
The Experiment Kit

Experiment Kit: TOC
1. Question formulation
2. Protocol

a. Data collection specification
b. Human Subjects materials
c. Background questionnaire
d. Discriminator question
e. Specification of set-up
f. Experimenters’ script (including guidance on notes/diagramming)
g. Participant design brief
h. Design criteria elicitation Stimuli set
i. Design criteria elicitation Recording Sheet

3. Analysis protocol
4. Background
5. Literature

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 2 of 32)

Sally Fincher & Marian Petre June 2003

1. Question Formulation

General research question
This kit addresses understanding of software design and software design criteria used by undergraduate
students at two levels: those we term ‘first competency’ programmers (using McCracken et al.’s
formulation, ITiCSE, 2001), and those completing their Bachelor degrees (that is: those within the last
eighth of a Bachelor degree program, or equivalent e.g. the last 6 months of a four-year, full-time program).
The study aims to examine students’ ability to recognise and generate structures underlying software
designs, to elicit students’ understanding and valuation of key design activities, and to examine whether
students’ understanding changes during the course of their undergraduate education.

Study’s focal questions
The study is in two parts:
i) Can students decompose a proposed solution and describe the components and their relationships?

Can students demonstrate through their decomposition and descriptions an understanding of
fundamental concepts?

ii) Do students recognise different criteria within the design process? If so, what value do they place
on those criteria, and what do they think their roles are within software design?

The study has an enveloping framework that compares data from first-competency and completing students
and from educators. This supports comparative questions:
i) Does students’ ability to decompose a proposed solution and describe it change or improve during

the course of their CS education? Are students’ decompositions and descriptions significantly
different from educators’?

ii) Does students’ relative prioritisation of design criteria alter over time, and how closely does their
prioritisation approximate educators’ prioritisation at each stage?

Subsidiary queries:
Are there differences between?

• high- and low-performing students?
• male and female students?
• students exposed to different first programming languages or paradigms?
• students exposed to different instructional approaches?
• educators presenting different programming languages or paradigms?
• educators taking different instructional approaches?

Is it possible to identify one or more typical progressions in design understanding, as characterised by
performance of these tasks?
Are there groups whose responses more closely approximate educators’ responses? If so, what
distinguishes those groups?
Are students’ responses more similar to their own educators’ responses than to other educators’ responses?

How able are students to incorporate domain knowledge in their solutions?
How attentive are students to design context (as suggested by the scenarios)?

Are there obvious breakdowns in students’ design reasoning?
Are there any patterns of omission or breakdown in the performance of the decomposition task?
Are there indications of misconceptions or specific areas of ignorance?

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 3 of 32)

Sally Fincher & Marian Petre June 2003

Links to relevant theory
• Why care about software design? Software design is difficult: dealing with ill-defined and ill-

structured problems; subject to complex and often conflicting constraints; producing large,
complex, dynamic, intangible artefacts; and deeply embedded in a domain (cf. Goel and Pirolli’s
characteristics of the design task, 1992). Marshalling resources, applying knowledge, prioritising
sub-tasks, managing constraints, evaluating proposed solutions, managing the design process itself
are constituent and interacting skills—and potential sources of breakdown even in professional
design behaviour (Guindon, Krasner and Curtis, 1987). These qualities make software design
elusive to characterise and difficult to teach; hence, research is needed on how software design is
understood and how design understanding develops.

• A key component of creativity is divergent thinking (Guilford, 1967), consideration of problems in

terms of multiple solutions. It is complemented by convergent thinking, which narrows options to
a single solution. Design reasoning requires a combination of divergent and convergent thinking:
divergence to generate alternatives, and convergence to evaluate and prune alternatives. Divergent
thinking is poorly understood and difficult to assess.

• Software design requires a variety of skills and knowledge: domain knowledge, software and

computing knowledge and skill, design knowledge and skill (Soloway and Ehrlich, 1984).
Importantly, it requires the ability to map between problems and solutions, between domain and
software/computation. One consistent result in the expert-novice literature is that experts form
abstractions based on deep (semantic, functional) characteristics rather than on surface (syntactic)
characteristics (summarised in Kaplan et al., 1986; Allwood, 1986). Reasoning about deep
structures allows experts to relate problems and solutions as reflections of a single schema or
abstract structure.

• Various studies contribute to the notion that developing expertise is reflected in knowledge

consolidation, and that consolidation of knowledge into meaningful conceptual structures is a
reflection of ‘deep learning’ characterised by abstracted meta-knowledge. (For an overview, see,
e.g., Eysenck and Keane, 1995; for “deep learning” see, Marton and Saljo, 1976).

• Models of software design, whether breadth-first decomposition or opportunistic, tend to involve

decomposition into sub-problems, hence requiring management of the design process, including
keeping track of the status of and relationships among sub-problems, and requiring integration of
sub-problems into a coherent structure. Novices have been observed to differ from experts in their
ability to decompose a problem effectively, to solve sub-problems, and to integrate solutions (e.g.,
Jeffries et al. 1981). One consistent result in the expert-novice literature is that experts organise
information differently from novices, producing different and larger chunks (summarised in
Kaplan et al., 1986; Allwood, 1986). Decomposition has the potential to provide insight into
chunking and hence into how software designers organise and structure their proposed solutions.

Study’s approach
This study uses two tasks to explore students’ understanding of the software design process:

i. a decomposition task, to examine students’ ability to analyse a problem and design an appropriate
solution structure, and to assess students’ understanding-in-action of fundamental concepts,

ii. a design criteria prioritisation task, to elicit which criteria students consider most and least
important in the design process, in the task undertaken and for different design scenarios.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 4 of 32)

Sally Fincher & Marian Petre June 2003

Assumptions:
• By decomposing a solution, students are indicating the main structure of the solution.
• The description of components reveals something about subjects’ understanding of software

design concepts, such as cohesion and coupling. Saying anything about such underlying concepts
reveals some knowledge of them, and identifies them as important to the student’s understanding.

• Prioritisation of design criteria reveals something not only about what is valued, but also about
what is not valued.

• Different prioritisations for different scenarios, reveals an understanding that design is a
contextual activity and that criteria change with context.

• Differences in prioritisation between different groups (e.g., naïve and expert groups) indicates
differences in their values, beliefs, and understanding.

Justification of approach:
• Paradigm independence

The use of a generic problem and generic stimuli makes the tasks paradigm independent, so that
comparisons can be made across paradigms, languages, and pedagogic styles.

• No imposition of existing overview
 The general aim of this study is to attempt to elicit knowledge which is not constrained by a pre-
defined scheme or by syntax or concepts specific to any one programming language. Therefore,
the tasks are elicitative, to see if students recognise underlying structures. We make no imposition
of existing overview – we don’t assume any particular model of design.

• Triangulation
The study combines different approaches and collects both qualitative and quantitative data, in
order to provide opportunities to contradict or corroborate within the study, by comparing the
different data.

• Basis in survey of educators
The tasks and stimuli draw on a survey of software design educators, in order to focus the study on
design knowledge considered relevant in CS education. The survey included educators from a
variety of stances and so identified design issues and criteria underpinning all software design,
regardless of paradigm or language.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 5 of 32)

Sally Fincher & Marian Petre June 2003

2a Data collection specification

Collection of background data:
You need access to students’ academic records.
If you need to recruit subjects from another institution, you will need a collaborating academic within that
institution. Work with the academic early to complete Human Subjects Approval at that institution.

For all students, from their academic records:

• Identify all of their CS courses. (For students who have transferred from another institution, use
only the grades from your own institution.)

• Average the grades for those courses.
• Record both the average and standard deviation.
• Map the average into a “performance bucket” (online, from December 2003).

Data collection from subjects:

Minimum data collection:
10 first-competency programmers (using McCracken et al.’s formulation, ITiCSE, 2001)
10 students completing their Bachelor degrees (that is: those within the last eighth of a Bachelor degree
program)
2 educators (full-status faculty members, preferably those who teach software design)
If you don’t have suitable subjects at your own institution, then visit a colleague at another institution
and interview their students.

Try to complete all subjects within each constituency (e.g. first competency) within one month.

Time allowance:
• Allow at least ten minutes for the completion of the preliminary forms (human subjects and

background questionnaire).
• Allow at least an hour per subject for the tasks. All of our pilot subjects completed the tasks

within an hour (some well within), but it’s safer to leave a margin.
• You will also need to take the time to label all your materials (tapes, notes, subjects’ responses)

carefully, and to write down any extra observations that strike you at the time.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 6 of 32)

Sally Fincher & Marian Petre June 2003

2b Details/Phrases that may be useful with regard to
Human Subjects Approval forms

This research is part of an international, multi-site project to investigate “first
competency” programmers’ and graduating students’ conceptions and constructs of
software design. Each subject will be asked to undertake a decomposition task followed
by a design criteria elicitation exercise. These will, together, take circa one hour. During
the sessions, data arising from the decomposition task and subsequent design criteria
elicitations, will be captured by written notes and audio recording.

Subjects will be drawn from:

students enrolled in computer science courses •
• staff who teach them

Their age range will be 18-65. Students will be selected to represent different levels of
achievement in computer programming courses.

Personal data – age, gender, institution and academic grades – will be associated with the
elicited material. The name (or other identifiable data, such as student number) of
participants will be known to internal investigators, but will not be stored or made
available to researchers outside of this institution.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 7 of 32)

Sally Fincher & Marian Petre June 2003

RESEARCH SUBJECTS' INFORMATION SHEET

You have been asked to participate as a subject in a study that is part of a
multi-site international research project investigating design in software.
This research is designed to investigate “first competency” and graduating
students’ approach to, and understanding of, software design. You will be
asked to undertake short design task, followed by a card sort exercise. These
will, together, take circa one hour. During the exercises, we will take notes,
and ask that we may tape-record the session.

Some personal data – your age, gender, institution and academic
achievement – will be associated with the design task and card-sort material.
However, neither your name (nor any other identifiable data, such as student
number) will be stored, nor made available to researchers outside of this
institution. All data gathered will be used solely for the purposes of this
research project.

You may obtain answers to any pertinent questions about this research by
telephoning <insert name> on <insert telephone number> during the
following times: <insert availability>

If you decide not to participate, your refusal will involve no penalty and no
loss of benefits to which you are otherwise entitled.

Participation in this study is voluntary, and you may withdraw your consent
to participate at any time without penalty.

You have the right to receive a copy of any consent form that you sign and
of any written consent documentation information that is used in obtaining
your consent.

In order not to bias subsequent interviews, please do not discuss details of
the tasks with other students.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 8 of 32)

Sally Fincher & Marian Petre June 2003

Human Subjects Research Consent Form

Letter of Informed Consent

I, (print name in full) ___________________ am a student registered at
<insert name of institution>. In signing this consent form, I agree to
volunteer in the research project being conducted by <insert your name
here> between <enter dates here>. I understand that the research being
conducted relates to the approach to, and understanding of, software design.
I understand that data from the design task and associated design criteria
elicitation will be used in aggregate, and that excerpts from tape-recorded
verbal communications with the researcher will be studied and may be
quoted in papers, journal articles and books that may be written by the
researchers.

I grant authorization for the use of the above information with the full
understanding that my anonymity and confidentiality will be preserved at all
times. I understand that my name or other identifying information will never
be disclosed or referenced in any way in any written or verbal context.

I understand that my participation is entirely voluntary and that I may
withdraw my permission to participate in this study without explanation at
any point up to and including, the last day of April 2004.

Signature
Date

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 9 of 32)

Sally Fincher & Marian Petre June 2003

2c Background questionnaire

For each institution:
Characterise your context. This should include: •

•

•

•

•
•

o type of institution (e.g., university, liberal arts college, polytechnic, community college,
etc.)

o characterisation of intake (e.g., entrance requirements, students’ focus, age range, etc.)
o instructional structure of the course(s) (e.g., do they have labs) and
o pedagogic structure of the course(s) (e.g. breadth first, uses an environment that assists

“design thinking” – e.g. BlueJ etc.).
Describe the point of “first competency” intervention (that is, “end of first year”; “half way through
second year” etc.)
Characterise the paradigm you teach in for “first competency” and graduating students, in 2003
(perhaps the “first competency” will only have had Scheme, but the graduators will have had
additionally Java, C etc.)

For each subject:
Note their:

o Age (student subjects only. Do not record age for educators).
o Gender.
o Program enrolled in (with major, if known).

Ask them to self-rate their programming experience on the form provided
Assign each subject a unique identifier of the form: F01 (First-competency Student 01) or G01
(Graduating student) or E01 (Educator 01), appended to your institution code (thus the first “first-
competency” subject for Poppleton University would be HF01):

If you use subjects from another institution, request an additional code.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 10 of 32)

Sally Fincher & Marian Petre June 2003

Programming Experience

On a scale of 1 (never used) to 5 (have used a lot) please rate your familiarity with the following
programming languages. For “other”, please indicate specific additional languages.

Please indicate if you have had formal instruction any of these, and for how long (1 semester, a year etc.).

 1 2 3 4 5 Formal instruction?
Java

C++

C

Ada

Scheme

Pascal

Visual Basic
(VB)

Other languages.
Please specify
each on a
separate row

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 11 of 32)

Sally Fincher & Marian Petre June 2003

2d Discriminator Question
You should choose “first competency” subjects from your undergraduate cohort at the point you believe
them to be capable of undertaking at least one question within the following McCracken task set (as used in
A multi-national, multi-institutional study of assessment of programming skills of first-year CS students
ITiCSE 2001). You do not have to give these questions to the students, just believe them able to undertake
them. You should time your intervention within the course, or term, in which they would reach “first
competency”.

Assessment of Programming Skills of First Year CS

Students: Problem Set

Enclosed in this file are the three problems. To maintain consistency, the problems (no
matter which you choose) should be given in the following manner.

• This is individual work.
• The work is to be done in a closed lab (meaning proctored with the students doing

the work in the allotted time).
• The student's job is to produce a working, tested, etc., program in the time

allotted.
• This is a programming exercise, the expectations are that the students will

produce a program. Any design documentation, though important to solving the
problem, is not important to this assessment.

• What follows can be cut and pasted as the assignment. Note the introduction is
applicable to all three problems.

Introduction (10 minutes to read and understand)

 There are two main notations for entering information into hand-held calculators;
Hewlett Packard calculators for the most part implement a Reverse Polish Notation
(RPN), or “post-fix” notation, whereas Texas Instruments calculators implement the
traditional “infix” notation. The major difference in the two styles is the order in which
the mathematical operations are entered and executed.

 RPN is a stack-based method of processing input. Numbers are read in and
processed in the reverse order in which they are entered, while the operations themselves
are read in and processed sequentially. “Infix” notation is the traditional method that
most modern textbooks have adopted. It is mainly a symbol-based method of processing
mathematical expressions, making use of a set of precedence rules defining the order in
which values are processed by encapsulating operators and symbols.

 RPN has a clear advantage over “infix” notation because RPN offers a simple
implementation, naturally avoids ambiguity, and does not require parentheses. However,

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 12 of 32)

Sally Fincher & Marian Petre June 2003

unless the user is well practiced in the art of RPN, it is not automatically intuitive in its
use. For example, the “infix” notation for a particular formula is:

-(4 + (6 * (-2)) - 15) (1)

However, in RPN, the same expression yields the following formula:

15 4 -2 6 * + - ~ (2)

In RPN, the numbers on the bottom of the stack are processed first, and then “work their
way up” as the values are reduced toward the top. Clearly, the more intuitive format
from an academic standpoint is “infix” notation (Equ. 1). However, you must deal with
issues of precedence; in general, this is not as easy to program as the RPN-style of input
(Equ. 2).

Other examples of “infix” and RPN style expression pairs are as follows:

4 * -(4 + 10 / 2.5 – 8) (3)
4 8 4 2.5 10 / + - ~ * (4)

17.2 + 21 * 3 / (-7) + 21 (5)
21 17.2 -7 3 21 * / + + (6)

((-(2 + 3 * 8)) ^ 4) * 7 (7)
7 4 2 8 3 * + ~ ^ * (8)

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 13 of 32)

Sally Fincher & Marian Petre June 2003

Problem Set #1: Programming an RPN Calculator
DIFFICULTY LEVEL: 1

Problem Statement:
 You must write a program that reads, parses, and solves RPN-styled equations.
You may assume that input will come directly from a terminal’s standard input (keyboard
or related device) and that the output should be directed to standard output for that
terminal (monitor or related device). You may implement this program using only
standard library routines provided by the language that is being used; no proprietary or
other such libraries are allowed.
 Your RPN expressions should be able to read the following operators. These
operators’ descriptions are provided for clarity.

 + Addition Operator. Adds two operands together.
 - Subtraction Operator. Subtracts two operands together.
 * Multiplication Operator. Multiplies two operands.

/ Division Operator. Divides two operands, in the order they are placed in
the stack.

~ Inverse Operator (Negative Operator). Takes the inverse of the current
value in the buffer.

^ Power Operator. Multiplies value in buffer by itself by a number of times
specified by the operand that follows.

Each line of input will be entered in the relative form of:

{ numbers } { operators }

Each number and operator may be assumed to be separated by some form of whitespace
to make parsing the input easier. This input should be entered on an input line non-
interactively; In other words, the program can NOT query the user for any EXTRA
information pertaining to the contents or makeup of the expression. The only interactive
element the program may use in the expression input process is a prompt to indicate the
program is ready for input. A sample session is below; the program should terminate
when an input contains only the letter ‘q’. If there is an error with the input, the program
should state such and begin accepting the next expression.

{unix: user: !} ./runprog
> 2 2 3 * +
ans = 8
> 4 5 2 ^ - ~ +
ERROR: Expression Invalid.
> 4 3 21 / - ~
ans = 3
> q
{unix: user: !}

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 14 of 32)

Sally Fincher & Marian Petre June 2003

Problem Set #2: Programming an “infix” Calculator w/o precedence
DIFFICULTY LEVEL: 2
Problem Statement:

 You must write a program that reads, parses, and solves “infix”-styled equations.
You may assume that input will come directly from a terminal’s standard input (keyboard
or related device) and that the output should be directed to standard output for that
terminal (monitor or related device). You may implement this program using only
standard library routines provided by the language that is being used; no proprietary or
other such libraries are allowed.
 Your “infix” expressions should be able to read the following operators. These
operators’ descriptions are provided for clarity.

 + Addition Operator. Adds two operands together.
 - Subtraction Operator. Subtracts two operands together.
 * Multiplication Operator. Multiplies two operands.

/ Division Operator. Divides two operands, in the order they appear.
^ Power Operator. Multiplies value in by itself by a number of times

specified by the operand that follows.

Each line of input will be entered in the relative form of:

NUM OP NUM OP NUM …

Where NUM and OP represent Numbers and Operators, respectively.

Each number and operator may be assumed to be separated by some form of whitespace
to make parsing the input easier. This input should be entered on an input line non-
interactively; In other words, the program may NOT query the user for any EXTRA
information pertaining to the contents or makeup of the expression. The only interactive
element the program may use in the expression input process is a prompt to indicate the
program is ready for input. A sample session is below; the program should terminate
when an input contains only the letter ‘q’. If there is an error with the input, the program
should state such and begin accepting the next expression.

This program does NOT have to consider precedence, nor contain any parenthesis. This
will lead to some mathematically incorrect answers, but to keep things simple we will not
be enforcing precedence. A sample session is below:

{unix: user: !} ./prog
> 2 + 3 * 4 – 5
ans = 15
> 2 + 3 ^ 2 * 4 * -1
ans = -100
>q
{unix: user: !}

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 15 of 32)

Sally Fincher & Marian Petre June 2003

Problem Set #3: “Infix” Calculator with simple precedence
DIFFICULTY LEVEL: 3
Problem Statement:

 You must write a program that reads, parses, and solves “infix”-styled equations.
You may assume that input will come directly from a terminal’s standard input (keyboard
or related device) and that the output should be directed to standard output for that
terminal (monitor or related device). You may implement this program using only
standard library routines provided by the language that is being used; no proprietary or
other such libraries are allowed.
 Your “infix” expressions should be able to read the following operators. These
operators’ descriptions are provided for clarity:

() Parenthesis. Used to group numbers and operators to give a simple order
of precedence. Expressions contained within parentheses must be
evaluated before expressions outside of parenthesis.

^ Power Operator. Multiplies value in by itself by a number of times
specified by the operand that follows.

* Multiplication Operator. Multiplies two operands.
/ Division Operator. Divides two operands, in the order they appear.

 + Addition Operator. Adds two operands together.
 - Subtraction Operator. Subtracts two operands together.

Each line of input will be entered in the relative form of the following examples:

> (2 + 3) * (5 * 2 * -1)
ans = -50
> (3 + 1 * 2) ^ (2 + 1)
ans = 512
> ((3 + 1) * 2) ^ (9 / 3)
ans = 512

Each number, operator, and parentheses may be assumed to be separated by some form of
whitespace to make parsing the input easier. This input should be entered on an input
line non-interactively; In other words, the program can NOT query the user for any
EXTRA information pertaining to the contents or makeup of the expression. The only
interactive element the program may use in the expression input process is a prompt to
indicate the program is ready for input. A sample session is below; the program should
terminate when an input contains only the letter ‘q’. If there is an error with the input, the
program should state such and begin accepting the next expression.

This program does NOT have to consider operator precedence, but must consider
parenthesis. This may still lead to some mathematically incorrect answers, but to keep
things simple we will only be enforcing parenthesis precedence.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 16 of 32)

Sally Fincher & Marian Petre June 2003

2e Specification of setup
You should make sure you conduct the experiment in a quiet room, where you will not be disturbed. Make
sure you have:

Human Subjects’ Information Sheet and 2 copies of the Consent Form (one for them and one for you) •
•
•
•
•
•
•
•
•

The design brief
The self-evaluation form
The design criteria stimuli
A working tape recorder
Enough tapes & batteries
Pens and pencils (in several colours)
A supply of plain, blank paper
If there isn’t a clock in the room, make sure you take a watch

Sit so that you can see the subject (and the subject can see you!). Side by side, or across the corner of a
desk is probably better than face to face across a table. It’s fine – sometimes reassuring – for subjects to see
the investigator’s notes.
You should allow an hour for them to complete both tasks.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 17 of 32)

Sally Fincher & Marian Petre June 2003

2f Experimenters’ script

i) Consent Form and Background Questionnaire

ii) Decomposition Task
• Offer the subject the design brief and blank paper and pens/pencils. Note the time.
• Direct the subject “Please read all of the instructions. Please be sure to read the instructions in the

box before starting.”
• Invite them to ask any questions they want, and to take as long as they wish to complete the task.

They are welcome to talk aloud, or to work silently, as they wish.
• When they feel they’ve finished, if they haven’t already done so, ask them to put their solution on

paper (words, diagrams, whatever form).
• When they’ve indicated the solution design on paper, note the time. Then ask:

“Would you talk me through your design?” If they need another prompt: “Can you tell me what
the parts of your solution are and what they do?”
If they want to know what “parts” are, you can substitute other words: chunks, main pieces,
components etc. But do not offer other prompts—we want to see what comes freely.

• If they offer new names, ask them to annotate their notes. Their spoken descriptions should be
recorded verbatim by the experimenter —ask them to pause if necessary in order to allow you
time to record their words. Their descriptions should be taken “as they are”— you should not lead
the subject by asking for clarifications or elaborations.

• If there’s any uncertainty, they should be asked to confirm how many parts they’ve identified.
• If they are unable to identify parts, you may ask “Have you read all of the instructions?” Capture

their first answer, and the prompt, and any new information they offer.
• If they have not already identified relationships, interactions or flows between components, then

you may ask elicitative questions that reflect their descriptions and representations e.g. point at an
arrow and ask “What does this mean?”

• Record their subject ID and the date on the back of every sheet of their design. If there is more
than one sheet, annotate each with its number in the sequence, e.g., “1 of 3”, “2 of 3” etc.

• Thank the subject, with something encouraging, e.g., “Thank you, that’s really helpful.”

Therefore, the elicitation captures:
• number of components
• verbatim name of each component
• verbatim description of each component
• time from handover to completion of the decomposition (that is, up to “Would you talk me

through your design?”)

Data collection for the decomposition task includes:
• audio recording of the session (for backup)
• the experimenter’s notes, including verbatim records of names and descriptions, and a note of the

time taken for the decomposition
• the subject’s marks-on-paper
• the experimenter’s responses to the characterising questions (see sub-section iv below)

Reiterations:
• You may not ask leading questions, e.g. “What are the inter-relationships?”

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 18 of 32)

Sally Fincher & Marian Petre June 2003

• You may reflect back anything they have said, or refer to anything they have drawn e.g. “What’s
this?” or “Why does this arrow have two heads?”

• Use their terms verbatim. Do not try to paraphrase or clarify. Add no interpretations.
• If there are other things you want to note down, do so in a way that clearly distinguishes them as

your own notes, and not verbatim quotations.
• Don’t try to help the subject by suggesting answers or giving them pithier terms.
• Take as long as it takes. If necessary, ask the subject to slow down or repeat what they’ve said.
• Tape the session.

iii) Design Criteria elicitation
• Offer the subjects the cards.
• Ask them: “Thinking about the design you've just completed, what were the five most important,

and five least important design criteria?” Record the numbers of the cards on the sheet. There is no
need for the subject to rank order the cards (we’re not interested in first, second, third etc.).

• Ask them: “If you were to undertake the same task, but in a team, what would be the five most
important and the five least important design criteria?” Record the numbers on the sheet.

• Ask them: “Imagining that you had to do the same original task—on your own—but that you had
to deliver a fully-functional result at this time tomorrow, what would be the five most important
and the five least important design criteria?” Record the numbers on the sheet.

• Ask them: “Finally, if you were designing this system as the basis of a product line that would
have a 5-year lifespan, what would be the five most important and the five least important design
criteria?” Record the numbers on the sheet.

• Make sure that you record verbatim any comments they make along the way (e.g., “This one
always stays in most important: It’s my style, I can’t design any other way.” “Ah. With this
scenario, everything moves.” “These in the middle are only unimportant because this problem is
so limited.” etc.)

• Thank the subject.

Reiterations:
• Take as long as it takes. If necessary, ask the subject to slow down or repeat what they’ve said.
• Verify the accuracy of what you’re recording; say it back to the subject. Repeat the numbers of

the cards back to the subject.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 19 of 32)

Sally Fincher & Marian Petre June 2003

iv) Decomposition task profile
The experimenter should answer the following “characterisation questions” immediately after the subject
has left (and hence after the card sort task). We use the term “description” to mean their verbatim responses
with regard to the name and description of the parts, and the term “representation” to mean the marks they
made on paper. We use the term “notes” to mean other recorded responses, or your own written notes.

0. Number of components identified by the subject in the description, representation or other recorded
responses.

1. Did the subject name and describe the solution in terms of component parts? (based on the description).

number named and described

2. Did the subject attempt to address the requirements of the specification; that is, does the solution (as
expressed in the description and/or representation) map onto the specification evidently or explicitly?

yes (addresses all requirements)
partially (addresses at least 50% of the requirements)
hardly (addressed at least one but not 50% of the requirements)
no (addressed none)

3a. Are the component parts evident in the representation?

number

3b. Are the component parts evident in the description?

number

4.Does each component have a stated, intelligible, specific API?

number for which an interface is articulated
number for which interface (or ‘what information is passed where’) is fully articulated
number for which interface is incompletely articulated (An example of an “incomplete”
articulation is “These things talk to each other”)

5.Does each component have a stated, intelligible role? (based on description).

number

6. Did the subject identify the back-end as a component? (based on description and/or representation)
yes
no

7. Did the subject indicate the user explicitly as interacting with the system (e.g., as a stick figure)?

yes
no

8a. Did the subject ask questions about ambiguities and omissions in the specification (as distinct from
questions about word meanings)?

yes
no

8b. Did the subject make explicit assumptions (in the description, representation or other recorded
responses) about ambiguities and omissions in the specification.

yes (specify where: description, representation, other)
no

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 20 of 32)

Sally Fincher & Marian Petre June 2003

9. Categorise the type of solution (i.e., the organising principle underlying the solution structure) e.g.
event-driven
user-interface-based
functions

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 21 of 32)

Sally Fincher & Marian Petre June 2003

Design Brief
Getting People to Sleep

In some circles sleep deprivation has become a status symbol. Statements like “I pulled another
all-nighter” and “I’ve slept only three hours in the last two days” are shared with pride, as listeners
nod in admiration. Although celebrating self-deprivation has historical roots and is not likely to go
away soon, it’s troubling when an educated culture rewards people for hurting themselves, and
that includes missing sleep.

As Stanford sleep experts have stated, sleep deprivation is one of the leading health problems in
the modern world. People with high levels of sleep debt get sick more often, have more difficulties
in personal relationships, and are less productive and creative. The negative effects of sleep debt
go on and on. In short, when you have too much sleep debt, you simply can’t enjoy life fully.

Your brief is to design a "super alarm clock" for University students to help them to manage
their own sleep patterns, and also to provide data to support a research project into the extent of
the problem in this community. You may assume that, for the prototype, each student will have a
Pocket PC (or similar device) which is permanently connected to a network.

Your system will need to:

• Allow a student to set an alarm to wake themselves up.
• Allow a student to set an alarm to remind themselves to go to sleep.
• Record when a student tells the system that they are about to go to sleep.
• Record when a student tells the system that they have woken up, and whether it is due to

an alarm or not (within 2 minutes of an alarm going off).
• Make recommendations as to when a student needs to go to sleep. This should include

"yellow alerts" when the student will need sleep soon, and "red alerts" when they need to
sleep now.

• Store the collected data in a server or database for later analysis by researchers. The
server/database system (which will also trigger the yellow/red alerts) will be designed and
implemented by another team. You should, however, indicate in your design the
behaviour you expect from the back-end system.

• Report students who are becoming dangerously sleep-deprived to someone who cares
about them (their mother?). This is indicated by a student being given three “red alerts" in
a row.

• Provide reports to a student showing their sleep patterns over time, allowing them to see
how often they have ignored alarms, and to identify clusters of dangerous, or beneficial,
sleep behaviour.

In doing this you should (1) produce an initial solution that someone (not necessarily you) could
work from (2) divide your solution into not less than two and not more than ten parts, giving each
a name and adding a short description of what it is and what it does – in short, why it is a part. If
important to your design, you may indicate an order to the parts, or add some additional detail as
to how the parts fit together.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 22 of 32)

Sally Fincher & Marian Petre June 2003

1

Hiding the internal workings of each
part of the solution from the user,
presenting them with a simple
interface to its functionality.

2

Knowing how each part of the
solution could be implemented.

3

Making sure related things appear
together

4

Making sure that un-related things are
linked via a narrow (internal)
interface

5

Making sure the design is made up of
appropriately-sized “chunks”

6

Being able to explain what each part
of the solution is, and what it does, to
yourself

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 23 of 32)

Sally Fincher & Marian Petre June 2003

7

Being able to explain what each part of
the solution is, and what it does, to
others

8

Constructing a solution using the
simplest thing that gets the job done

9

Working to achieve a solution of
maximum generality

10

Ensuring that the parts which make
up the solution map onto the structure
of the problem

11

Designing so that someone else can
implement the solution with little (or
no) additional information or domain
expertise.

12

“Sanity-checking” the solution, by
checking back to the specification

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 24 of 32)

Sally Fincher & Marian Petre June 2003

13

Designing a system that can be easily
maintained.

14

Considering the technological
implementation (target platform or
device) and designing for efficient
use of that resource

15

Using ideas that I know work

16

Expressing the functionality clearly

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 25 of 32)

Sally Fincher & Marian Petre June 2003

Design criteria elicitation record sheet

Subject id: Most important Least important

Current task
“Thinking about the design
you've just completed, what were
the five most important, and five
least important design criteria?”

Task in team
“If you were to undertake the
same task, but in a team, what
would be the five most important
and the five least important
design criteria?”

Extreme time
pressure
“Imagining that you had to do the
same original task—on your
own—but that you had to deliver
a fully-functional result at this
time tomorrow, what would be
the five most important and the
five least important design
criteria?”

Longevity
“Finally, if you were designing
this system as the basis of a
product line that would have a 5-
year lifespan, what would be the
five most important and the five
least important design criteria?”

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 26 of 32)

Sally Fincher & Marian Petre June 2003

Decomposition task profile sheet

Subject ID: Number
0 Number of components identified by the subject in the description, representation or other recorded

responses

1 Did the subject name and describe the solution in terms of component parts? (based on the
description).

yes partially hardly no2 Did the subject attempt to address the requirements of the specification; that is, does the solution (as
expressed in the description and/or representation) map onto the specification evidently or explicitly?

 Number
3a. Are the component parts evident in the representation?

3b Are the component parts evident in the description?

4 Does each component have a stated, intelligible, specific API?
 � number for which an interface is articulated

 � number for which interface (or ‘what information is passed where’) is fully articulated
 � number for which interface is incompletely articulated (An example of an “incomplete”

articulation is “These things talk to each other”)

5 Does each component have a stated, intelligible role? (based on description).

 Yes No
6 Did the subject identify the back-end as a component? (based on description and/or representation)
7 Did the subject indicate the user explicitly as interacting with the system (e.g., as a stick figure)?
8a Did the subject ask questions about ambiguities and omissions in the specification (as distinct from

questions about word meanings)?

8b Did the subject make explicit assumptions (in the description, representation or other recorded
responses) about ambiguities and omissions in the specification.

9 Categorise the type of solution (i.e., the organising principle underlying the solution structure)

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 27 of 32)

Sally Fincher & Marian Petre June 2003

3. Analysis Protocol
For each subject, collect & record

• The time taken to complete the decomposition task
• All components with names and descriptions
• Note the number of components per subject
• Prioritisation data

Across your subjects
• Identify verbatim commonality between component names (“verbatim” means that they use

exactly the same terms to name the parts.)
• Identify gist commonality between component names and descriptions. (“gist” means that they are

saying the same thing, but expressing it in different ways, using different words.)
• Identify decomposition solutions that have similar profiles (based on the characterising questions)
• Identify co-occurrence in “most important” and “least important” categories

By December …
• We will make available a web upload page, so that you can enter your data and start to compare it

with others’.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 28 of 32)

Sally Fincher & Marian Petre June 2003

4. Background

Design of study materials & pilot studies

The design of the tasks had a number of developmental inputs.

1. Expert elicitation
At SIGCSE 2003, we interviewed a number of eminent CS educators. We asked them what they would like
to know about:

• what their students know, understand, or experience about software design
• what criteria they would apply to determine these things
• what criteria they would like their students to apply in assessing alternative software designs;
• on what dimensions they would vary alternatives if they were presenting alternative software

designs for comparison and critique.
During one of those interviews, Clayton Lewis suggested the use of a decomposition task to reveal
students’ ability to identify and articulate underlying software design structure.

2. First design: a categorisation task
We discussed a first task design. This was a categorisation task which presented students with several
descriptions of alternative software designs—varied on dimensions identified by the educators. Their task
was to categorise them on a “goodness scale”, given different context scenarios.

3. Pilot study of categorisation task
Josh Tenenberg ran a pilot study with his students, presenting them with descriptions of six different
software designs and asking them to sort the designs using their own criteria. This task was found to take
too long and to be too demanding, especially on “comprehension time”.

4. Pilot study of first decomposition task
We returned to Clayton Lewis’s suggestion of a decomposition task. Josh Tenenberg and Tammy
VandeGrift constructed a first decomposition task, using a sales and information system for a video rental
store as the design problem. We conducted a pilot study of the task with 6 academics and post-graduate
students. The choice of the video rental store scenario proved too simplistic, as it admitted a
straightforward, standard database solution which revealed little or no design reasoning.

5. Pilot study of second decomposition task
We constructed a second decomposition task, using a ‘smart alarm clock’ as the design problem, building
on a scenario composed by B.J. Fogg, with elaboration by Ian Utting. We conducted a pilot study of this
task with 9 academics, post-graduate students and undergraduate students from two different universities.
The subjects found the scenario to be comprehensible and feasible. They were able to complete it in
between 10 and 30 minutes.

6. Development of characterising questions
On the basis of a qualitative analysis of the decompositions produced by the first 4 subjects in the pilot
study of the alarm clock task, in discussion with expert educators with different pedagogic approaches, we
composed a set of ‘characterising questions’ which identified important distinctions among the
decompositions. We then tried the ‘characterising questions’ with the subsequent subjects. We found them

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 29 of 32)

Sally Fincher & Marian Petre June 2003

to be adequate (that is, usable and sufficient to signal some distinctions among the decompositions) but not
yet complete.

7. Background to the prioritisation task
Newstetter and McCracken published a study on ‘novice conceptions of design’ which involved two tasks:

i) identifying the 5 most and 5 least important design processes from a set of 16, and
ii) giving marks out of 10 for two design scenarios, which embodied different design processes.

Sally Fincher had been replicating that study with her own students for several years, and had collected
substantial data. However, although the tasks were tractable, the focus of the intervention was generic
design activities and students’ ability to recognise a design processes, regardless of context. These aims
were too far from our domain of software design.

8. Identifying new design criteria
We decided to use the structure of the first task of the Newstetter and McCracken study, but adapted to our
own purposes. Drawing on a qualitative analysis of the interviews at SIGCSE, we identified a collection of
software design criteria identified by educators as being of interest or importance. We identified the 16
most prominent of those criteria. Most were expressed by the educators using single-word, often technical
terms, such as coupling, encapsulation, and intelligibility. Our experience with previous studies was that
students were often unable to ‘unpack’ such professional terms, and so we expressed each of the criteria as
a descriptive phrase. We then checked our descriptors with three CS educators, presenting them with both
the descriptors and the original terms and asking them to match the two—which they were able to do
accurately. We also presented one educator with just the phrases and asked them to express them as single-
word terms. He was able to do this, and his terms matched ours.

9. Developing context scenarios
Because “design” is a closely contextualized activity, we needed to extend data collection beyond the
simple, single decomposition task. Consequently, we devised four scenarios for ‘typical’ software design
contexts which exposed different criteria. The selected scenarios were vetted by two expert CS educators.

10. Pilot study of the prioritisation task
We ran a pilot study of the prioritisation task using seven post-graduate and undergraduate students from
two universities. (Five of these performed the prioritisation task after the decomposition task, as part of the
complete protocol.) The stimuli were usable by all subjects; all were able to complete the task. The
completed it in between 10 and 30 minutes. Preliminary analysis suggests possible novice/expert
differences.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 30 of 32)

Sally Fincher & Marian Petre June 2003

5. Literature

References (included in the Kit)

Literature that contributes to the question
Cynthia J. Atman, Justin R. Chimka, Karen M. Bursic and Heather M. Nachtmann (1999) A comparison of

freshman and senior engineering design processes. Design Studies, 20, 131-152.
Simon P. Davies, Adrian M. Castell (1992) Doing design and describing it: Accounting for divergent

perspectives in software design. Proceedings of the 4th Annual Workshop of the Psychology of
Programming Interest Group.

Vikki Fix , Susan Wiedenbeck , Jean Scholtz (1993) Mental representations of programs by novices and
experts. Proceedings of the SIGCHI conference on Human factors in computing systems.

W. Michael McCracken (in press) Research on Learning to Design Software. [Do not quote from this
draft.]

Literature that contributes to the methodology
M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y.B.-D. Kolikant, C. Laxer, L. Thomas, I.

Utting, and T. Wilusz. (2001) A multinational, multi-institutional study of assessment of programming
skills of first-year CS students. Proceedings of ITiCSE.

Wendy C. Newstetter, W. Michael McCracken (2001) Novice conceptions of design: Implications for the
design of learning environments. In Charles M. Eastman, W. Michael McCracken, Wendy C.
Newstetter (eds.) Design Knowing and Learning: Cognition in Design Education. Elsevier.

Background (optional reading)

… on Software Design & prior knowledge structures
Beth Adelson and Elliot Soloway (1988) A model of software design. In Michelene Chi, Robert Glaser,

M.J. Farr (eds.) The Nature of Expertise. Lawrence Erlbaum. 185-208.
Françoise Détienne (2001) Software Design-Cognitive Aspects. Springer-Verlag (Practitioner Series).

[Health Warning – great content: terrible translation]
Vinod Goel and Peter Pirolli (1992) The structure of design problem spaces. Cognitive Science, 16, 395-

429
Raymonde Guindon (1990) Designing the design process: Exploiting opportunistic thoughts. Human-

Computer Interaction, 5, 305-344.
R. Guindon, H. Krasner, and B. Curtis (1987) Breakdowns and processes during the early activities of

software design by professionals. In G.M. Olson, S. Sheppard, and E. Soloway (eds), Empirical Studies
of Programmers: Second Workshop. Ablex. 65-82.

M.C. Linn & M. Clancy (1992) Can Experts' Explanations Help Students Develop Program Design Skills?
Int'l. J. Man-Machine Studies, 36, 4, 511-551.

M.C. Linn & M. Clancy (1992) The Case for Case Studies of Programming Problems. Communications of
the ACM, 35, 3, 121-132.

E. Soloway, and K. Ehrlich (1984) Empirical studies of programming knowledge. IEEE Transactions on
Software Engineering, 10 (5), 595-609.

Visser, W. (1990). More or less following a plan during design: opportunistic deviations in specification.
Int. Journal of Man-Machine Studies, 33, 247-278.

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 31 of 32)

Sally Fincher & Marian Petre June 2003

Scaffolding Research in Computer Science Education
The Experiment Kit (Page 32 of 32)

Sally Fincher & Marian Petre June 2003

… on expert/novice distinctions & knowledge consolidation
Simon P. Davies, David J. Gilmore, Thomas R. G. Green (1995) Are objects that important? The effects of

expertise and familiarity on the classification of object-oriented code. Human-Computer Interaction, 10
(2&3), 227-248 and http://www.psychology.nottingham.ac.uk/staff/dg/HCI_paper/HCI_paper.html

M. W. Eysenck and M. T. Keane (1995) A Handbook of Cognitive Psychology, 3rd edition. Psychology
Press.

J.P. Guilford (1967) The Nature of Human Intelligence. McGraw-Hill.
R. Jeffries, A.A. Turner, P.G. Polson, and M.E. Atwood (1981) The processes involved in designing

software. In J. Anderson (ed) Cognitive Skills and Their Acquisition. Lawrence Erlbaum Associates.
S. Kaplan, L. Gruppen, L. M. Levanthal and F. Board (1986) The Components of Expertise: a Cross-

Disciplinary Review (University of Michigan, Ann Arbor).

… on “deep learning”
Marton, F. & Saljo, R. (1976) On qualitative differences in learning: Outcome and process. British Journal

of Educational Psychology, 46, 4-11.
Marton, F. & Saljo, R. (1997) Approaches to learning. In F. Marton, D. Hounsell & Entwistle, N. (Eds.)

The experience of learning. Implications for teaching and studying in higher education. Edinburgh:
Scottish Academic Press.

Richardson, J.T.E., Eysenck, M.W. & Warren Piper, D. (eds) (1987) Student learning: Research into
education and cognitive psychology. Milton Keynes: Open University Press.

	�
	The Experiment Kit
	�
	Experiment Kit: TOC
	1. Question Formulation
	
	General research question
	Study’s focal questions
	Subsidiary queries:

	Links to relevant theory
	Study’s approach
	Assumptions:
	Justification of approach:

	2a Data collection specification
	Collection of background data:
	Data collection from subjects:
	Minimum data collection:

	Time allowance:

	2b Details/Phrases that may be useful with regard to Human Subjects Approval forms
	Human Subjects Research Consent Form
	
	Letter of Informed Consent

	2c Background questionnaire
	For each institution:
	For each subject:

	If you use subjects from another institution, request an additional code.�Programming Experience
	2d Discriminator Question
	2e Specification of setup
	2f Experimenters’ script
	
	i) Consent Form and Background Questionnaire
	ii) Decomposition Task
	Therefore, the elicitation captures:
	Data collection for the decomposition task includes:
	Reiterations:

	iii) Design Criteria elicitation
	Reiterations:

	iv) Decomposition task profile

	Design Brief
	Getting People to Sleep
	
	Subject id:
	Most important
	Least important
	Current task
	Task in team
	Extreme time pressure
	Longevity
	Decomposition task profile sheet

	3. Analysis Protocol
	
	
	For each subject, collect & record
	Across your subjects
	By December …

	4. Background
	Design of study materials & pilot studies
	
	1. Expert elicitation
	2. First design: a categorisation task
	3. Pilot study of categorisation task
	4. Pilot study of first decomposition task
	5. Pilot study of second decomposition task
	6. Development of characterising questions
	7. Background to the prioritisation task
	8. Identifying new design criteria
	9. Developing context scenarios
	10. Pilot study of the prioritisation task

	5. Literature
	References (included in the Kit)
	Literature that contributes to the question
	Literature that contributes to the methodology

	Background (optional reading)
	… on Software Design & prior knowledge structures
	… on expert/novice distinctions & knowledge conso�
	… on “deep learning”

