
Frontispiece

The following is an attempt to document PD1 – Programming and Design 1. and gave a flavour of how it is taught along with a lot of supporting documentation.  The aim is to provide an accurate picture of the course and it should be read in conjunction with A Journal Portfolio. 
Scene Setting

 I work at The University of Bolton. One of the youngest British universities, it has around 8,000 students, including international students from more than 70 countries.  
80% of our students come from Bolton and the North West of England, with around 8% from countries outside the UK. 50% are part-time, and more than 60% of our first-year, full-time undergraduate students are mature students.

We also have a higher-than-average proportion of disabled students, and one of the country’s most ethnically diverse student populations, with around 13% of home students from ethnic minority communities. 

I work in the Department of Computing and Electronic Technology (CE ) which has undergraduate and postgraduate courses covering such diverse topics as Computing, Business Computing, Internet Systems, Games Design and Programming, Multimedia, Software Development,  Networking, and Electronics.

CET is arranged into three academic areas: 

· CIT – Computing & Internet Technology 

· CIS – Computing & Information Systems 

· ECE – Electronic & Computer Engineering 

There’s a lot of overlap and module sharing, but in general: 
· CIT is computing with a blend or integration of soft and hardware. 

· CIS covers computing that has a commercial software analysis, design and development focus. 

· ECE is about engineering design and development of Electronic component.
I work mostly in CIS, mostly teaching programming and dreaming of a lottery win. I came into teaching in the late eighties, working part-time in Further Education Colleges in Sheffield’s then-new tertiary college system. This became full-time work at Doncaster College and from there I made the transition to Higher Education at what was then Bolton Institute, now Bolton University. It’s here I attempt to teach programming. 
Philosophy Of Teaching - general

In general, my philosophy of teaching is based on the fact that I’m paid to teach the students a particular discipline; given a certain basis of ability and commitment, if they don’t master it, then it’s probably my fault. I see it as a contract between me and them – given a minimum level of student ability and application, I’ll get the subject through to them. If they don’t understand it could be they’re dumb – but it could be me. And while I can’t un-thick them, I can do something about me and the way I teach. 

Having said that, while I may be good-looking, I’m not psychic – I need feedback. A lot of my time is spent encouraging feedback.

Philosophy Of Teaching -  ITP

I treat teaching introductory programming rather like telling a story or, when I get carried away, a drama. To me, programming education is a narrative. Each lecture/tutorial is a chapter advancing the plot, each structure a character whose complexity and interactions with other structures is slowly revealed and developed as themes running through the course. The programmer becomes the hero facing a series of problems, their resolutions being revealed as the plot (course) advances. There are even villains – goto, a heavily-anthropomorphised compiler  - and patron saints –  Dijkstra. Subplots include design and testing.

In a well-written narrative everything is there for a purpose, to move the plot onwards. The same should be true of an introductory programming course. In a narrative there must be an internally consistent world whose rules may be arbitrary but must be obeyed (a compiler if ever I heard of one). There must be some problem and resolution – “What if I don’t want my program to do that?” – try IF. And possibly dialogue – a program is a dialogue with the compiler with comments as knowing asides to the reader. And, of course, cliff-hanger endings at the end of episodes – “So what are those brackets for? Find out next week in the Perils of Programming”

Also I’m not under oath – I will happily lie to make things simpler (with the saving grace that I will correct the lie at a later date). Nor, when I’m telling the truth, do I tell the whole of the truth - I’m coming more and more to see the benefits of teaching a reduced instruction set. If you only need WHILE loops, why use anything else? (Of course there are good reasons for FORs and REPEATs  but why teach three different kinds of loops in one lecture? Get to know the fundamental one first, then introduce the others to resolve a problem.) Recently I’ve been explaining less and introducing things by stealth; amazingly it seems to work.

And try not to teach syntax. I teach solutions to problems (which may involve a new syntactical structure but it’s there for a purpose). I try to avoid the temptation of showing off - “And you can also…” – if they don’t need to know it at a particular time, they shouldn’t be told it until they do need it.

What’s in PD1 

The module my course portfolio will be based on is Programming And Design 1 (PD1) the official specification of which can be found in Appendix A. It’s an old-fashioned module that’s coming to the end of its life. In brief it covers:

· Design concepts

· Introduction to pseudocode and its notation.

· The three control constructs – sequence, selection and iteration.

· Specifying the data types to be used.

· One dimensional arrays – not in original spec

· value parameters – not in original spec
· Programming in a well-structured language 

· Including simple data types, expressions, statements, control structures,

· and functions and procedures.




· Testing the design and the code

· Selecting test data to test the design

· Predicting the output of the test

· Constructing a dry run chart with which to effect the test

· Walkthroughs and inspections

An important aspect of the module is that it is used as an introduction to the culture of studying for a degree. The students are not just given coursework, they’re taught what’s meant by coursework, given strategies/advice/warnings about what’s expected and how to meet those expectations.  They’re told how to use lectures, practicals, ask questions etc. Experience shows that we can’t assume they know all this prior to arrival.

At its most basic, the point of Programming and Design 1 (PD1) is to prepare the students for Programming and Design 2 (PD2).

What I teach

I’d like to think that I am teaching students:

· how to design simple programs;

· how to implement simple programs;

· how to test simple programs;

· simple syntactical structures in C++;

· problem-solving;

· the basics of university assessment.

As I list my aims, doubt seeps in. Appendix B gives a 12 week plan to cover the syllabus whilst appendix C gives a plan for one lesson. Keen-eyed readers may spot a discrepancy between the plan and what actually happened. This is called Life.
How I teach

I apply a reduced instruction set approach to teaching, covering only the most basic structures – preferably after a “problem” has occurred which they can help solve.

Fed up of using two mutually excusive ifs?

Why not use our new and improved if..then..else?

I leave out as much syntax as possible; I put in as much about design, layout, self-documenting code as early and as informally as possible. I try to use a stealth approach, introducing things like pseudocode without saying what it is – of course, later I firm the details up:

 Do you know that £4 is less than the minimum wage?

Becomes

Can you read ( hourlyWage < minimumWage ) and understand it?

What about the order? What gets taught early, what can safely be left until later? 

Duplicated syntax gets left out till later – I mean, how many variants of if statements do you need? Of course, you have to tell them about the alternative alternatives but that came come later after they’ve grasped the uses of the more fundamental statements. I’m trying to explain the process of creating programs (as opposed to code).

What I do try to do is introduce concepts informally before their time; point out limitations with what we’ve done.  I also inform my students that I haven’t taken an oath to tell them the whole truth: I  may be economical with the truth. I do, however, promise they’ll know the truth eventually.

So, what gets taught early are the only things I can’t safely leave until later.

I don’t use a text book. I’ve learnt that what I think is a good book, students think is rubbish and vice versa. I tell my students to just use my notes for the first few weeks then look at the library and, if they find a book that explains something to them better than I did, that’s the one for them.

( Having said that I’d recommend Strunk and White, Legard, The Simple Subs Book, anything about writing code or prose whch emphasises clarity and conciseness allied to thought and planning. Oh, and Dijkstra and Steve McConnell. )
Assessment
I use both formative and summative assessment. Examples of summative assessment are given in Appendix D, examples of formative assessment in Appendix E.   Quality Assurance procedures can be found at www.bolton.ac.uk.
Endpiece
If you’ve read this far and waded through all the appendices, well done. You now have a fairly accurate picture of PD1, which was the aim of this portfolio.  And you’ll probably be thinking of all sorts of improvements that can be made to PD1.  Have a look at A Portfolio Portfolio.
Appendix A
	HOST FACULTY
	
	   HOST SUBJECT GROUP
	CET


	1. MODULE TITLE/CODE
	PROGRAMMING AND DESIGN 1
	CST1200




	2. MODULE AUTHOR
	SUE STOCKLEY 

	(and contributors)
	DR GERARD EDWARDS


	3. Level*
	H1
	4. Credits
	20
	5. Type*
	STAN
	6. Length*
	1


	7. HOST PATHWAY
	COMPUTING


	8. PATHWAY MODE(S)

(for pathway being considered)
	SINGLE
	MAJOR
	JOINT
	MINOR
	
	10.  ELECTIVE (E)*

	9. PATHWAY CORE/OPTION (C/O) (for pathway being considered)
	C
	C
	C
	
	
	


	11. PREREQUISITE MODULE(s)               NONE


12. MODULE AIMS

	This module is a first insight into computer programming using the language C++.  The student will be taught not only the coding aspect of the language but also the design and testing standards necessary to make each software problem language independent.  The module assumes no prior programming experience and, as such, starts with simple programming statements before expanding to include selection, iteration, and functions.  On successful completion of this module, students will be well prepared for other programming courses, particularly Programming and Design II.




13. EXPECTED STUDENT LEARNING OUTCOMES.
	LEARNING OUTCOMES
	ASSESSMENT CRITERIA

	SUBJECT KNOWLEDGE AND UNDERSTANDING

	By the end of the module the learner will be able to

( Design, test and code relatively simple programs by using the selection, sequence and iteration concepts using pseudocode and the programming software package.
	The learner can

· Understand how to edit, compile and link code using packages at Bolton Institute

· Design, test and code programs in the relevant software (C++).




ASSESSMENT METHOD(S) AND RATIONALE

The learning out come will be assessed in both of the two coursework assignments.

	COGNITIVE SKILLS IN THE CONTEXT OF THE SUBJECT

	By the end of the module the learner will be able to

· Know how to separate tasks into individual functions and design and code accordingly.


	The learner can

· Know when to employ sequence, selection and iteration

· Identify when to use a particular type of loop

· Consistency of design with code.




ASSESSMENT METHOD(S) AND RATIONALE

The learning out come will be assessed in both of the two coursework assignments.

	SUBJECT SPECIFIC PRACTICAL/PROFESSIONAL SKILLS

	By the end of the module the learner will be able to

· Use a programming software environment to code solutions

· Use basic software development  environment functionality 
	The learner can

· Make effective use of programming concepts

· Justify why certain methods of programming were chosen

· Use program editing, compiling and linking skills within software development environment 




ASSESSMENT METHOD(S) AND RATIONALE 

The learning out come will be assessed in both of the two coursework assignments.

	OTHER SKILLS (EG. KEY/TRANSFERRABLE)

	By the end of the module the learner will be able to

· Write technical reports including screen shots of program output.


	The learner can

· Use a word processing package to achieve an acceptable standard of presentation

· Write basic code to meet requirements




ASSESSMENT METHOD(S) AND RATIONALE

These outcomes will be assessed by both coursework assignments. The learner will be expected to achieve high standards of presentation, including standards of  written English, and to demonstrate effective use of  information sources.

	Item No.
	Type*
	Description*
	% Mark
	Item No.
	Type*
	Description*
	% Mark

	1
	CW
	Programming solution
	50%
	
	
	
	

	2
	CW
	Programming solution 
	50%
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	


14. SYLLABUS CONTENT

	1 Design concepts

Introduction to pseudocode and its notation.

The three control constructs – sequence, selection and iteration.

Specifying the data types to be used.

2 Programming in a well-structured language 
Including simple data types, expressions, statements, control structures,

and functions and procedures.

3 Testing the design and the code

Selecting test data to test the design

Predicting the output of the test

Constructing a dry run chart with which to effect the test

Walkthroughs and inspections.



15. LEARNING AND TEACHING STRATEGY, METHODS AND TIME ALLOCATIONS (RELATE TO LEARNING OUTCOMES)

	A mixture of class-room based (2 hours), and computer laboratory based  (1 hour), both in rooms which allow demonstrations using a computer linked to the Institute network.

The learning hours for this module are made up of the following components:

· Lectures                                             14 x 2 hours  =  28

· Practicals                                           14 x 1 hours  =  14

· Background reading                         13 x 3 hours  =  39 

· Background practical work              13 x 3 hours  =  39

· Coursework                                        2 x 30 hours  =  60

 


16. INDICATIVE READING (up to 15 titles with date of publication)

	1. Introduction to Computer Science with C++ 2nd Edition
Authors: K. Lambert, D. Lance and T. Naps

Publisher: Brooks/Cole Publishing
Date: 2000

ISBN: 053436893X

2. Fundamentals of C++: Understanding Programming and Problem Solving 2nd edition
Authors: D. Nance and K. Lambert

Publisher: Course Technology

Date: 2003

ISBN: 0314204938




17. MODULE VALIDATION DATE (to be entered by Academic Affairs)

	


APPENDIX B

week 1 simple output

They have to start somewhere and “hello world” is as good as anything else. 

let’s get the computer to do some work.

compiler/ide 

simple program

syntax errors

magic

string literals

endln

brackets etc – guide to punctuation?

cout  numeric literal

cout  expressions

simple operators

week 2 simple sums and variables

simple functions – power of names

names we use instead of numbers

assignments

integer arithmetic

integer variables – labels for values that can change

the joy of error messages

int

=

+ - * /

void identifier() – magic

identifier patterns – not the full rules

week 3 more flexible programs

hard-wired assignments limit programs usefulness

getting things from the keyboard

whole numbers not enough

code reading

floats

comparisons operators - informal

cin

magic numbers const self-documentation
week 4 the start of selection

comparison operators firmed up 

concepts of true or false

point out sequence/determinism

if (       )

< <= > >+  == !=

week 5 repetition

sometimes we need to do things over and over

another type of variable

identifiers – meaningful names/rules

while (   )

loop body

char

week 6 guarding input

so far we’ve assumed correct input

now our programs are getting more complicated

pseudocode

do..while

mugtraps

week 7 

if…else

bools

scope – local global

stubs

week  8  dealing with the truth

joint conditions

bools

functions returning values 

||

&&

!

week 9  dealing with collections of data

linear arrays

for loop

week 10 
simple testing plans
week 11  

value parameters

dry runs

week 13    

inspections 

switch 

APPENDIX C

lecture 10 part 1

	topic
	 reason

	pdl – informally
	Need design language as  programs get harder

	Prescribe reading 

pseudocode notes
	Try to get them to do independent study

But I won’t trust it

	Check for loop knowledge
	Supposed to have done it with z


lecture 10 worksheet

	topic
	 reason

	pseudocode problem 
	hardwired loop

	pseudocode problem
	user controlled

	design to code
	see if they grasp the link

	program analysis
	show need for arrays


lecture part 2

	topic
	 reason

	linear arrays
	they’ll need them

	practical
	they’ll need it explained

encouragement


practical

	topic
	 reason

	stubs
	they’ll need it explained

encouragement


journal actions 10

	question
	 reason

	1  motivation
	point out they have to study

	2 altering a program
	move from passive to active

	3 coding from a design
	mapping from design to code

and encourage lecture work

	4 code reading
	hope to encourage code reading

guess at topic not covered

	5 function design
	coding plus idea of a function as 

a unit of computation

	6 research
	try to encourage independent work

	7 layout
	my King Charles’s head

	8 design decisions
	try to make them think

hope they recognise simplicity


APPENDIX D
Some examples of summative assessment

I like to think that my assessments are:

1 Easy to mark / respond to

2 Clear – students can understand what they have to do

3 Multi-layered - a spectrum of challenges

I’ll use the above  numbers to mark places where I feel the assignment rubric matches the beliefs.

The assignment was :

On being made redundant, Pete Bibby has to take up a new career as a fruit seller. Rather than sell the fruit in pounds or kilos, he prices them as follows:

· Apples - 40 pence each

· Oranges  - 35 pence each

· Pears – 30 pence each

· Lemons - 25 pence each

He doesn’t sell any other types of fruit.

Being old and feeble he’s not very good at calculating the customers’ bills. Your job is to help him by writing a program that will do the job for him.

There follows the specification for 3 different programs. You can choose which to attempt. You will only attempt ONE program.   3
3 2 1 

Program 1

The first program you will do the following:

1) display a menu which will allow the user to pick a particular kind of fruit (eg lemon);

2) once a fruit type has been chosen, the program asks for how many of that 

3) the user can then select another type of fruit (eg oranges), enter number of pieces bought (eg 6) and carry on like this until they choose a finish option;

4) the program then displays an itemised bill for that customer onscreen and then ends.

The bill might look something like this:

 Oranges            5 @  35     1.75

  Lemons            3 @  25      0.75

                            Total         2.50

You may assume sensible input for program one.

Program 2

The second program does all of the above but also:

5) allows the user to calculate the bill for another customer, and then another and so on, keeping on doing this until the user chooses to stop entering data;

6) at this point the program displays the final total cost of the all amounts of fruit sold that day and the money required per type of fruit and in total

eg

Apples   10 @ 40   =  4.00

Oranges   5 @ 35   =  1.75

Pears        3 @ 30   =  0.90

                 Total        =  6.65

7) guards against senseless input eg -2 pears.

Program 3

The third program does all of the above but also allows this special offer:

8) if the user buys 5 or more  different types of fruit  then each piece of fruit is 5p cheaper.

   Eg if the customer buys 3 lemons,  4 apples, and 1 pear, then they’ve bought 8 pieces of fruit and hence the price of each piece goes down by 5 pence – oranges are 30, apples 35 etc;

9) the customer bill and the final total should now deal with the above savings.

NOTE: You can assume customers who don’t change their mind – ie when they ask for 3 oranges, they don’t later say “oh, can I have two more?”.

You only have to write one of the above programs (don’t hand in three!) Your program will be written in C++ which must compile on one of the compilers available here at the institute.

I will be looking for:

1) clear, well-written, well laid-out, self-documenting code (eg  comments, meaningful identifiers);

2) code that does the job in a logical, lucid, easily-understood manner;

3) code written to standards ( eg white space, indentation );

4) code that is easily modifiable (you may be asked to do this);

5) code I don't have to solve.

The assignment is due in at 3:30 pm Monday 28th November 2005. It can be handed in personally to Pete Bibby at the practical or time-stamped at the Programme Office C2-5. 

Be aware that this must be your own work. You will be asked to demonstrate your program and you must be able to explain each part of it (the “oral”). Failure to do so will result in considerable loss of marks. 

3 2 1 

As a general guide to marking, assuming that the oral has been completed successfully, and the code is handed in on time and meets points 1-5 above:

3  source code ( to standard ) for program 1; 

2.2 source code ( to standard ) for program 2 ;

2.1 source code ( to standard ) for program 3 ;

1  source code ( to standard ) for program 3, making full use of the techniques taught to make the programs easy to understand and easy to modify;  a piece of work which  could be distributed as an example of  source code. 

Deliverables

You will hand in a legible, wordprocessed document which has as a header (or footer) your name, user number and the page number. This will consist of a listing of your source code for ONE of the above programs.  Please ensure your work is neatly labelled. If I have to “solve” what you hand in, marks will be lost. 

You will keep the wordprocessed document and source code available on disc. Do NOT hand this disc in. This may be needed and failure to produce it when asked will result in failing the assignment. 

As well as the assignment brief the students also get a self-assessment sheet which they fill in and hand-in. I use it to help mark the scripts and give feedback (comparing what they think they’ve done with what I think is done is an interesting and fruitful exercise). 

	PD1 1st Assignment Analysis Sheet
	PROGRAM     1     2      3    circle as appropriate
	Name:                                                    User No 

	
	
	

	1   2
	Student:
	Lecturer

	Clearly labelled
	Yes /  No 
	Yes /  No 

	Clearly, logically laid out
	Yes /  No 
	Yes /  No 

	Sensible, clear indentation
	Yes /  No 
	Yes /  No 

	White space
	Yes /  No 
	Yes /  No 

	Useful comments
	Yes /  No 
	Yes /  No 

	Meaningful identifiers
	Yes /  No 
	Yes /  No 

	functions used sensibly
	Yes /  No 
	Yes /  No 

	Relevant use of data types
	Yes /  No 
	Yes /  No 

	Lack of magic numbers
	Yes /  No 
	Yes /  No 

	Clear, easy to understand
	Yes /  No 
	Yes /  No 

	Logical solution
	Yes /  No 
	Yes /  No 

	Easy to modify
	Yes /  No 
	Yes /  No 

	mugtraps
	Yes /  No 
	Yes /  No 

	
	
	

	Program 1     1  2  3
	
	

	easy-to-use menu
	Yes /  No 
	Yes /  No 

	itemised bill
	Yes /  No 
	Yes /  No 

	
	
	

	Program 2     1  2  3
	Yes /  No 
	Yes /  No 

	>1 customer
	Yes /  No 
	Yes /  No 

	mugtrapped
	Yes /  No 
	Yes /  No 

	final costs
	Yes /  No 
	Yes /  No 

	
	
	

	Program 3   1  2  3
	
	

	special offers
	Yes /  No 
	Yes /  No 

	
	
	

	
	
	

	Comments
	
	


APPENDIX E
Some examples of  formative assessment

I like to think that my assessments are:

1 Easy to mark / respond to

2 Clear – students can understand what they have to do

3 Multi-layered - a spectrum of challenges

I’ll use the above numbers to mark places where I feel the assignment rubric matches the beliefs.

Each week I send the students a word file which they mess around with and send back. It’s given the rather grand title of “journal”. See the accompanying files for more about the journal.

The example I’m using is:

Add your answers and feedback to this Word document and send it as an attachment to me.. Your email subject must read:

YOURNAME JOURNAL WEEK 4
NB you replace YOURNAME with your name!

It must arrive by 10 am Monday 31 October at the latest.

Note: if you email me about anything else, please fill in the subject. It helps me prioritise.

Fill in the following:

My name is:

My username is:

	question
	 How I got on

	1  fault finding
	

	2 booleans
	

	3 design
	

	4 data
	

	5 programming
	

	6 thinking
	


1 2 3 

	Code number
	What it means

	0
	didn’t attempt

	1
	easy / confident

	2
	challenging / not easy but can do

	3
	very difficult/ not confident

	4
	Impossible / no idea


Exercises/Questions:

1 2 3 

Bolton University would like to assure the public that no students were harmed during the making of this journal. 

1.  What's  daft about this? 

#include <iostream.h>

int age;

bool canVote = false;

bool  cannotVote = true;

void getAge();

void getAge()

{


cout << "enter your age" << endl;


cin >> age;

} // end of getAge

void main()

{


getAge();


if ( canVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can vote" << endl;


} // end of if


if ( cannotVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can't vote" << endl;


} // end of if

} // end of main

	What’s daft is

          


2

“You don’t need Boolean variables!”  Is this true or false. If true, why is it true?

	Answer here




3

Sketch out a program which will ask for a users age and gender ( male and female ) and tell them whether they can retire. The rule for retirement is that women retire at 60, men at 65.

4. List out some of the variables you might use in the above program.

	I might use these variables:




5. Write a program which will take in two numbers and tell you which, if any, was the greater.

	Paste your program in here:




6. Have a look at prog4h.cpp. How would you check it works?

	To check it works I would…




Reflection – where you write about your experience of the lessons. 1  

You might like to consider things such as:

· Why is he going so slow?

· Why is he going so fast?

· Do I know what the lecturer’s talking about?

· Which bits might I need help on?

· Am I keeping up?

· should I ask for help?

	Please repeat what you said about:




NOTE: All reflection in a journal is private between lecturer and student. It’s also optional. But you really should do it if you can.
Following are two anonymous responses to this journal, used with permission.

1

Add your answers and feedback to this Word document and send it as an attachment to me. Your email subject must read:

YOURNAME JOURNAL WEEK 4
NB you replace YOURNAME with your name!

It must arrive by 10 am Monday 31 October at the latest.

Note: if you email me about anything else, please fill in the subject. It helps me prioritise.

Fill in the following:

My name is: 

My username is:
	question
	 How I got on

	1  fault finding
	1

	2 booleans
	1

	3 design
	1

	4 data
	1

	5 programming
	1

	6 thinking
	1


	Code number
	What it means

	0
	didn’t attempt

	1
	easy / confident

	2
	challenging / not easy but can do

	3
	very difficult/ not confident

	4
	Impossible / no idea


Exercises/Questions:

Bolton University would like to assure the public that no students were harmed during the making of this journal. 

1.  What's  daft about this? 

#include <iostream.h>

int age;

bool canVote = false;

bool  cannotVote = true;

void getAge();

void getAge()

{


cout << "enter your age" << endl;


cin >> age;

} // end of getAge

void main()

{


getAge();


if ( canVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can vote" << endl;


} // end of if


if ( cannotVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can't vote" << endl;


} // end of if

} // end of main

	What’s daft is

Even though it uses Booleans which is a good thing, there are no values within the program. This means that whatever age the user enters, the program will not know which if statement to run as there is no values within the program to determine this.

          


2

“You don’t need Boolean variables!”  Is this true or false. If true, why is it true?

	Answer here

True. As long as you have got the correct values within the appropriate if statements, you don’t need Booleans to determine these. Booleans are generally used to make your program code look a bit more professional.


3

Sketch out a program which will ask for a users age and gender ( male and female ) and tell them whether they can retire. The rule for retirement is that women retire at 60, men at 65.


· Get Users Age

· Get Users Gender

· If  (Gender = “Male”) and (Age >= 65)


“You can retire”

· If  (Gender = “Male”) and (Age < 65)


“You can’t retire”

· If  (Gender = “Female”) and (Age >= 60)


“You can retire”

· If (Gender = “Female”) and (Age < 60)


“You can’t retire”

4. List out some of the variables you might use in the above program.

	I might use these variables:

Age

Gender


5. Write a program which will take in two numbers and tell you which, if any, was the greater.

	Paste your program in here:

//progIsOneNumberGreaterThanTheOther.ccp

//This program will take two numbers and tell the user which number is the greatest

#include <iostream.h>

int first; //stores the first number

int second; //stores the second number

void getFirstNumber();

void getSecondNumber();

void getFirstNumber()

{


cout << "Enter a number" << endl;


cin >> first;

} // end of getFirstNumber()

void getSecondNumber()

{


cout << "Enter another number" << endl;


cin >> second;

} // end of getSecondNumber()

void main()

{


getFirstNumber();


getSecondNumber();


if (first > second)


{



cout << first << " is greater than " << second << endl;


} // end of if


if (first < second)


{



cout << second << " is greater than " << first << endl;


} // end of if

} // end of main()




6. Have a look at prog4h.cpp. How would you check it works?

	To check it works I would…

Run the program twice. On the first time, I would enter 18 as my age. On the second time, I would enter 17 as my age. This would test if the if statement works properly as 18 should say ‘At 18, you can vote’ and 17 should say ‘At 17, you can’t vote’. This is testing the boundary of the if statement.


Reflection – where you write about your experience of the lessons.
You might like to consider things such as:

· Why is he going so slow?

· Why is he going so fast?

· Do I know what the lecturer’s talking about?

· Which bits might I need help on?

· Am I keeping up?

· should I ask for help?

	Please repeat what you said about:




NOTE: All reflection in a journal is private between lecturer and student. It’s also optional. But you really should do it if you can.
2 

Add your answers and feedback to this Word document and send it as an attachment to me. Your email subject must read:

YOURNAME JOURNAL WEEK 4
NB you replace YOURNAME with your name!

It must arrive by 10 am Monday 31 October at the latest.

Note: if you email me about anything else, please fill in the subject. It helps me prioritise.

Fill in the following:

My name is: 

My username is: 

	question
	 How I got on

	1  fault finding
	1 made a comparison to see what was missing

	2 booleans
	1

	3 design
	1

	4 data
	2 I’m not sure about the answers

	5 programming
	2 tried to use Boolean variables initially

	6 thinking
	1 ran the program to confirm this


	Code number
	What it means

	0
	didn’t attempt

	1
	easy / confident

	2
	challenging / not easy but can do

	3
	very difficult/ not confident

	4
	Impossible / no idea


Exercises/Questions:

Bolton University would like to assure the public that no students were harmed during the making of this journal. 

1.  What's  daft about this? 

#include <iostream.h>

int age;

bool canVote = false;

bool  cannotVote = true;

void getAge();

void getAge()

{


cout << "enter your age" << endl;


cin >> age;

} // end of getAge

void main()

{


getAge();


if ( canVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can vote" << endl;


} // end of if


if ( cannotVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can't vote" << endl;


} // end of if

} // end of main

	What’s daft is that no comparison indicators have been included for the Boolean variables.

          


2

“You don’t need Boolean variables!”  Is this true or false. If true, why is it true?

	This is true because comparisons can be used completely instead, however, it is better to use Boolean variables – because you said so that’s why!




3

Sketch out a program which will ask for a users age and gender ( male and female ) and tell them whether they can retire. The rule for retirement is that women retire at 60, men at 65.


[image: image1]
4. List out some of the variables you might use in the above program.

	I might use these variables:

Int age

const int minFemaleAge = 60

const int minMaleAge = 65

bool male

bool female

bool canRetire

bool cannotRetire


5. Write a program which will take in two numbers and tell you which, if any, was the greater.

	# include <iostream.h>

int firstNumber;

int secondNumber;

void main()

{

 cout << “Enter a number” << endl;

 cin >> firstNumber;

 cout << “Enter another number” << endl;

 cin >> secondNumber;

if (firstNumber > secondNumber)

cout << “The first number was greater” << endl;

if (firstNumber < secondNumber)

cout << “The second number was greater” << endl;

if (firstNumber = = secondNumber)

cout << “Both numbers are equal” << endl;




6. Have a look at prog4h.cpp. How would you check it works?

	To check it works I would enter 17, 18 and 19 into the age. A value which is lower than the value in the comparison, a value which is the same as the value in the comparison and a value which is higher than the value in the comparison – meaning all possibilities are covered.  




Reflection – where you write about your experience of the lessons.
You might like to consider things such as:

· Why is he gping so slow?

· Why is he going so fast?

· Do I know what the lecturer’s talking about?

· Which bits might I need help on?

· Am I keeping up?

· should I ask for help?

	The lecturer isn’t going slowly anymore – the programs are getting bigger in terms of the amount of code thus getting more difficult to understand and follow. The lecturer knows what he’s talking about and explains everything well and interestingly. I do feel that I need to look at Boolean examples more so I understand them with less difficulty. I feel I am keeping up with the rest of the work that has been covered; I will ask for help if after more practice I am still having difficulty.




NOTE: All reflection in a journal is private between lecturer and student. It’s also optional. But you really should do it if you can.

What follows is my response to the first journal. I must point out that I do a verbal journal feedback session, with anonymous examples lifted from the journals – hence the rather sketchy feedback. It’s mostly intended to initiate a dialogue.

Add your answers and feedback to this Word document and send it as an attachment to me. Your email subject must read:

YOURNAME JOURNAL WEEK 4
NB you replace YOURNAME with your name!

It must arrive by 10 am Monday 31 October at the latest.

Note: if you email me about anything else, please fill in the subject. It helps me prioritise.

Fill in the following:

	question
	 How I got on

	1  fault finding
	1

	2 booleans
	1

	3 design
	1

	4 data
	1

	5 programming
	1

	6 thinking
	1


	Code number
	What it means

	0
	didn’t attempt

	1
	easy / confident

	2
	challenging / not easy but can do

	3
	very difficult/ not confident

	4
	Impossible / no idea


Exercises/Questions:

Bolton University would like to assure the public that no students were harmed during the making of this journal. 

1.  What's  daft about this? 

#include <iostream.h>

int age;

bool canVote = false;

bool  cannotVote = true;

void getAge();

void getAge()

{


cout << "enter your age" << endl;


cin >> age;

} // end of getAge

void main()

{


getAge();


if ( canVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can vote" << endl;


} // end of if


if ( cannotVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can't vote" << endl;


} // end of if

} // end of main

	What’s daft is

Even though it uses Booleans which is a good thing, there are no values within the program. This means that whatever age the user enters, the program will not know which if statement to run as there is no values within the program to determine this. yes but what happens? try it

          


2

“You don’t need Boolean variables!”  Is this true or false. If true, why is it true?

	Answer here

True. As long as you have got the correct values within the appropriate if statements, you don’t need Booleans to determine these. Booleans are generally used to make your program code look a bit more professional.


3

Sketch out a program which will ask for a users age and gender ( male and female ) and tell them whether they can retire. The rule for retirement is that women retire at 60, men at 65.


· Get Users Age

· Get Users Gender

· If  (Gender = “Male”) and (Age >= 65)


“You can retire”

· If  (Gender = “Male”) and (Age < 65)


“You can’t retire”

· If  (Gender = “Female”) and (Age >= 60)


“You can retire”

· If (Gender = “Female”) and (Age < 60)


“You can’t retire”

4. List out some of the variables you might use in the above program.

	I might use these variables:

Age what types?
Gender


5. Write a program which will take in two numbers and tell you which, if any, was the greater.

	Paste your program in here:

//progIsOneNumberGreaterThanTheOther.ccp

//This program will take two numbers and tell the user which number is the greatest

#include <iostream.h>

int first; //stores the first number

int second; //stores the second number

void getFirstNumber();

void getSecondNumber();

void getFirstNumber()

{


cout << "Enter a number" << endl;


cin >> first;

} // end of getFirstNumber()

void getSecondNumber()

{


cout << "Enter another number" << endl;


cin >> second;

} // end of getSecondNumber()

void main()

{


getFirstNumber();


getSecondNumber();


if (first > second)


{



cout << first << " is greater than " << second << endl;


} // end of if


if (first < second)


{



cout << second << " is greater than " << first << endl;


} // end of if

} // end of main()

What if the numbers are the same? maybe a statement?


6. Have a look at prog4h.cpp. How would you check it works?

	To check it works I would…

Run the program twice. On the first time, I would enter 18 as my age. On the second time, I would enter 17 as my age. This would test if the if statement works properly as 18 should say ‘At 18, you can vote’ and 17 should say ‘At 17, you can’t vote’. This is testing the boundary of the if statement. 19?


Reflection – where you write about your experience of the lessons.
You might like to consider things such as:

· Why is he going so slow?

· Why is he going so fast?

· Do I know what the lecturer’s talking about?

· Which bits might I need help on?

· Am I keeping up?

· should I ask for help?

	Please repeat what you said about:

Do you really understand everything? nothing to be repeated, elaborated?




NOTE: All reflection in a journal is private between lecturer and student. It’s also optional. But you really should do it if you can.

What follows is my response to the first journal. I must point out that I do a verbal journal feedback session, with anonymous examples lifted from the journals – hence the rather sketchy feedback. It’s mostly intended to initiate a dialogue.

Add your answers and feedback to this Word document and send it as an attachment to me. Your email subject must read:

YOURNAME JOURNAL WEEK 4
NB you replace YOURNAME with your name!

It must arrive by 10 am Monday 31 October at the latest.

Note: if you email me about anything else, please fill in the subject. It helps me prioritise.

Fill in the following:

	question
	 How I got on

	1  fault finding
	1 made a comparison to see what was missing

	2 booleans
	1

	3 design
	1

	4 data
	2 I’m not sure about the answers

	5 programming
	2 tried to use Boolean variables initially

	6 thinking
	1 ran the program to confirm this


	Code number
	What it means

	0
	didn’t attempt

	1
	easy / confident

	2
	challenging / not easy but can do

	3
	very difficult/ not confident

	4
	Impossible / no idea


Exercises/Questions:

Bolton University would like to assure the public that no students were harmed during the making of this journal. 

1.  What's  daft about this? 

#include <iostream.h>

int age;

bool canVote = false;

bool  cannotVote = true;

void getAge();

void getAge()

{


cout << "enter your age" << endl;


cin >> age;

} // end of getAge

void main()

{


getAge();


if ( canVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can vote" << endl;


} // end of if


if ( cannotVote  ) 


{



cout << " at " << age <<  " years old " ;



cout <<  " you can't vote" << endl;


} // end of if

} // end of main

	What’s daft is that no comparison indicators have been included for the Boolean variables.

          Yes!


2

“You don’t need Boolean variables!”  Is this true or false. If true, why is it true?

	This is true because comparisons can be used completely instead, however, it is better to use Boolean variables – because you said so that’s why!




3

Sketch out a program which will ask for a users age and gender ( male and female ) and tell them whether they can retire. The rule for retirement is that women retire at 60, men at 65.

we’ll deal with this in class


[image: image2]
4. List out some of the variables you might use in the above program.

	I might use these variables:

Int age

const int minFemaleAge = 60

const int minMaleAge = 65

bool male

bool female

bool canRetire

bool cannotRetire  some good ideas


5. Write a program which will take in two numbers and tell you which, if any, was the greater.

	# include <iostream.h>

int firstNumber;

int secondNumber;

void main()

{

 cout << “Enter a number” << endl;

 cin >> firstNumber;

 cout << “Enter another number” << endl;

 cin >> secondNumber;

if (firstNumber > secondNumber)

cout << “The first number was greater” << endl;

if (firstNumber < secondNumber)

cout << “The second number was greater” << endl;

if (firstNumber = = secondNumber)

cout << “Both numbers are equal” << endl;

good not many thought of ==




6. Have a look at prog4h.cpp. How would you check it works?

	To check it works I would enter 17, 18 and 19 into the age. A value which is lower than the value in the comparison, a value which is the same as the value in the comparison and a value which is higher than the value in the comparison – meaning all possibilities are covered.  

Excellent, best answer I’ve had




Reflection – where you write about your experience of the lessons.
You might like to consider things such as:

· Why is he going so slow?

· Why is he going so fast?

· Do I know what the lecturer’s talking about?

· Which bits might I need help on?

· Am I keeping up?

· should I ask for help?

	The lecturer isn’t going slowly anymore – the programs are getting bigger in terms of the amount of code thus getting more difficult to understand and follow. The lecturer knows what he’s talking about and explains everything well and interestingly. I do feel that I need to look at Boolean examples more so I understand them with less difficulty. I feel I am keeping up with the rest of the work that has been covered; I will ask for help if after more practice I am still having difficulty.

Everyone’s suffering with booleans – probably my fault!!




NOTE: All reflection in a journal is private between lecturer and student. It’s also optional. But you really should do it if you can.
‘Enter your age’





‘Enter your gender (M/F)’





If male and age>=65





If female and age<60





If male and age<65





If female and age>=60





‘You can retire’





‘You can’t retire’





‘You can retire’





‘You can’t retire’





‘Enter your age’





‘Enter your gender (M/F)’





If male and age>=65





If female and age<60





If male and age<65





If female and age>=60





‘You can retire’





‘You can’t retire’





‘You can retire’





‘You can’t retire’








