
1

Lecture and Tutorial 17

Exception handling

• Typical problems
• try/catch; Catching Exceptions
• Checked and unchecked Exceptions
• throws, throw; Declaring and Throwing Exceptions
• (Writing own exception classes)
• Do’s and don’ts
• (Exercises next Tuesday)

M. Seisenberger: CS-171, Spring 2006



2

A first example

public class Example1{
public static void main(String[] args){

int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);

int c = a / b;
System.out.println("The quotient is "+c);

}
}

M. Seisenberger: CS-171, Spring 2006



3

What can go wrong?

M. Seisenberger: CS-171, Spring 2006



4

Exceptions
When a Java program performs an illegal operation (division by zero,
access an array at a position which does not exist, etc) an event
known as exception happens. When an exception occurs, we say an
exception is thrown.

Examples:
• ArithmeticException, ArrayIndexOutOfBoundsException,

NumberFormatException
• IOException, FileNotFoundException, etc

M. Seisenberger: CS-171, Spring 2006



4

Exceptions
When a Java program performs an illegal operation (division by zero,
access an array at a position which does not exist, etc) an event
known as exception happens. When an exception occurs, we say an
exception is thrown.

Examples:
• ArithmeticException, ArrayIndexOutOfBoundsException,

NumberFormatException
• IOException, FileNotFoundException, etc

Usually, when an exception occurs, the program will terminate
immediately. However, Java provides ways to detect that an
exception has occurred. This process is called exception handling.

M. Seisenberger: CS-171, Spring 2006



5

Catching Exceptions

public class Example2 {
public static void main(String[] args) {

int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
try {

int quot = a / b;
System.out.println("The quotient is "+ quot);
}

catch (ArithmeticException e){
System.out.println("0 not allowed as 2nd input");

}
}

}

M. Seisenberger: CS-171, Spring 2006



6

Catching Exceptions

• try block: Method calls which may cause an exception
can/must be put in a try block.

• catch block: the catch block indicates what should happen in
case an exception occurred.

Remarks:
• Variables defined in the try block are only local.

Better: Define and initialise the variables outside the try block.

• If you want that the program terminates, use
System.exit(-1) in the catch block. The nonzero value -1
indicates that the program terminates abnormally.

M. Seisenberger: CS-171, Spring 2006



7

And what is e? Or about accessing info on
an exception

• When an exception occurs, Java creates an exception object
which (was called e in the last example and) contains information
about the error.

• Every exception object contains a string message, which can be
used rather then printing your own message.

try {
quot = a / b;

}
catch (ArithmeticException e){

System.out.println(e.getMessage())
}

M. Seisenberger: CS-171, Spring 2006



8

Valid inputs
Note that in the preceeding example, the Arithmetic Exception can be
avoided by using a case distinction.

More difficult it will be when we deal with user input and the question
whether a valid number has been entered. Here, definitely exception
handling is appropriate.

try {
a = Integer.parseInt(str)

}
catch (NumberFormatException e){

// Handle exception
}

M. Seisenberger: CS-171, Spring 2006



9

public class Example3 {
public static void main(String[] args) {

try {
int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
}
catch (NumberFormatException e){

System.out.print("NumberFormatException: ");
System.out.println(e.getMessage());

}
catch (ArrayIndexOutOfBoundsException e2){

System.out.println("Give enough arguments");
}

}
}

M. Seisenberger: CS-171, Spring 2006



10

Or for the user’s convenience

public class Example4 {
public static void main(String[] args) {

Scanner in = new Scanner(System.in);
while (true){

try {
System.out.println("Please enter number");
String str = in.next();
int a = Integer.parseInt(str);
break;

}
catch (NumberFormatException e){

System.out.println("Not an integer, try again");
} ...

M. Seisenberger: CS-171, Spring 2006



11

Unchecked and checked Exceptions

• By now we looked only at so-called unchecked exceptions,i.e.
exceptions which can be ignored by the programmer (remember: our
first program Example1 compiled with no problems). Unchecked
exceptions extend the classes RuntimeException and Error .

M. Seisenberger: CS-171, Spring 2006



11

Unchecked and checked Exceptions

• By now we looked only at so-called unchecked exceptions,i.e.
exceptions which can be ignored by the programmer (remember: our
first program Example1 compiled with no problems). Unchecked
exceptions extend the classes RuntimeException and Error .

• Checked Exceptions are exceptions which we can’t ignore; the
compiler will produce an error if we fail to use a try block and a
catch block to handle the exception. In other words whenever you
call a method that ‘throws’ a checked exception, then you must tell
the compiler what to do, if it ever is thrown. Typical example of a
checked exception: FileNotFoundException.

M. Seisenberger: CS-171, Spring 2006



12

Declaring exceptions: The throws clause
We said that checked exceptions must be caught. But that was not
the full story. When ever an exception can occur inside a method we
have two choices:

• Handle the exception within the method (catch )
• Declare that the method throws the exception.

The latter means that the method calling our method is now
responsible for handling the exception.
Which technique is better? It depends on whether we can deal with
an exception within a method in a meaningful way or not.

Note, in general, each method must state the types of checked
exceptions it might throw.

M. Seisenberger: CS-171, Spring 2006



13

Throwing exceptions: the throw statement
Finally, how to throw exceptions? How to create an exception object?
Have a look at the following example in which we want to withdraw
some money, however only if there is enough of it.

public void withdraw(int amount){
if (amount > balance){

IllegalArgumentException exception =
new IllegalArgumentException

("Amount exceeds balance");
throw exception;

}

or in short:
throw new IllegalArgumentException(<your message>);

M. Seisenberger: CS-171, Spring 2006



14

finally
Occasionally you need to take some action whether or not an
exception is thrown. E.g. you have opened a file, an exception occurs
and you want to close the file first before dealing with the exception.

FileReader reader = new FileReader(filename);
try{

Scanner in = new Scanner(reader);
readData(in);

}
finally {

reader.close();
}

When the try block is completed, then the finally block will be

M. Seisenberger: CS-171, Spring 2006



15

executed. If an error occurs while reading the data, then first the
finally block will be executed, i.e. the file is closed and then the
exception is passed to its handler.

Similarly, we can catch an exception, do some action, then then
‘rethrow’ the exception.

try{
<statements>

}
catch (AnException e){

<do some actions>
throw e;

}

M. Seisenberger: CS-171, Spring 2006



16

Summary: Do’s and Don’ts

• Throwing exceptions is better than just passing a boolean flag
whether an operation was successful. (The calling method simply
might forget to check the flag.)

M. Seisenberger: CS-171, Spring 2006



16

Summary: Do’s and Don’ts

• Throwing exceptions is better than just passing a boolean flag
whether an operation was successful. (The calling method simply
might forget to check the flag.)

• Do throw specific Exceptions (and not just a RunTimeException
if you mean something more specific).

M. Seisenberger: CS-171, Spring 2006



16

Summary: Do’s and Don’ts

• Throwing exceptions is better than just passing a boolean flag
whether an operation was successful. (The calling method simply
might forget to check the flag.)

• Do throw specific Exceptions (and not just a RunTimeException
if you mean something more specific).

• Throw early, Catch late. (It is better to declare that a method
throws a checked exception than to handle the exception poorly.)

M. Seisenberger: CS-171, Spring 2006



16

Summary: Do’s and Don’ts

• Throwing exceptions is better than just passing a boolean flag
whether an operation was successful. (The calling method simply
might forget to check the flag.)

• Do throw specific Exceptions (and not just a RunTimeException
if you mean something more specific).

• Throw early, Catch late. (It is better to declare that a method
throws a checked exception than to handle the exception poorly.)

• Don’t use Error handling instead of ordinary control structures
(for cases which can be forseen).

M. Seisenberger: CS-171, Spring 2006



16

Summary: Do’s and Don’ts

• Throwing exceptions is better than just passing a boolean flag
whether an operation was successful. (The calling method simply
might forget to check the flag.)

• Do throw specific Exceptions (and not just a RunTimeException
if you mean something more specific).

• Throw early, Catch late. (It is better to declare that a method
throws a checked exception than to handle the exception poorly.)

• Don’t use Error handling instead of ordinary control structures
(for cases which can be forseen).

• And of course, do not forget to handle the thrown exceptions.

M. Seisenberger: CS-171, Spring 2006


	

