Scanning column 9”);

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	//if any squares are blue, output blue found

	if (robby.ahead_is_colour(room, “blue”))

	{

		 picture.printStatus(“blue square found”);

	}

	//otherwise do nothing

	else

	{

		//do nothing

	}

	// move forwards

	picture.printStatus(“”); // clear status bar

	robby.move();

	picture.draw(room, robby);

} //end for loop

picture.printStatus(“finished scanning column 9”);

} }

It is ALWAYS a good idea to have an else part to an if even though it may not be needed. (This stops { } getting in a mess!!)

Added for

clarity

Added for

clarity

An extension

		We could extend the code to look at blue and black squares

		All decisions we have seen so far have been binary (yes or no) choices - this extension requires a four way choice

		blue or black or white or none of the above

		We can do this in Java using the if … else statement

		the if statement isn’t very good at multiple choice cases

		there are more suitable statements for this (later in the module)

Multiple choices ...

if square ahead is colour blue

	output blue found

else if square ahead is colour black

	output black found

else

	do nothing

//if square ahead is colour blue

if (robby.ahead_is_colour(room, “blue”)

{

	//output blue found

	picture.printStatus(“blue found”);

}

//else if square ahead is colour black

else if (robby.ahead_is_colour(room, “black”)

{

	//output black found

	picture.printStatus(“black found”);

}

else

{

	//do nothing

}

More general if statements

		Remember Question 3 of last week

		Read in a module number

		While mark is not –1

		Read in a mark

		Add mark to total

		Add 1 to counter

		Decrement counter (due to –1 mark)

		Increment total (due to –1 mark)

		Calculate and display average

while (mark !=-1)

{

	mark = gui.getInt(“Enter mark”);

	total = total + mark;

	count++;

}

total++;

count--;

while (mark !=-1)

{

	mark = gui.getInt(“Enter mark”);

	if (mark != -1)

	{

		total = total + mark;

		count++;

	}

}

Notes on semantic support

If statement

If statements don’t end in ;

if (a<b);

{

	// do some code

}

This is ok Java, but is semantically pointless

	The code between the) and ; is part of the if

The support tool will tell you this

= is not the test for equality

if (a=b)

{

	// do some stuff

}

Should be if (a = = b)

While loop semantic error re: !robby. also fixed

Module grades

		There are 5 blocks in this module

		2 in term 1

		robby and constructs

		daisy and data

		3 in term 2

		Writing methods

		Writing and extending objects

		Case study

		Each block is weighted (2nd term higher than first), and based on different numbers of programs

		E.g. block 1, 12 programs; block 5, 4 programs

Module grades

		Passing grades are A to D

		Excellent

		Very good

		Good

		Satisfactory

		You need to average an D to pass

		Failing grades are MF, CF, LE

		Marginal fail

		Clear fail

		Little evidence

Block 1 grading: passes

And at least one program from each of the first four tutorials

	- ensures coverage of all constructs

		A		11 or 12 programs completed

		B		8, 9 or 10 programs completed

		C		6 or 7 programs completed

		D		5 programs competed

Block 1 grades: failing

N.B. You can still fail if you have more than 4 programs

- You must have at least 1 program from Tutorials 1 to 4

		MF		4 programs completed

		CF		2 or 3 programs completed

		LE		0 or 1 programs completed

Signing sheets off, deadlines, catch-up

		We aim to get sheets signed off in the Monday lab session

		This isn’t always possible

		You can get programs signed off at any Monday class

		In the catch-up week there is no new material

		We will be helping students to finish outstanding exercises

		Marking on Wednesday and Monday

Remainder of block 1

		Wed– Lecture 4

		Monday, Tutorial 4 (3 programs)

		Wed– Lecture 5

		Monday, Tutorial 5 (2 programs, no intros)

		Wed – catch-up week

		Monday, catch-up week

		End of block 1 – most students to aim for B

_1210678503.ppt

SA0721A

Object Oriented Programming 1

Lecture 2:

robby’s legs

Making robby move 3 squares

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

Making robby move 10 squares

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

robby.move();

picture.draw(room, robby);

And 20 squares …

this is getting tedious

Who’s doing the work here?

		I am …

		with some cut & paste operations

		I still have to count out the 20 (or more) moves myself

		I am likely to count a large number of moves incorrectly

		All that code is hard (and boring) to follow

Programmers are lazy

		Programmers don’t like typing code

		It is boring and mistakes are easily made

		There must be an easier (lazier) way of doing this …

Problem

		Repeat the same bit of code a specified number of times

		Repeat 10 times:

		robby.move();

		picture.draw(room, robby);

Can robby help?

		robby has a brain

		not a smart one though

		robby can count

		he can count steps taken

		the counter is called robby.steps

Objects

		Behaviour

		defined via methods - e.g. move, left, right

		what the object can do

		State

		defined via variables (see later + daisy)

		what the object can remember / know e.g. robby.steps

		daisy is smarter than robby

The ‘for’ loop

		The ‘for’ loop is a programming construct that allows you to repeat some code

		books call this iteration

for (robby.steps=1; robby.steps<=10; robby.steps++)

{

		robby.move();

		picture.draw(room, robby);

}

				repeats move and draw 10 times …

What does this do?

for (robby.steps=1; robby.steps<=10; robby.steps++)

{

		robby.move();

} 	

picture.draw(room, robby);

		repeats ‘robby.move();’ 10 times

		does a single ‘picture.draw(room, robby);’ (at the end)

		i.e. only repeats what is within ‘{’ and ‘}’

for (robby.steps=1; robby.steps<=10; robby.steps++)

{

}

increment (add 1 to) the number of steps

(this will cause the

continuation condition to be false at some point

(after 10 steps)

the for loop Java

parts, i.e. for (; ;)

Together with { and }

the ‘continutation condition’

as long as this condition is met,

or true, the for loop continues

the starting point of

the for loop

(usually something

set to 1 or 0)

More precisely …

for (initial_expression; continuation_condition; increment_counter)

{

	some code

}

initial_expression - the starting point of the loop

continuation_condition - when true the loop continues

increment_counter - increase the counter each time through the loop

		The loop begins with the counter set to the initial expression

		The for loop is carried out (once), and the counter incremented

		If the counter meets the continuation condition, do the same again

		Otherwise, stop the loop

A problem …

		Make robby walk around the walls of the room

		Solution

		walk forwards 17 steps, and turn right (first wall)

		walk forwards 17 steps, and turn right (second wall)

		walk forwards 17 steps, and turn right (third wall)

		walk forwards 17 steps, and turn right (fourth wall)

		the room is 18 squares long; robby is already on the first of 18

		17 steps remain …

// File: walkwalls.java

// Program to make robby walk around the walls in a room

// Written by J.L.B, 11th June 2001

import SE111aClasses.*;

public class walkwalls {

public static void main(String[] args) {

// make objects

Robot robby = new Robot();

Room room = new Room(0);

Picture picture = new Picture(room, robby);

// first wall - move robby forwards 17 steps

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

//turn robby right

robby.right();

// second wall //move robby forwards 17 steps

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

//turn robby right

robby.right();

// third wall - move robby forwards 17 steps

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

//turn robby right

robby.right();

// fourth wall - move robby forwards 17 steps

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

//turn robby right

robby.right();

} }

A comment on the code

		Repetition

		there is much repetition in the code

		each for loop is the same

		there is a much shorter way of writing the program

		we need to know more Java to do this

		skeleton on next slide

		investigate <=17, <17, <18 etc.

		understand the role of =, <, >, <=, >=, and is equal to?

		investigate robby.steps=0 in the for loop

Skeleton solution

for walls = 1 to 4 // this is the bit you can’t do …

{

		for steps = 1 to 17

		{

			move robby

			draw picture

		}

		turn right

}

The importance of ; and { }

for (robby.steps=1; robby.steps<=17;robby.steps++)

{

	robby.move() ;

	picture.draw(room, robby) ;

}

never put a ; on

the end of a for

loop …

(try it and see

what it does!)

always put ; on the end of

other lines in the program

that don’t have { or } in them

get these the right way round!

Layout of code

// fourth wall - move robby forwards 17 steps

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move();

	picture.draw(room, robby);

}

//turn robby right

robby.right();

These two lines are indented -

they are within the for loop and

so may follow a different

sequence to the code on the

far left

Good use of indentation makes long programs easier to read

	PowerPoint uses it all the time …

More general for loops

for (initial_expression; continuation_condition;increment_counter)

{

	some code

}

		We need a counter other than robby.steps

		Initialise counter to 0

		Add one to the counter every pass through the loop

		Stop when the counter reaches the condition

Generic for loops

for (int count=0; count<10; count++)

{

	System.out.println(“The value of count is “ + count);

}

count is a label that relates to a block of memory able to hold whole numbers

Integers

		Integers can be made at any point in the program, and can be linked to arithmetic expressions

		int x = 0; int y = 4;

		x = y *2;

		System.out.println(“some text ”+ y);

		Prints the text within the quotes

		Can add integers to the text with a +

Summary

		The for loop is a programming construct that allows repeating of specified code a specified number of times

		It uses part of robby, .steps, to keep track of the number of steps taken (times through the loop)

		.steps is part of robby’s state

Summary

for (robby.steps=1; robby.steps<=17; robby.steps++)

{

	robby.move() ;

	picture.draw(room, robby) ;

}

		Only the parts inside { and } are repeated

		Don’t put a ; on the end of a for (----) line

Limitations

		For loops are useful

		shorter programs

		less typing - easier to read; fewer mistakes

		But

		need to know how many times to repeat the code before you run the program

Limitations

		This isn’t always possible

		don’t always know

		Program is not very flexible

		only works for specified number of repeats

		e.g. ours only works in a room of 18x18

		also, any obstacles are not dealt with

		There is another, more sophisticated loop … next week

Rooms

		There are a few rooms that robby can use

		Room(0) is an empty room

		Room(1) has a single obstacle in it

		Room(6) is used in a path-following program later

		The programming tutorial will always say which room is to be used:

		Room room = new Room(1);

A note on support tool

Semantic errors

		Semantic errors

		Meaning of code

		Syntax can be correct but code incorrect

		Can check for this

		If you include the right comment

This is ok

// repeat 17 times

for (robby.steps=0; robby.steps<17; robby.steps++)

{

	// some code in here

}

This is not ok

// repeat 17 times

for (robby.steps=0; robby.steps<=17; robby.steps++)

{

	// some code in here

}

Support tool will tell you this

Similarly

// repeat 5 times

for (int i=0; i<5; i++);

{

	// some code

}

And finally …

// repeat 5 times

for (int i=0; i<5; i++);

{

	// some code

	i=7; // this will produce a //semantic error, but is ok Java

}

The various error support levels

		Syntactic

		Program will not ‘compile’ – not valid Java

		Must be fixed

		Semantic

		You have done something that you shouldn’t

		Still valid Java so can run program

		Schematic

		Your program is not the right shape yet, and you get assistance on how to develop it further

		Still valid Java so can run program

_1210678558.ppt

Programming Concepts

Lecture 2

Methods: Scope, passing by value and return values

Method concepts

		Variable scope

		Passing by value

		Return type

		method headers

		(I/O is required here)

		Advanced topics

		Methods calling methods

Methods of little value

		The methods written last week didn’t really achieve anything

		just textual replacement

		e.g. System.out.println(“text”) was replaced by showText(“text”)

		e.g. sum(3,4) instead of 3+4

		Couldn’t get answers out of the methods … even though sum(3,4) worked something out

From example 7

		It would be useful if we could get an answer out of sum(3,4) that we could use in main …

public static void sum(int num1, int num2)

{

	int total=0; total=num1+num2;

}

		To get an answer we could just use total … like this …

public static void main(String args[])

{

	int total=0;

	sum(3,4);

	System.out.println(“total is “+total);

}

public static void sum(int num1, int num2)

{

	int total=0;

	total=num1+num2;

	System.out.println(“total is “+total);

}

So that’s ok then … we have total in the main block (method)

NO!!

It is not the

same total

totals are

different

Variable scope

		A variable’s scope describes what part of a program can ‘see’ that variable

		local variables

		instance variables – lecture 6

		(class variables - further reading)

		Local variables are declared variables within a method … only that method can ‘see’ them

		total in sum is only seen by sum

		main only sees the total in main and (importantly) doesn’t see the total in sum

Passing by value

Suppose the following …

public class Example8 {

	public static void main(String args[]) {

		String favourite=“Java”;

		String intensity=“enormously”;

		displayMessage(favourite, intensity);

	}

	public static void displayMessage(String favourite, String intensity)

	{

		System.out.println(“I love “ + language + “ “ + intensity);

	}

}

Here, the variable

names that are

arguments to the

method are the

same as the

parameter names

What happens if we change the value of one of the arguments?

public class Example9 {

	public static void main(String[] args) {

		String favourite=“Java”;	String intensity=“enormously”;

		displayMessage(favourite, intensity);

		 System.out.println(“The value of favourite in main is ” + favourite);

	}

	public static void displayMessage(String favourite, String intensity)

	{

		System.out.println(“The value of favourite in displayMessage is “ + favourite);

		favourite=“VB”;

		System.out.println(“The value of favourite in displayMessage is ” + favourite);

	}

}

The output

The value of favourite in displayMessage is Java

The value of favourite in displayMessage is VB

The value of favourite in main is Java

The String variable ‘favourite’ in main is NOT the same variable as ‘favourite’ in displayMessage

The value of ‘favourite’ in main is copied into ‘favourite’ in displayMessage

Changes to ‘favourite’ in displayMessage do not affect the value of ‘favourite’ in main

Guidance

		This confusion only arises because the variables in the main method passed as arguments have exactly the same names as the parameters

		This isn’t necessary

		we saw it wasn’t last week …

		Don’t do it

		try to keep parameter names different from variables in the main method

		if parameter names are different to argument names this stops the confusion (and stops you having to worry about scope)

public class Example6 {	// variables as arguments

 public static void main(String args[]) {

 String favourite=“Java”;

	 String intensity=“enormously”;

	 displayMessage(favourite, intensity);

 }

					

 public static void displayMessage(String language, String howMuch)

 {

 System.out.println(“I love “ + language + “ “ + howMuch);

 }

}

names don’t need

to match

(Reminder slide)

Return types

		Method headers:

		public static void main(String args[])

	- public static void sum(int num1, int num2)

Week 6/7

Parameter

list

Name of method

IGNORE

(Java artefact)

Return

type

Void methods

		In Java (and other languages) most methods:

		take parameters

		perform processing

		return an answer

		void methods do not return an answer

		displayMessage does not return an answer

		its return type is void

		in term 1 there were void methods

		move, left, right

		and non-void methods

		is_obstacle_ahead

Answers from methods

		void methods don’t give us an answer

		robby.move just did something; it didn’t tell us anything

		non-void methods give us an answer

		is_obstacle_ahead

		true or false

		methods that give answers have return types

		the type of the thing that they return …

Non-void methods

		There are a number of return types that we have and have not used - a non-exhaustive list:

		boolean		returns true or false

		integer		returns a whole number

		typically categories e.g. age, day of month

		double		returns a non-whole number

		typically measurements e.g. height, distance

		others exist … these will suffice here

		arithmetic operations allow for easy (if boring) demonstrations

Sum again

public static void main(String args[])

{

	int total=0;

	total=sum(3,4);

	System.out.println(“total is “+total);

}

public static int sum (int num1, int num2)

{

	int t=0;

	t=num1+num2;

	return t;

}

The method returns a variable

(or value) of the type specified

in the method header, i.e. int

return (num1+num2) is also valid

return type in method

header

Integer methods

public class Example10 {

	public static void main(String[] args) {

		GUI gui = new GUI();

		int first = 0; int second = 0; int larger = 0;

		first = gui.getInt(“Enter the first score”);

		second = gui.getInt(“Enter the second score”);

		larger = higher(first, second);

		gui.putText(“The higher score is “ + larger);

	}

	public static int higher(int x, int y)

	{

		if (x>y)

		{

			return x;

		}

		else

		{

			return y;

		}

	}

} // end Example10 file

return values

(here int)

return type

(int)

Boolean methods

public class Example11 {

	public static void main(String[] args) {

		int x=3;

		if (isPositive(x))

		{

			System.out.println(“x is positive”);

		}

		else

		{

			System.out.println(“x is negative”);

		}

	}

method call used in

conditional statement

(i.e. must be true

or false)

public static boolean isPositive(int anint)

{

	if (anint > -1)

	{

		return true;

	}

	else

	{

		return false;

	}

}

} // end Example11 file

return type

(boolean)

return values

(for boolean

must be true

or false)

Double methods

public class Example12 {

	public static void main(String[] args) {

		GUI gui = new GUI();

		double length = 0; double breadth = 0; double room_area = 0;

		length = gui.getDouble(“Enter the length of the room”);

		breadth = gui.getDouble(“Enter the breadth of the room”);

		room_area = area(length, breadth);

		gui.putText(“The area of the room is “ + room_area);

	}

	public static double area(double l, double w)

	{

		return (l*w);

	}

}

Method return types

		Type int returns whole numbers

		often used for categories (and simple programming problems)

		Type double returns real numbers

		often used for measurements

		area should really be a double method

		… sounds like an introductory tutorial question to me

		Type boolean are used for tests of true or false

		typically names like isSomething

Advanced topics

(by example)

Methods calling methods

Methods calling methods

public static double area(double l, double b)

{

	if (isInvalidMeasure(l))	{

		putText(“Length of room is not valid”);

		return 0; // can’t deal with error properly yet

	}

	else if (isInvalidMeasure(b))	{

		putText(“Breadth of room is not valid”);

		return 0; // can’t deal with error properly yet

	}

	else { return (l*w); }

}

This is an

extension

to the

method

area from

earlier

public static boolean isInvalidMeasure(double measure)

{

	if (measure<0)

	{

		return true;

	}

	else if (measure>1000)

	{

		return true;

	}

	else

	{

		return false;

	}

}

Next week

		Methods and arrays

		more complex questions

		Method overloading

		an interesting strength of object-oriented programming

_1210597391.pdf

Module Code : SA0721A
Module Title : Object Oriented Programming 1

Principal Domain : School of Computing and Creative Technologies

Principal Division : Software Applications Weighting : 100%

Level : 7
SCQF Credits: 30

Status : Approved School Executive

Semester : Semester 1 through 2 Year : 2005/6

Last Updated : 24/05/05

Pre−requisites :
Co−requisites :
Replaced Modules :
Prohibited Combinations :

External Examiners : HALEY, MR JOHN

Module Tutor : BOWN , JIM

Brief Description
Object Oriented Programming 1

Aim
The aim of this Module is:To enable the student to develop simple programs that illustrate fundamental programming concepts.

Learning Outcomes
By the end of this module the student should be able to :
1. Create and run programs using an integrated development environment.
2. Use appropriate data types and control structures.
3. Design, implement and extend objects in terms of interface, function, and data.
4. Incorporate predefined objects into new programs.

Indicative Content

1. The Development Environment
Use an integrated program development environment including the management of associated folder structures and files.
2. Sequential programming
Development of simple programs using a sequential series of statements.
3. Iteration
Development of simple programs using unconditional and conditional loops. Identification of appropriate uses of unconditional and conditional
loops.
4. Selection
Development of simple programs using at least one from of selection among alternate cases. Identification of appropriate alternate cases.
5. Primitive data types
Recognition of the need for, and syntax of, the different basic types: integer, real, character, strings. Development of simple programs using
primitive data types.
6. Arrays
Recognition of the need for, and syntax of, arrays of primitive data types. Development of simple programs using arrays.
7. Methods
Creation of new methods derived form prescribed designs. Development of methods with a range of return types and parameters including
arrays.
8. Objects
Consideration of interface to object, data stored within object and associated functionality. Creation of new objects derived from prescribed
designs. Extension to the function and data capacity of both familiar and unfamiliar objects.
9. Testing
Demonstration of simple testing strategies to test programs.
10. Program Design
Demonstration of an awareness of the role of methods and objects as mechanisms of abstraction in larger software developments.

Statement on Teaching, Learning and Assessment

Teaching and Learning Work Loads :

Total : 300 hours
Lecture : 24 hours

1

Supervised Practical Activity : 72 hours
Assessment : 75 hours
Independent : 129 hours

Assessment

Portfolio 1 Simple exercises
Weighting : 50%
Workload : 35 hrs
Issue Week : 1
Submission Week : 12
Return Week :
Primary Assessment Tutor :
Secondary Assessment Tutor :

Portfolio 2 Larger exercises
Weighting : 50%
Workload : 40 hrs
Issue Week : 17
Submission Week : 27
Return Week :
Primary Assessment Tutor :
Secondary Assessment Tutor :

Additional Assessment Information

Additional Tutors :

Supportive Reading
Smiley, J 2002 Learn to program with Java McGraw−Hill
Deitel, H and Deitel, J 2002 Java: how to program Prentice Hall

Specialist Resources
Specialist software in room 4534.1 is required for all contact hours for this module. A 4 hour block is required for each student group.

Teachability Issues for this module are :
Oral,Visual,Symbolic,Computer Based,Reading,Writing

Key Transferable Skills for this module are :
Problem Solving,ICT Skills

2

_1197968410

