Course: CS12230 Introductory Programming

Author: Mark Ratcliffe
University:
University of Wales, Aberystwyth
Department: Computer Science
Speciality: Software Development
Year: 2005 - 2006

1. Portfolio Objective/Abstract

The main objectives of this portfolio are to:
1. continue to refine the course through the required documentation of connections between course goals and course activities,

2. document the efficacy of teaching techniques, and
3. serve as a preliminary step to publishing some of the case studies being used in the course.

Type of Portfolio: Benchmark
Evidence of Student Learning in the Portfolio:
Programs written in Class,

Examples of Student Work

11.
Portfolio Objective/Abstract

32.
A little about the University

33.
A little about the Department

34.
A little about me: My philosophy of teaching

45.
A little about the role of this module

56.
Module Details

57.
My background to the teaching of this module

68.
Aims of this module

68.1
Learning Outcomes

68.2
Brief description

78.3
Aims

78.4
Content

88.5
Reading Lists

89.
Objects first?

89.1
Contents

910.
Instructional Design

910.1
Lectures

910.1.1
Effective questioning:

910.1.2
Group collaboration:

910.1.3
Collaborative development:

910.2
Weekly worksheets

1010.3
Regular examinations

1010.3.1
Multiple choice

1110.3.2
Open-book design & coding

1110.4
Group Assignment

1211.
The Tweek Student Centred Learning Environment

1211.1
Tweek Assessment

1311.2
Tweek Attendance

1311.3
Tweek Coursework

1411.4
Tweek Content

1411.5
Tweek Questionnaires

1512.
The top five things I believe are important in assessment

1613.
Appendix A: Group Project Example

1814.
Appendix B: Weekly Worksheet Example

1915.
Appendix C: Typical questions used in multiple choice

2016.
Appendix D: Typical feedback given to students

2117.
Appendix E: Example Open Book Examination

2318.
Appendix F: Solution for Open Book Examination

2419.
Appendix G: Typical feedback given by students

2. A little about the University

[image: image10.png]

http://www.aber.ac.uk/en/visitor/
Founded in 1872, Aberystwyth was the first university institution to be established in Wales. Today, it has over 7,000 registered students, including over 1,100 postgraduates across eighteen academic departments.

The institution is committed to developing its reputation as a provider of high quality teaching and excellence in research. It aims to fulfil its special responsibility for the educational needs of Wales, and to maintain and develop partnerships with industry and other institutions both within Wales and beyond, and also to promote collaboration in teaching and research between the constituent parts of the University of Wales.

3. A little about the Department

http://www.aber.ac.uk/compsci/Department/
[image: image11.jpg]- Tl

The Department of Computer Science at Aberystwyth was founded in 1970. There are currently 50 teaching, research and support staff, and about 450 students. The department carries out important research in areas including robotics, artificial intelligence, bioinformatics and software engineering, working with major companies such as Ford and receiving grants from public and private initiatives. This means that our staff are working at the frontiers of their disciplines.

4. A little about me: My philosophy of teaching

I arrived at teaching totally unexpectedly. Early on in my PhD I became heavily involved in teaching, not in Computer Science, but in windsurfing. The two things that I realised was firstly how much I enjoyed seeing success in others, and secondly how much of what I taught was simply instilling confidence in my students. Moving to teach data structures and algorithms I tried the same philosophy.

I soon realised that teaching with pre-prepared slides was not much fun. I knew something was seriously wrong when I realised that I was getting bored in the classroom. That was 15 years ago. A year teaching at the University of Puget Sound further convinced me about the merits of “burning my slides”. To be really successful, the classroom experience should be fun!

My lectures are very interactive. I spend as much time asking questions of students in the classroom as I do teaching new material. I know the names of 90% of the students in my class (~120 students); This is a failing; I try to know them all. The typical form of my question is “In two minutes, I am going to ask ……” then, 2 minutes later I direct the question at a specific individual, “Hailey, please answer the question”. It keeps everyone on their toes. One might expect this to have a negative impact on attendance but actually my modules are some of the best attended on campus.
I have been teaching Introductory Programming for 13 years. I used to think I could teach anyone to program. I now know that I can’t, but from the feedback received and my own research, I know that at least I’m making a better job of it than most. By being an active researcher in Computer Science Education I’m aware of the approaches that others are taking and am strongly placed to try new ideas.

In essence my philosophy is to motivate, instil confidence and be student-centric.

5. A little about the role of this module

The department offers a wide variety of degree schemes summarised by this abbreviated list of single honours schemes:

· BSc Artificial Intelligence And Robotics 4year

· BSc Business Information Technology, 3 & 4 year schemes

· BSc Computer Science And Artificial Intelligence
· BSc Computer Science, 3 & 4 year schemes

· BSc Internet Computing, 3 & 4 year schemes

· BEng Internet Engineering, 4 year

· BSc Mobile And Wearable Computing, 3 & 4 year schemes

· BEng Software Engineering, 4 year

· MEng Software Engineering, 5 year

· BSc Computer Graphics, Vision And Games, 3 & 4 year schemes

The CS12230 Introductory Programming Course is a compulsory module for all the degree schemes offered by the department, including all Minor Degree Schemes. Students with previous programming experience are offered an alternative cut down module (CS12320).

6. Module Details

	Size of Class:
	100

	Type of Student:
	Major and Non-Majors

	Level of Course:
	First Year

	Type of Course:
	Major/discipline

	Weighting:
	50% of the first semester 300 hours of study

33 hrs lectures

22 hrs of supervised practicals

11 hrs workshops

11 hrs of tutorials

	Environment:

· Classroom
	Student Activities:

· Programming

· Interactive Lectures

· Reading

· Weekly practicals
	Assessment Approaches:

· Best of 2 in-class tests 20%

· Online Open Book exam 50%

· Worksheets (penalties for non submission)

· Group Project 30%

7. My background to the teaching of this module

Much of my recent research has been in Computer Science Education, and in particular it focuses on introductory programming. As research shows:

"Many academics share the opinion that their students’ learning of software development is not as effective as it should be. This is evidenced by an international review of first year students’ programming skills led by McCracken [1], an often cited example that reports student coding performance at only 20%. When this subject was raised at the 2002 SIGCSE conference [2], not only was there wide consensus that the success rate of teaching Computer Science freshmen was very poor, but there was little suggestion as to how to solve the problem. Many even thought that the problem was getting worse." [3]

Our recent research [4] is even more disturbing. As part of an international study of Computer Science students nearing completion of their degrees it showed that more than 60% were incapable of producing designs that were little more than a restatement of the specification.

1. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.D., Laxer, C.,

Thomas, L., Utting, I., Wilusz, T.: A multi-national, multi-institutional study of assessment of programming skills of first-year CS students. SIGCSE Bulletin 33 (2001) 125–180.

2. Ratcliffe, M.: Improving the teaching of introductory programming by assisting the strugglers. In:

Proceedings of 33rd ACM Technical Symposium on Computer Science Education, Kentucky, USA (2002)

3. Thomasson, B.J., Ratcliffe, M.B., and Thomas, L.A., Identifying Novice Difficulties in Object Oriented Design. Eleventh Annual Conference on Innovation and Technology in Computer Science Education, University of Bologna, Italy, June 2006
4. Eckerdal, A., McCartney, R, Mostrom, J.E., Ratcliffe,M., and Zander, C. Can graduating students design software systems, 35th Technical Symposium on Computer Science Education, Houston, Texas, USA. (2006)
8. Aims of this module

For further details, please see http://www.aber.ac.uk/modules/current/CS12230.html
As described above, this module involves 300 hours of student effort, that is one half of an entire semester (11 weeks), reflecting the significance of this module to the degree schemes.
The 300 hours is made up of 33 hours lectures, 22 hours of supervised practicals, 11 hours workshops and 11 hours of tutorials. The bulk of the balance is expected to be made up largely of practical work, preparing weekly worksheets and the project. Tests held every 4 weeks ensure that student effort is maintained throughout the semester and not focussed on the exam period.

8.1 Learning Outcomes

The module concentrates on developing the student's professional approach to software development.

The major learning outcome of this module is that students should:

· have an appreciation of the Java concepts covered in the syllabus and be able to make full use of them in their programs;

In addition, on successful completion of the module, students should:

1. have an awareness of the need for professional software development within computing, demonstrated through the quality of their program code;

2. be able to demonstrate their understanding of problem abstraction and program design by producing good software designs;

3. be able to describe their designs using simple Universal Modelling Language (UML) notation;

4. be capable of realising their design in the Java programming language;

5. be able to use the workstations to develop their programs to meet the specified requirements;

6. have experience of team work within varying environments and have an appreciation of the idea of team roles.

8.2 Brief description

This module introduces students to the basic concepts of programming in the context of a professional approach to software development. The design of software using hierarchical decomposition and its subsequent implementation using the Java programming language is fundamental to the module. The practical work associated with the module will enable students to learn how to edit, compile, run and test simple programs in Java. The module is intended for students with little, if any, previous programming experience.

8.3 Aims

This module is intended for students with little, if any, previous programming experience.

Students are introduced to the basic concepts of programming in the context of a professional approach to software development. The module concentrates on the design of software using object oriented design in a way that eases development by a team of programmers, enhances reuse of existing components and improves the maintainability of the resulting software.

The idea of problem solving and algorithm design is addressed very early on in the module. Through extensive practical experience, students gain skills in developing, evaluating and implementing their own designs. Through the tutorial system they are also given practice in evaluating and implementing designs produced by others. Emphasis is placed on distinguishing between the design of a software product and its implementation.

Although Java is used as the implementation language, the module is taught in a way that attempts to ease the task of learning second and subsequent programming languages. The practical work associated with the module enables students to learn how to edit, compile, run and test programs that cover all aspects of the Java language addressed in lectures.

The intention of the supervised practical sessions is to develop the problem solving and programming skills of participants.

Weekly tutorials provide the pastoral support for the first semester and give a forum for discussing the technical aspects of material presented in this module.

The Activity Weekend is designed to enhance the student's team working skills and to further develop their interpersonal and communication skills. Through a series of varied tasks held over the weekend, and supported by further project work, students will be exercised in their problem solving abilities.

8.4 Content

1. Welcome and preview - 1 Lecture
Introduction to the department and the course.

2. Management Issues and Professional Conduct - 1 Lecture
The growing role of computing and software. The need for software engineering and professionalism.

3. Computer system appreciation - 2 Lectures
Introduction to the basic computer organisation. Emphasis is placed on the relationships between hardware, architecture and software, with reference to the computer systems at Aberystwyth. Using the computing facilities at Aberystwyth.

4. Representation of designs - 3 Lectures
An introduction to illustrating designs using the Unified Modelling Language (UML).

5. Programming in the large - An introduction to Java - 33 Lectures
Software crisis, abstraction, algorithms and programs. The design of algorithms, object oriented programming, and an introduction to Java. Programming constructs expressions, primitive types, classes and objects. Information hiding. Further object oriented design - inheritance.

6. Testing - 2 Lectures
Techniques and aids for error detection.

7. Personal Communications Skills - 1 Weekend
Team roles; Belbin methodology and self assessment. Interpersonal skills - achieved in associated Team Skills weekends.

8.5 Reading Lists

Books
** Should Be Purchased
Savitch, Walter J. (May 2005) Absolute Java 2nd. Addison Wesley 0321312538 (Trade Paper)Active Record
** Recommended Consultation
John Lewis and William Loftus (2005) Java Software Solutions 4th. Addison Wesley ISBN 0-321-26979-9
** Consult For Futher Information
Nell Dale, Chip Weems, Mark Headington (2003) Programming and Problem Solving with Java 1. Jones and Bartlett, Computer Science 0-7637-0490-3
Michael Main (Oct 1998) Data Structures and Other Objects Using Java Addison-Wesley ISBN 0201357445
Horton, Ivor (Jan. 2005) Ivor Horton's Beginning Java 2 5th. 0764568744 (Trade Paper)Active Record
Nell Dale A Laboratory Course for Programming with Java Jones and Bartlett, Computer Science 0-7637-2463-7

My favourite book is Ivor Horton’s Beginning Java though this has not been my recommended text for several years. I do not follow the text. The list is provided simply to direct the students in their search for useful material.
9. Objects first?

The approach is fine, but before you rode a bike did you really examine the pedals?

My research that I describe above emphasises my interest in Computer Science Education. Following the literature and discussions at annual SIGCSE and ITICSE conferences it should not be surprising that I have taken an Objects First approach. More recently I have strengthened this approach by focussing on design. This year I have a new approach:

Consider how you learnt to ride a bike. As a 7 year old, Dad did not explain to me how the brakes worked, how I would change gear, or how I should lean into corners. He put me on the bike and gave me a push. …. That is how I am teaching Java programming, and it works!
9.1 Contents

 The detailed breakdown of the course is shown in the accompanying document OriginalContents.doc

Although the contents of the course remains largely unchanged, my approach is now quite different. The material covered is still the same but is now all taught be way of example.

Let’s assume that I am teaching iteration. We start off with an example; a baker opens a shop to sell various items. We already know how to put up a menu to display the products on offer, but now we need some code to do it more than once …. So a simple loop is introduced…. And this is how the whole of the course progresses.

All the code is developed on-the-fly in the classroom. Students have access to this code and are expected to take it away and refine it in their own time.

10. Instructional Design

The style of teaching that I use is not traditional. Essentially I enrich the Mastery Approach [1] by utilising small group teaching in the large lecture theatre.

1. Laurillard, D., (1993). Rethinking University Teaching, a framework for the effective use of educational technology. New York, Routledge.
10.1 Lectures

All my lectures are fully interactive. I try to keep the time spent presenting new material to a minimum and immediately follow this with some form of class exercise:

10.1.1 Effective questioning:

A question is presented to the class

“In three minutes I will ask for a solution to this problem. Please discuss this with the person next to you, in front or behind”

The latter is used to encourage class discussion even with individuals who have a tendency to sit alone.

After an appropriate amount of time an individual (not usually a volunteer) is asked for the solution.

In order to provide a safe environment where students feel happy answering questions in this way a lot of effort is put into getting to know the names of the students. The ‘Aberdyfi’ Activity Weekends are an important aspect of developing this relationship with the class.

10.1.2 Group collaboration:

Students are asked to work with people around them to provide a solution to a stated problem. A member of one of the groups is requested to answer the question. In most cases the answers are multipart in which case I obtain the different parts from different groups.

10.1.3 Collaborative development:

The majority of these lectures involve the development of code. This is done entirely interactively in class. Using various editors: BlueJ (week 1 for emphasising Object First Approach), Vortex (weeks 2-7 with emphasis on UML Class diagrams),and then GWD (a basic text editor).

The code is developed in-class by asking assistance from class participants either from named individuals or specified volunteers (e.g. “someone from the back row, left hand side”).

All code is developed on the web and is made available to the students immediately after the lecture.

10.2 Weekly worksheets

There is significant emphasis on practical software engineering in this course and as such much emphasis on practical software development through regular practical sessions.

Each week of the semester, students are assigned a practical worksheet that is to be worked on during a closed lab session. At any time the students can obtain help from one of the demonstrators (staff student ratio of 1:15). A typical worksheet for 2004-2005 is shown in Appendix B: Weekly Worksheet Example.

Once the student is happy with the work they have it “signed off” by a demonstrator. This is a two-stage process. The work is submitted to the Tweek system and the demonstrator then signifies its acceptance.

These worksheets are assessed as follows:

· Failure to submit more than 2 worksheets – 5 marks deducted from in-course assessment (worth 50% of module)

· Failure to submit more than 4 worksheets – 8 marks deducted from in-course assessment (worth 50% of module)

· Failure to submit more than 6 worksheets – 10 marks deducted from in-course assessment (worth 50% of module)

A decision was made to use absolute marks rather than percentages. In effect this penalises the weaker students more but this is used to emphasise the significance placed on this work. Almost all students failing the module have usually failed to complete the practical worksheets.

10.3 Regular examinations

Feedback is an essential component of this course for both the instructor and the students. This is vital for success in the Mastery Approach to teaching.

10.3.1 Multiple choice

Every 4 weeks the students are given an in-class multiple choice test to encourage learning on a regular basis. Previously we had witnessed improved student learning just prior to the semester examination – rather late in our experience!

The tests are managed through the Tweek learning system to ensure reliability and robustness. Results are made available to the students immediately after the examination and are accompanied with very detailed feedback an example of which is given in Appendix D: Typical feedback given to students. There are at least 2 examinations of this type each semester and the highest mark achieved then contributes 20% of the module mark.

This system of assessment was first introduced in 1998 and immediately had a positive effect on student performance.

[image: image1.wmf]Java 1 Results

0

20

40

60

80

project

exam

1998 (pre tests)

1999 (after tests)

 EMBED Excel.Chart.8 \s [image: image2.wmf]Java 2 Results

0

20

40

60

80

project

exam

1998 (pre tests)

1999 (after tests)

Of most significance was that the results increased performance not only in the multiple choice exam but also in other assessments undertaken by the students. This was repeated in the follow-on module and is cited as follows:

1. Woodbury, J., Ratcliffe, M.B. and Thomas, L. A., Building and Deploying an Extensible CAA System: from theory to practice, 5th International Computer Assisted Assessment Conference, Loughborough, pp. 531-547 (ISBN 0 9539572-0-9) July 2001.

2. Ratcliffe, M.B., Thomas, L.A. and Woodbury, J., A Learning Environment for First Year Software Engineers, 14th Conference of Software Engineering Education & Training, North Carolina, USA, pp. 268-275 (ISBN 0 7695 1059 0), February 2001.

A typical set of questions used in the Multiple Choice Examinations for 2005-2006 is shown in Appendix C: Typical questions used in multiple choice. An example test can be seen by clicking here.

10.3.2 Open-book design & coding

Some students were found to be good at multiple-choice exams but very poor at programming. Since satisfactory progress in this module is assumed to indicate ability to code, some other form of assessment was required.

We now regularly replace the multiple-choice examinations with open book examinations. They are carried out on a computer with full Internet access. The examination lasts 2 hours after which the design (as a Vortex UML model) and code are uploaded for manual marking.

This style of examination is also used as an end of semester assessment, an example of which is shown in Appendix E: Example Open Book Examination together with the sample solution shown in Appendix F: Solution for Open Book Examination. The first time this was held there was an option for students to obtain the model solution giving up their marks for part (a). This proved unsatisfactory as a number of students opted for this option well into the examination despite making excellent attempts at the solution but losing the marks. Penalising them for a lack of confidence was counter-productive.

10.4 Group Assignment

To further the experience of collaborative work started at the Aberdyfi skills weekend, students are given a Java project that extends over the last 6 weeks of the first semester. Students are asked to form groups of 3 (with me making special arrangements for the stragglers). The groups are registered under VorteX [1] which supports group development and enables the students to work together sharing files, keeping records of individual contributions, etc.

1. Ellis, W., Ratcliffe, M.B., and Thomasson, B., Invited Keynote Address: “Promoting Fairer Grading Of Group Based Assessment Using Collaborative IT Tools”, 7th International Computer Assisted Assessment (CAA) Conference, Loughborough University, UK, July, 2003.

This project is work 30% of the mark for the module. The project for 2004-2005 is shown in Appendix A: Group Project Example.

11. The Tweek Student Centred Learning Environment

The following abstract is taken from:

Woodbury, J., Ratcliffe, M.B. and Thomas, L. A.

Building and Deploying an Extensible CAA System: from theory to practice.

5th International Computer Assisted Assessment Conference, Loughborough, July 2001.

Over a two-year period we have devised and deployed over 2000 objective tests both as summative and formative tests in a range of Computer Science modules as well as diagnostic tests via the Web. From modest beginnings with an introductory module on programming for first year students we extended the service to other staff and modules including a Master’s level module on programming, an introductory module to the PC and a module on computer hardware.

We recorded our experience supplying support to staff and students through a variety of documents and procedures, including addressing the practical and security issues of deploying CAA via the Web. This information is available via the Web to staff and students. Feedback was elicited from the students after each test and this information is recorded in a database available on the Web.

We have been developing an extensible and modular system called MAPView (Monitoring, Access and Provision) using the development method we teach our students and written in our teaching language Java. We have used our students to develop various aspects of this system as part of their academic work and we use it as a “near experience” example in our modules on software engineering, project management and object-oriented design.

Our system is centered on the lecturer’s learning objectives for a course of study. Questions and tests are constructed with explicit reference to these learning objectives.

Topical feedback is provided to the students via emails automatically generated from test results, using this as a tool to revisit individual student problems. We have sought to prove that our method of system development is flexible and responsive to the individual and changing requirements of teachers.

Since 2001, much has happened since the initial development of the MAP system. Through funding from the Welsh Development Agency and the University’s Challenge Fund the developments led to the Tweek Student Learning System.

The system has different components (Assessment, Attendance, Coursework, Course Content and Questionnaires) that can be used separately or in conjunction with each other. Tweek is fully integrated with the UWA Astra Student Record System and can be used quite successfully in combination with Blackboard.

11.1 Tweek Assessment

Tweek Assessment provides online assessment creation and delivery facilities. It supports a wide range of question types ranging from multiple-choice questions to fill-in-the-blank questions. It supports the randomization of questions and sections allowing examinations to be held securely even when students are in close proximity.

Tweek Assessment provides the following functionality:

· Online assessment that is more robust and secure than its competitors;

· Feedback to students through integrated learning outcomes, a facility not available in competitor products. This means that after taking an exam, whether formative or summative, students are given directed feedback telling them where they have gone wrong and how they can improve. This is vital in our climate of growing student numbers and widening access;

· Feedback to staff. As effective learning becomes more significant to Higher Education, the feedback from Tweek on how students are progressing with their learning is fundamental and fits in well with the principles laid down in the Dearing Report;

· Internationalised interfaces to support English and Welsh that can be readily extended to support other languages. Welsh is not effectively supported in alternatives to Tweek.

11.2 Tweek Attendance

There is growing concern that poor attendance has a direct correlation with poor assessment results. Tweek Attendance is designed not only to be a labour saving system but also to provide a wide range of statistical information to help departments and their students keep track of attendance. The statistics available to students is proving to be very successful emphasising their personal responsibility for maximising attendance. During trials this system has shown a definite improvement in performance for the students using the system. Following the effective use of Tweek, and with the full support of the Dean of Science, the Department of Computer Science is now introducing a policy of non-tolerance of lecture absenteeism. It is hoped that this will increase performance and maximise retention.

Tweek Attendance provides the following facilities for staff:
· Print class lists for in-class signing by students;

· Save time on administration through fast attendance input;

· View summary attendance for a module, department or student;

· View detailed attendance for a module, department or student;

· Export detailed views to Microsoft Excel;

· View under-attending students;

· Take actions against under-attending students;

· Send custom email when taking actions against a student (for example, emailing the Dean to report a student to him);

· Accept/reject student explanations;

· Explain a period of absence for one or more students.

And for students:

· View attendance for all/individual modules;

· View detailed attendance records;

· Explain absences (with email notifications of declined explanations);

· Email notifications of actions taken against a student.

11.3 Tweek Coursework

This is used for online submission of coursework. Tweek Coursework is an integral part of teaching and learning. Its flexible and easy-to-use interface reduces the burden of creating and marking coursework.

Tweek Coursework provides a more streamlined model for students to submit coursework and for lecturers to retrieve the submitted coursework online. This facility is perfect for distance working.

Tweek Coursework helps to make the grading of coursework less subjective than traditional approaches. By grading the coursework through specified criteria, a grade can be calculated based on performance against each criterion. This helps to reduce the risk of inconsistencies in the grades due to subjective marking.

Tweek Coursework provides the following facilities for staff:

· Create coursework with associated marking criteria, learning outcomes and various online documents (e.g. Microsoft Word);

· Make coursework available to all students in a module, or to students across several modules;

· Mark coursework against previously defined criteria;

· View coursework statistics and generate reports containing results;

· Download student responses as a compressed file for offline marking or storage. (This allows staff to mark projects when Internet access is not available) ;

· Create worksheets that can be 'signed-off' by assigned postgraduate teachers (Demonstrators).

And for students:

· Submit responses to the coursework in whatever document format is required (e.g. Microsoft Word, Excel, Zip files);

· Monitor progress made with assignments, view deadlines and examine results;

· Examine previously submitted responses;

· Receive automatically generated receipts upon submitting coursework;

· Receive feedback including learning outcomes that require attention.

11.4 Tweek Content

Tweek Content is used to provide online access to course materials for a module. Course Materials allows lecturers to store (or link) to course-specific materials in the Tweek Student Centred Learning Environment. Linking to learning outcomes gives students directed feedback to course notes when they fail certain outcomes during Assessments and Coursework.
11.5 Tweek Questionnaires

Tweek Questionnaires enable staff to readily develop online questionnaires. No processing by staff is required. It is believed that this system alone saves significant secretarial effort in every department where it is used.

The top five things I believe are important in assessment
1. To provide useful feedback to students – to help them know how they are doing, and in particular to help them know what they are doing wrong. (Feedback is more important than the grade)

Worksheets - Students are given feedback by a demonstrator before they are able to submit weekly worksheets.

Multiple Choice - After summative exams, students are given feedback on all the areas that need further attention (see Appendix D: Typical feedback given to students). Many of the summative multiple-choice exams are republished as formative exams a week or so after taking the test. This means that not only will they have received direction on their weak learning objectives but in many cases they get to see their answers again and indeed take the test (though the mark does not go forward)

Open Book Exams – All of these are marked online with comments given by the instructor against the marking criteria. All of these comments are released to the student once the exam has been moderated and approved.

Projects – all of the projects are marked online in a similar fashion to open book exams described above.

2. Rapid! – it’s no good months after the work has been completed
Department policy within Computer Science is for all course work to be marked & released within 3 working weeks. This is rarely met. My target is 72 hours and is always met (so I have sad life!)
3. Feedback to staff – staff need direction too

4. To encourage, to boost confidence

I’m a generous marker, fair but probably generous.
5. To recognise effort.

I do get frustrated with bureaucracy: assessment criteria, moderation, anonymity, plagiarism deterrents. Most people who concentrate on these issues are looking to watch their backs. If only they would put more effort into trying to improve their student’s learning, sigh!

Appendix A: Group Project Example

U.W.A. Department of Computer Science

CS12220 Group Project: Maria’s Market

Deadline: Friday December 10th 2004 2.30-3.30

This project is worth 25% of the CS12220 assessment.

Task:
To design, implement and test Maria’s Market
The aim of this project is to demonstrate your ability to work in a group of three people. The specification should be studied carefully - a top-down design must make the implementation fit in well with your group structure.

Maria, a retired Nun, has recently bought a new grocery shop where she sells produce to the local walkers passing her mountain retreat. Her colleagues have finally convinced her that selling clothes made out of old curtains is never going to be a real money-spinner. She has also been advised to seek out professional software engineers to develop her state-of-the-art system.

Maria’s son, Fritz, had a dabble at Java himself and wrote a half-complete class called Shop.java. She thinks that it will be financially beneficial if you use this system. You will find it as a separate attachment to this specification (when he finally stops singing up in the hills and gives it to her)

What to do

Here is your task – develop a system to help Maria manage her till.

Generally this is the sequence of events:

1. When Maria runs startUp she can add various goods to her system. Maria can add an item, set the price and set the stock level.

2. When Maria runs startTill, she adds the various moneys to her till specifying the name, value and quantity of each item (If she has 33 “10p pieces”, each of which is worth 10, she enters “10p piece”, 10, 33).

3. When she runs runTill, Maria can sell items. Customers put in their orders (Maria often sings how many cabbages, how many carrots, etc). The system then tells her how much to charge.

4. When she runs getChange, she tells the system how much of each denomination she has been given by the customer and the till tells her what to giveback.

5. When she runs getBalance it tells her what is left in the till and how much money she made during the day

Your code should be well designed, be readable, be well commented and nicely indented.

What to hand in

Hand-in materials (in a folder that fits into submission box in B59) should include:
· problem definition, discussion
· a definition of what each group member contributed to the project
· for each class: class diagram, interesting algorithms (if any), code (include javadoc style comments but you need not print javadoc)
· testing strategy, testing results (including one or two screen shots and instructions on how I could run your program)
· concluding discussion – what works and doesn’t, how you could improve it, etc.

(In addition all code should be uploaded in a zip file to Tweek)

Marks will be awarded for the design, the implementation and the testing of this assignment. Marking will be in line with the usual assessment criteria for project work as defined in Appendix R. Assessment Criteria for Development:

(http://www.aber.ac.uk/compsci/Dept/Teaching/Handbook/handbook.htm
The design may include where necessary, diagrams of classes and descriptions of algorithms.

The implementation code should include Javadoc comments at a level that would enable someone familiar with the java language to understand the operation of the program and the purpose of its objects, methods etc.

The program should be tested with sufficient test data to demonstrate that the code works and is reasonably robust. You should include one or two screen captures and also upload all your code as a zip file in Tweek. Also give me an honest list of what the program can accomplish and what remains to be done.

Plagiarism
Cases of plagiarism in student assignments are not taken lightly by the department, and the consequences of plagiarism by students can be severe. Please ensure that you understand what constitutes plagiarism and read the plagiarism notice from the course handbook or on the web and that you fill out the usual form:

 (http://www.aber.ac.uk/compsci/Dept/Teaching/Handbook/handbook.htm Section 5).

Hand-in.

In the postbox in B59 at the specified time. Please hand in materials as outlined above including printed code and diagrams in a folder. You need not print out all the Javadoc (save a tree).

Appendix B: Weekly Worksheet Example

Making a Christmas Calendar

Purpose

Practice with loops and method writing.

Steps to follow

Write a call Date which contains the method showMonth() to display a calendar for a particular month in the following format:

 January

	S
	M
	T
	W
	T
	F
	S

	
	
	1
	2
	3
	4
	5

	6
	7
	8
	9
	10
	11
	12

	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	25
	26

	27
	28
	29
	30
	31
	
	

Assume that the following parameters are passed to the method

String monthName;
// e.g. January

int daysInMonth;
// e.g. 31

int dayOfWeek;

// day of the week (1-7)

// that the month starts

// assume Sunday is 1

To display the above I would call showMonth(“January”, 31, 3) from a Demo class.

On completion

Please ask the demonstrators to check your work. Once happy please submit to Tweek any Java files that you have written.

Appendix C: Typical questions used in multiple choice
	Question 125 - Multiple Choice (8431)
	Mark Range: (-0.1% -> 0.3%)

	
Assuming the following definitions for the Queue class:

 protected int back = 0;

 protected int currentLength = 0;

 protected int front = 0;

 public void addItem(Object theItem)

 throws QueueExceptionOverflow

 {

 if (theItems.length == currentLength)

 {

 throw new QueueExceptionOverflow();

 }

 theItems[back] = theItem;

 // *** WHAT CODE GOES HERE ***

 currentLength++;

 }

Which is the missing line of code?

 a) back = back + 1;

 b) back = back % theItems.length;

 c) back = (back + 1) % theItems.length;

 d) back = (back % theItems.length) + 1;

 e) back = (back % currentLength) + 1;

	

	[image: image3.jpg]

1) a
	

	[image: image4.jpg]

2) b
	

	[image: image5.jpg]

3) c
	

	[image: image6.jpg]

4) d
	

	[image: image7.jpg]

5) e
	

Appendix D: Typical feedback given to students

Automated feedback on multiple choice work using Tweek Objectives

[image: image8.png]2 assessment_student_objectives - Microsoft Internet Explorer

Ble £t

<

Vew Favortes Tooks Help

O RNBG Pon @ 3% 5-DOH B

s) DAWA-OffineaydorPrsentaionsasssaent_sudent_cbjcivestowlt oo

Google -

Sewch - 9 Bhothded ¥ check - i options &

Module Code C512230
Module Name INTRODUCTION TO PROGRAMMING
Title 512230 First InClass test 2003
Assessment Passmark 40%
Your Score 87%

Congratulations you passed!

Failed Objectives
You may wish to address the following learming objectives to improve your score in the future:

« Object References - You should understand the idea of maintaining references to objects and feel
comfartable following such references through multiple objects. For example module.getStudent
(1).getaddress().getPostCade()

Gomposition of a Class - You should be able to demonstrate your understanding of the make-up of a class
appreciating the purposes of attributes, constructors and methods.
Invocation - You should be able to state exactly what happens when a method is called. You should be
able to clearly differentiate between formal and actual parameters,

|

3 1y Conputer

Manual feedback provided through Tweek Coursework
Really good design - A good effort on coding though I didn't feel you really got into the main part of the project. Ok, shows promise so keep at it!
Nice design, good effort, just ran out of time. Uncosted jobs would be best returned as a JobList from a method.
A good effort. I would like to have seem rather more lower level code dealing with the jobs – particularly uncosted jobs - rather than the mainly top level user interface code - but it shows understanding.

Appendix E: Example Open Book Examination

CS12230 Semester 1 Examination

January 2005

Time Allowed (2 hours)

There are a number of sub-parts to this exam. In the first part you are expected to concentrate on analysis and design aspects, whilst the second part is aimed at Java programming.

Project Description

You are asked to carry out a partial design, implementation, testing and evaluation of an appointment booking system for a Doctor’s surgery. The surgery is made up of two doctors (Dr. Michael and Dr. Brian), one nurse (Nurse Gladys) and two receptionists (Vyv and Deb). There are two options for a patient to contact the surgery, either by going to the surgery in person or by contacting the office by telephone.

The system you are to develop is to cover telephone enquiries:

· When a patient telephones the surgery a receptionist answers and the patient is asked if they want to make an appointment with either a doctor or a nurse. Each doctor’s appointment is expected to last 15 minutes, whilst a nurse appointment lasts 10 minutes. The receptionist identifies the patient (by entering name and date-of-birth, or NHS-number) and announces the next four appointments that are available. The chosen appointment is stored within the surgery’s electronic diary system. This links into a collection of Electronic Patient Records (EPR) that maintains details on all patients, their identity, health history, treatments, etc.

(The details of individual EPR records are not required for this implementation but will need to consider the retrieval of records by either name and date of birth, or NHS number)

· Having established an appointment, patients are asked if they want to describe their problem on the telephone and if this is the case, then the additional information is added to the diary. Patients can also call in to cancel appointments.

At any point during the day it is possible for a receptionist to list all possible appointments for the next day, or to list the next four available slots for either a doctor or nurse appointment. On request, the full information within the EPR system is backed-up to a file on the hard-disk of the computer system (the filename includes the current date).

a) On the paper provided sketch a detailed class diagram identifying the classes, attributes, and methods to support the system described above. It is not necessary to provide the set and get methods.

(20 marks)

[You can skip the above step and ask the invigilator for a class diagram. You will of course then lose the 20 marks available for that part of the question]

In the following sections, the term Java framework is used to describe a collection of Java source files that contain only the class specifications – that is files initially containing only the attribute and method declarations. No body code is required unless requested in later questions. Comments can be given but you will not be marked down for their absence.

All remaining questions should be answered online by submitting the final set of files to Tweek. Please submit individually rather than as a zip. You are not expected to identify which parts represent the answers to b, c, d or e. The examiner will do that!

Please turn over

b) Provide the java framework for the class diagram found under (a) above. You are not required to provide the set and get methods.

(20 marks)

c) Add the detailed code to your Java framework to implement the top level class (main program) giving the code required to execute the menu.

(20 marks)

d) Add the detailed code to your Java framework to obtain a patient record given both Name and Date-of-Birth.

(20 marks)

e) Add the detailed code to your Java framework for making a booking for a doctor.

 (20 marks)

Once complete please submit all your files to Tweek – under Coursework – CS12230

 “CS12230: January 2005 Exam - Answer Submission”.

Remember to click the final submission button!

As a backup, please email your files to mbr@aber.ac.uk with Subject: “Exam Submission”
Appendix F: Solution for Open Book Examination

[image: image9.png]- Design Studio

o S]] Fommem oo i
TS Projects. ™

=pa]

gf Set User proect

S

public Receptionisi(String)

private final int appointme

public AppointmentList get

private AppointmentList appaintments
public BookablePerson(Siring)
public boolean addAppointment(&ppointment)

i

private final int appoinmentLengih

privats Date dateOBirth
private String nhsNumber

private HealthProblemHistory history

private Appointment nexigppointment

public Patient(String)

public Patient(Siring, Date)

public Patient(Sring, String)

public void selDateOMirin(Date)

public Date getDateOBirth(

public void setNhsNumber(String)

public String gethinsNumber

public void sethextAppointment(&ppointment)
public Appointment getiextAppoiniment

private HealihProblem history]
private int nextFreeL ocation

public boolean addPrablem(Hel
public HealthProblem getProbig

/
LG bestpuon |

private Date date
private String description
private String treatment

~J
—

public Person(String)

<1

niLength

thextFreeAppoiniments()

\
JE—c). —

private Patient thePatients
private int nextFreeL ocation

privats Time time
private Date date

public Nurse(Sting) putlic EPRG) private Patient patient add
public void addPatient(Patienty B +Add
bl Paten gePatentSting) _ Omommems
public Patient getPatient(Siring, Date) private Appointment collection] il
private final nt appoinimentLength private final int defaultSize =
public Doctor(ting) public AppoinimenList(&)
public AppointmentList gethextFreeAppointments(int)
public boolean addéppainiment(&ppointment) i
public int getNumOfAppaintments() R
—Rers

public String toString)

/2 Compilation successful

o o VortoX Desgn S

12. Appendix G: Typical feedback given by students

Student Evaluations
I am very pleased that my average score on the student questionnaires is consistently above 4.5 out of 5; a figure that is admired by my colleagues. The real reward for the efforts that I put into my teaching are the comments made by my students in the questionnaires and at graduation. The following are typical:

 “The lecturer is a major part - his enthusiasm for programming was contagious.”

“Catered for everyone - nobody could get lost/confused with the work. Very well done and explained well.”

“Excellent class atmosphere, lectures always enjoyable but not at the expense of getting work done.”

“It would be hard to find a better or more enthusiastic and committed tutor than Mark.”

“Having Mark as a tutor has been a great advantage. I really enjoy them, even if they are at 9am on a Wednesday. He explains stuff very well.”

“Working with Mark is a much stronger way of being taught since he makes us get involved.”
“One of the strengths is that the lecturer is very involved with the students work and how they are progressing, and often goes over work again and again to make sure that we understand it. Mark also asks lots of questions in lectures which often keeps people paying attention.”
“I think Mark is one of the best lecturers I have ever had, but I do think we could have a bit more practical work, well more practical lectures maybe one worksheet for two weeks.”
“Best taught module, Mark talks with you instead of to you during his lectures.”
“Also I would like to make a comment on the tutor, Mark really made this model interesting, a fantastic teacher and role model, a real winner!! The shinning star of the department, I wish my other department was as helpful as the computer science dept!”
“Mark is by far the best of the lecturers this Semester. Each lecture has been a pleasure to attend, and I am now far happier with answering questions during lectures at least in part to Mark's "let's just pick on a random person to answer this question" method.”

� EMBED PBrush ���

8

[image: image12.png]

_1198068590.xls
Chart7

		project		project

		exam		exam

1998 (pre tests)

1999 (after tests)

Java 1 Results

63

67

41

52

Chart1

		project		project

		exam		exam

1998 (pre SETLAS)

1999 (after SETLAS)

JAVA 2 Results

63

67

47

57

Sheet1

						122						123						java 1

				projects		exam				p		e				p		e

		1998		59.5		44.5				66.9		37.5				63		41

		1999		69.7		49.9				64		54				67		52

																		java 2

		1998														63		47

		1999														67		57

		JAVA 1		project		exam

		1998 (pre tests)		63		41

		1999 (after tests)		67		52

		JAVA 2		project		exam

		1998 (pre tests)		63		47

		1999 (after tests)		67		57

Sheet1

		0		0

		0		0

1998 (pre tests)

1999 (after tests)

Java 1 Results

Sheet2

		0		0

		0		0

1998 (pre tests)

1999 (after tests)

Java 2 Results

Sheet3

		

		

_1198068591.xls
Chart6

		project		project

		exam		exam

1998 (pre tests)

1999 (after tests)

Java 2 Results

63

67

47

57

Chart1

		project		project

		exam		exam

1998 (pre SETLAS)

1999 (after SETLAS)

JAVA 2 Results

63

67

47

57

Sheet1

						122						123						java 1

				projects		exam				p		e				p		e

		1998		59.5		44.5				66.9		37.5				63		41

		1999		69.7		49.9				64		54				67		52

																		java 2

		1998														63		47

		1999														67		57

		JAVA 1		project		exam

		1998 (pre tests)		63		41

		1999 (after tests)		67		52

		JAVA 2		project		exam

		1998 (pre tests)		63		47

		1999 (after tests)		67		57

Sheet1

		0		0

		0		0

1998 (pre tests)

1999 (after tests)

Java 1 Results

Sheet2

		0		0

		0		0

1998 (pre tests)

1999 (after tests)

Java 2 Results

Sheet3

		

		

_1195027133

