“My criterion is: Is it a Boolean?”: A card-sort elicitation of
students’ knowledge of programming constructs

Marian Petre Sally Fincher Josh Tenenberg Richard Anderson
Ruth Anderson Dennis Bouvier Sue Fitzgerald Alicia Gutschow
Susan Haller Matthew Jadud Gary Lewandowski Raymond Lister
Renée McCauley, John McTaggart Briana Morrison Laurie Murphy
Christine Prasad Brad Richards Kate Sanders Terry Scott
Dermot Shinners-Kennedy Lynda Thomas Suzanne Westbrook
Carol Zander

June 2003

1 Introduction

This study examined the way in which students understand programming concepts. If we can
understand the nature and structure of students’ knowledge about programming constructs, then
we may be able to use that understanding to help them learn. Educators know which concepts
they teach, but not what students internalise about those concepts, nor what conceptual structures

students build from them.
Specifically, we wanted to know whether students have meanings for:

e individual programming concepts,
e groups of related concepts, and
e relationships among groups of related concepts.

For example, we might ask if students have a meaning for “tree.” What concepts do they group
“tree” with, and what name do they give the group? If they group “tree” with “list” and “array”
and call the group “data structures,” what other groups of concepts do they associate with “data
structures”?

Because of the diversity of researcher and student population, it was important to choose a
method not constrained by any programming task or the syntax of a particular programming lan-
guage. We adopted a methodology, card sorting, from knowledge acquisition to elicit each partici-
pant’s knowledge structure (mental model, conceptual model) of programming concepts.

We made several key assumptions:

e First, the way in which a subject organizes concepts in a card sort reflects the subject’s mental
representation of those concepts.

e Second, by putting a card into a meaningful category, subjects demonstrate that the concept
on the card has some meaning for them.

e Third, by putting a card into a category, subjects indicate what the category and the related
criterion mean to them.

By examining the ways in which students sorted the cards, we hoped to gain insight into the
conceptual structure of their knowledge about programming constructs and program construction.
Our initial analysis of the data focused on the following questions:

e Do students and educators organize concepts differently, and if so, how?

e Are there differences between male and female students?

e Are there differences between students based on the programming languages they know?
e Are there significant indicators in students’ use of “don’t know” categories?

In Section 2 of this paper, we review the related work on card sorts and novice understanding of
programs. In Section 3, we discuss our research methodology. In Section 4, we present our analysis,
and we discuss our results and directions for future work in Section 5.

2 Related Work

2.1 Conceptual structure

The goal of this study was to investigate the conceptual knowledge of “first-competency” program-
mers. In particular, the study investigated the meaning students attach to programming concepts.
There is evidence to suggest that the way in which subjects organize concepts reflects their mental
representation of the way these concepts are related. Adelson gave novice and expert programmers
randomly ordered lines of computer code and observed how they recalled the code and in what prox-
imity the lines were recalled. [1] The proximity of the lines’ recall was evidence that the subjects
were imposing their own structure on the unstructured data.

Different populations exhibit different concept organization structures. Various studies con-
tribute to the notion that developing expertise is reflected in knowledge consolidation, and that
consolidation of knowledge into meaningful conceptual structures is a reflection of “deep learning”,
characterised by abstracted meta-knowledge. For an overview, see e.g. Eysenck and Keane [8] and
Marton and Saljé [10]. Adelson [1] noted that experts had more consistent subjective organiza-
tion than novices. One consistent result in the novice-expert literature is that experts organize
or “chunk” information differently from novices: they form abstractions based on deep (semantic)
characteristics rather than on surface (syntactic) characteristics. Allwood [3] noted that “novices
used general memory strategies while experts used a more specific strategy” and they “showed large
variation in their organization of the investigated concepts.” Their findings were similar to those of
Chi et al. [4], which indicated that novices sort information on the basis of surface features whereas
experts sort on the basis of underlying structure.

2.2 Elicitation of conceptual structure

Elicitation of internal conceptual structures is problematic because it requires plausible, observable
intermediate representation. One mediating activity described in the literature is card sorting. In a
card sort, subjects are presented with a set of cards, with each card having a single picture, name
of a concept or a short description written on it. Subjects are asked to sort all of the cards into
different groups, naming both the groups and the basis or criterion along which items are sorted.
Subjects are then asked to repeat the sort — using a different criterion — and then to keep on sorting
until they have run out of criteria.

For example, if the task was sorting pictures of different types of house, a subject might sort them
into groups “brick,” “stone,” “wood,” etc., with the criterion being “main material of construction.”
The second time, the subject might divide the cards into groups called “one,” “two,” and “three,”
with the criterion being “number of floors in each building.”

Card sorting (Rugg & McGeorge, [11]) has been used to elicit information on internal represen-
tations of concepts. Davies, Gilmore and Green ([5]) used card sorting of code fragments to obtain
expert and novice computer programmer’s knowledge about relationships among program compo-
nents. Subjects were asked to sort the cards into categories that had meaning to them and to justify
their sort. Given Adelson’s evidence [1], Davies et al ([5]) expected experts to base their categoriza-
tions on objects and inheritance relationships and novices on syntactic elements. Instead, results
indicated that experts mainly based their classifications on the functional relationships between
code fragments while novices mainly derived their classifications from object-based categorizations.
Davies et al. also predicted more consistent classifications from experts and more arbitrary and
idiosyncratic sorts from novices: the contrary was true.

There is a tradition of using card sorting as a way of eliciting conceptual structures, in the
general literature and more specifically within the discipline of software. The relationships exposed

1 function 10 scope 19 type

2 method 11 list 20 loop

3 procedure 12 recursion 21 expression
4 dependency 13 choice 22 tree

5 object 14 state 23 thread

6 decomposition | 15 encapsulation | 24 iteration

7 abstraction 16 parameter 25 array

8 if-then-else 17 variable 26 event

9 boolean 18 constant

Figure 1: Stimuli used in card sort task.

by categorisation tasks are taken to reflect relationships in the subjects’ internal representations and
hence to lead to a model of their internal representations. [1]

3 Study Methodology

The study was unusual in its scope, involving more than twenty researchers from four continents
and six countries. Each researcher was an experienced college-level computer science educator. The
researchers’ institutions included public and private institutions that used a variety of approaches
to teaching programming. Each researcher collected data from his or her own institution against a
standard protocol; the combined corpus included 275 subjects.

The primary method, described in more detail below, was a repeated single-criterion card sort
[11] designed to elicit subjects’ knowledge of programming concepts.

3.1 Subjects

The 275 subjects included computer science students and faculty at twenty-one different colleges
and universities in Australia, Barbados, Ireland, New Zealand, the United Kingdom, and the United
States. Thirty-two were educators, and 243 were students. Of the students, 185 were male and 58
were female.

The student subjects were “first competency programmers,” that is, they were selected at the
point in their curriculum where they were considered capable of solving one of a set of programming
problems drawn from the McCracken test set. [7] Their performance in computer programming
courses varied widely. The faculty subjects included educators from the same institutions who had
experience teaching introductory programming (though they may not have taught any of the student
subjects in this experiment).

3.2 Stimuli

We developed a set of twenty-six minimalist one-word prompts for programming concepts (see Fig-
ure 1). The concepts were general ones, such as “tree” or “variable.” The prompts were drawn
from programming textbooks, from papers on program categorizations, and from lists generated by
programming experts and programming educators.

This stimulus set was first reviewed by two programming educators and then tested with seven
participants from two locations including three first-year college programmers, and two computing
researchers. The stimulus set proved usable by all participants. Additional benefits include sponta-
neous participant viewpoints and manageable data. Further, preliminary cluster analysis suggested
potentially interesting novice vs. expert differences and indications of misconceptions.

3.3 Interview Procedure
3.3.1 Preliminary procedure

Subjects were asked to complete a background questionnaire (see sample questionnaire in Ap-
pendix A), and to sign a consent form after reading details of the experiment and discussing them

with the researcher. Subjects were then given a description of the card-sort task (Appendix B).
Some researchers demonstrated a “card sort” using simple alternative stimuli.

3.3.2 Card-sort task

We gave the subjects the set of twenty-six index cards, each labelled with a programming concept,
and asked them to sort the cards into categories using a single criterion. To avoid imposing our own
criteria or categories, we asked the subjects to provide them. Participants were asked to provide
names for each group (category), and for the overall criterion by which the cards were sorted. This
information was recorded, along with a list of the cards contained in each category. Subjects were
asked to perform sorts repeatedly until they were unable (or unwilling) to carry out additional sorts.

When the subjects indicated they could think of no additional sorts, they were presented with a
triadic prompt-a group of three cards-and asked to sort them into two categories. If they were able to,
they were then asked to organize the remaining cards according to the same criterion. The researcher
recorded which cards were used for the triadic prompt, typically object, scope, encapsulation. If the
initial triadic prompt was unsuccessful, some researchers tried a second time.

3.4 Data Collection
3.4.1 Background data

Age, gender, and programming language familiarity were collected for each subject. For student
participants, grades in programming courses were also recorded. Some institutions collected addi-
tional data, which included whether the student was full-time or part-time, whether they attended
day or night classes, if the student held an external job, and if so, how many hours were worked
each week, and if the job was in the computer industry, the language used in their first and second
programming courses, and at what age they began to program.

3.4.2 Task data

Criterion names and category names were recorded verbatim. The cards in each category were
recorded by number. During sorting, some researchers also recorded information on subjects’ card-
handling behavior and, where appropriate, observational notes and ephemeral sorts.

4 Analysis and Discussion

4.1 Data Analysis Techniques

We used several techniques to summarize and link the data. We entered card-sort data into an Excel
table and uploaded this table (see example below) into a project database to allow us to perform
automated analysis on the entire dataset and subpopulations of it. We summarized the card-sort
data for each subject in a separate spreadsheet.

A portion of the spreadsheet for one subject is given in Figure 2. The leftmost column contains
the criterion for each sort (eight criteria for this student), with the first criterion being “tangible
and abstract.” The next column lists the categories in each sort. In the first sort there are two
categories “tangible” and “abstract,” To the right of that column there are columns representing
the cards. In the complete spreadsheet, there are 26 such columns, one column for each card. In
the example below, however, not all columns are shown. An “x” in a column indicates that the
card in that column was placed into the category listed on that row. For example, here the terms
“function” and “procedure” were grouped in the same category (co-occurred) in all eight sorts, and
terms “state” and “event” were grouped in seven of the eight sorts.

A number of mechanisms were used to assist analysis, collected into a project toolkit, some
exploratory (to help us form more focused questions about the data), and some summative and
comparative (to provide numerical tools for characterisation):

e Analysis of background characteristics by sub-population

e Verbatim analysis (agreement on actual names of criteria and categories)

Criteria name Category name function | procedure | state | event

tangible and abstract tangible X X

abstract X X

principles principles

not principles X X X X

data places to put data

types of grouped data

types of primitive data

everything else X X X X

programming structures | definitely programming structures | x b'e

might be programming structures X X

not programming structures

approaches my object oriented world X

my structured world X X

overlap X

OO programming pure OO programming

not OO programming X X X X

control structures control structures

everything else X X X X

modularisation modularisation X X

everything else X X

Figure 2: Excerpt from one subject’s data.

e Gist analysis on names (agreement on the meaning of criteria and categories, despite different
verbatim naming)

e Gist analysis on cards (identifying same or similar grouping of cards, regardless of naming)

e Co-occurrence matrices (identifying the frequency with which cards appeared together) for
individuals and for sub-populations

e Dendrograms generated from matrices summarizing individuals’ sorts

e Distance analysis tool based on edit distance

4.1.1 Analysis of background characteristics by sub-population

An initial analysis of the data was made to determine certain “demographics” of the overall pop-
ulation such as average age over all subjects, gender breakdown, percentage of subjects that were
student versus expert, breakdown by academic performance (students only), and breakdown by
familiarity with specific programming languages (Java, Scheme, C++, C, Pascal, Ada, and others).

4.1.2 Verbatim analysis

Verbatim analysis across criteria and category names was automated as part of the project toolkit.

4.1.3 Co-occurrence matrices and gist analysis on cards

We constructed a co-occurrence matrix for each subject. The matrix records the frequency with
which each pair of cards are grouped in the same category over all sorts. With respect to subjects’
sorts, we calculated average number of sorts per subject and average number of categories per sort
criterion. For each category of each sort, we linked to other subjects with exactly the same cards
given in a category. We distinguished from this but also included links to categories with a one-card
difference (one more card, one less card, or one different card). These links were summarized in
pair-wise frequency tables which could be generated within a sub-population.

4.1.4 Gist analysis on names

We also looked for sort criteria that had similar meaning (or gist). For example, we might consider
a sort criterion such as “object-oriented concepts” to have the same gist as a sort criterion called
“related to object-oriented.” Similarly, “loop,” “iterative,” “repetition,” and “looping flow” might
all be considered to have the same gist. We used a tool to help identify criteria that possibly had
the same gist by comparing keyword pairs in the criteria names. For example, from the criterion
name “Concepts According to How Difficult to Use and Learn” we extracted open terms - nouns
and verbs: “concepts,” “use,” and “learn,” formed sets of size two concepts, use, concepts, learn,
use, learn and compared these to other criterion names. This worked as an initial search tool for
gist among criterion names; however, it would not have found the pair of criteria above, namely
“programming structures” and “imagining that I want to write a program.” To find these matches

we worked as a group.

4.1.5 Dendrograms

Using the programs EZCalc and EZSort [6], a hierarchical cluster analysis was computed on a
distance matrix for each subject. Initially we generated the distance matrices using EZCalc and
EZSort; latterly we generated four distance matrices: using Manhattan distance and Euclidean
distance, and using Simple and Jaccard’s similarity measures subtracted from one to yield a distance
measure. From each of these matrices, we generated dendrograms using simple (nearest neighbour),
complete (maximizing distance between clusters), and Ward’s (minimizing intra-cluster distance)
methods of clustering [2]. These dendrograms were used as exploratory visualizations to help us
focus our questions.

4.1.6 Interpretation of Dendrograms

A dendrogram is a hierarchical clustering of sorting data. Consider the terms “function” and “pro-
cedure” in the dendrogram below, the lines emanating from each of those two terms are joined at the
vertical line labeled “0” indicating that these cards were always placed in the same category. Recall
that these terms co-occurred eight out of eight times in the spreadsheet above. In contrast, the lines
emanating from the terms “state” and “event” join further to the right, indicating that although
they are frequently associated, they are not always associated. Recall that these terms co-occurred
seven out of eight times in the spreadsheet. The lines emanating from the terms “method” and
“object” intersect even further to the right indicating that they co-occurred less often than “state”
and “event.” Moving from left to right in the dendrogram, terms are combined into larger and larger
clusters. The more often terms occur together, the further to the left the connection between them.

4.1.7 Distance Analysis Tool

Another approach to analysing the card-sort data is to look at the distance between individual sorts.
This can be used to look for similar categorization across individuals or as the basis for a clustering
analysis. Our definition of distance is based on the notion of edit distance, which counts the number
of primitive operations to convert one string to another. In this case the primitive operation is to
move a card between piles (or to a new pile). The distance between two sorts is defined to be the
minimum number of moves to convert one to another. It can be shown that this distance function is
a metric so that it can be used as a basis for clustering analysis. The distance can be computed by
computing by finding maximum weight matching between the two sorts. A matching between two
sorts is a correspondence of piles, if the number of piles is not equal, then some piles will not have
corresponding piles in the other set. The weight of a matching is the number of common elements in
corresponding piles. The maximum weight matching gives the closest correspondence between two
sorts. Since the number of cards was 26, a matching of weight 26 indicated perfect correspondence.

We developed a tool to compute the distance between sorts. This was a stand alone application
written in C#. The core of the application was an algorithm for computing the maximum weight
matching in a complete bipartite graph. The tool allowed pair-wise comparison of sort, as well as
comparing a sort against all other sorts, and comparing all pairs of sorts. Comparing a sort against
all other sorts allowed identifying the closest neighbors of a sort. The all pairs comparison was run

Click here to enter title

(Complete)
I R e,
recursion

function

procedure

list T
tree ——— |

iteration — 7

if-then-else :|—|
loop

thread

Expression —_—
amay =t

state —
event S

scope :I
choice

decomposition ——————
dependency

abstraction 37
encapsulation

method —_—
object —_—

parameter
variable 37
constant
boolean
0 0.2 0.4 I 0.6 o ' 1

0.30 070

Figure 3: Moving left to right in the dendrogram, term clusters are repeatedly joined based on their
“cluster” co-occurrence.

over the full set of 1198 sorts. We discovered 21 pairs of sorts with a matching of weight 26 (perfect
correspondence), 48 pairs of weight 25 (distance one), and 163 pairs of weight 24 (distance 2).

4.2 Difficulty of Learning, Order of Learning

The concepts of “order of learning” and “level of difficulty” appeared frequently as sort criteria.
Under “order of learning,” we included all the criteria that represented the sequential learning
process, such as “order of learning,” “order things were presented,” “order things should have been
presented,” and “order of presentation in a textbook.” Under “level of difficulty” we included criteria
such as “simpleness,” “complexity,” and “more versus less advanced.” Within each of the “order of
learning” criteria, we identified categories that corresponded to “early” and “late,” and within each
of the “level of difficulty” criteria we identified categories that corresponded to “easy” and “difficult.”
We then determined the frequencies with which stimuli appeared in each of these categories.

All of the stimuli categorized most frequently as “easy” were also categorized most frequently as
“early.” As shown in Figure 4 these include concepts such as “variable,” “constant,” and “function.”

Similarly, stimuli that were most frequently categorized as “difficult” were also categorized most
frequently as “late” in the learning sequence. As shown in Figure 5, these included concepts such
as “encapsulation,” “decomposition,” and “abstraction.”

There is no inverse relationship. Nothing that appears in the “late” category appears in the
“easy” category, and nothing that appears in the “early” category appears in the “difficult” category.
None of the students who performed these sorts placed “decomposition,” “encapsulation,” or “tree”

Variable
Boolean
Constant
If-then-else
Loop
Type
Expression
Iteration

Function

0% 20% 40% 60% 80% 100%

Boolean

Variable

Constant

Type

If-then-else

Expression

0% 20% 40% 60% 80% 100%

Figure 4: Stimuli categorized as “early” or “easy.”

)

category, and none of them placed “function,” “procedure,” “if-then-else,” “boolean,”
constant,” “loop,” or “expression” in the “late” category. None of the students placed
“dependency” in the “easy” category, and none of them placed “boolean” or “variable” in the
“difficult” category.

The students who performed these sorts appear to be representative of the student population
as a whole. There were eighteen of these students. As shown in Figure 6, the percentage of women
in these subpopulations is comparable to that in the general student population. We found no
differences with regard to age, performance level, or programming-language background between
these students and the general student population.

In addition to the eighteen students, five educators performed sorts using “level of difficulty”
and/or “order of learning” criteria. The categorizations used by students were similar to, but not
identical to the categorizations used by educators. The stimuli the majority of the students cat-
egorized as “easy” were also categorized as “easy” by a majority of the educator subpopulation.
However only two of the stimuli, “recursion” and “tree,” that were most often categorized as “dif-
ficult” by students were also categorized as “difficult” by educators. All of the stimuli most often
categorized as “early” by the students were most often categorized as “early” by the educators, with
the exception of “expression” and “type.” “Expression” and “type” were categorized by students as
“early,” but not by educators.

This data raises the question of whether material that is presented early is generally perceived
as easy by the students, perhaps because they have more time to absorb it, perhaps because it
is emphasized by the instructor. To answer this question, however, we need to obtain data from
students to whom concepts have been presented in different orders.

in the “early
“variable,” “

Tree

Recursion

Object

Abstraction

List

Decomposition

Encapsulation

0%

20% 40% 60% 80% 100%

Abstraction
Recursion
Encapsulation
Object

Tree
Dependency
Decomposition
Scope

Iteration

0%

20% 40% 60% 80% 100%

Figure 5: Stimuli categorized as “late” or “difficult.”

In particular, it would be interesting to obtain data from students who are introduced to abstract
concepts such as “encapsulation” early. The “late” and “difficult” concepts in our data are also the

more abstract concepts. Asar

esult, the apparent correlation between order of learning and level of

difficulty might be due to a general tendency to find concrete concepts easier.

4.3 Gender

Are there differences in the w

ay in which men and women students organize their knowledge of

programming concepts? In order to answer this question, we compared a number of factors:

e the number of sorts performed

e the average number of categories per sort

e the use of a “don’t know’

In the quantitative factors

students, as shown in Figure 7.

the use of binary sorts (that is, the sorts in which there were precisely two categories)

the use of oppositional criteria (criteria where the categories can be ordered along a scale)

’ category.

we examined, there was little difference between male and female
The average number of sorts is similar for both genders (except for

the over-40 category). On average, women have more categories per sort (4.4 vs. 4.0). Women are

also slightly more likely to use
criteria (17.2% vs. 16.2%).

both binary sorts (41.4% vs. 40%) and sorts involving oppositional

No. of subjects who are | % of total subjects who are
women men women, men
Total student population 58 185 24% 76%
“Order of learning” subpopulation 4 14 22% 8%
“Level of difficulty” subpopulation 5 23 18% 82%

Figure 6: “Order of learning” and “level of difficulty” subpopulations compared with the general
student population.

Men | Women | Total
Number of students 185 58 243
Number of sorts 831 258 1089
Number of categories 3284 1131 4415
Number of students who used binary sorts 74 24 98
Number of students who used oppositional criteria 30 10 40
Number of oppositional criteria 43 14 57
Average number of sorts 4.5 4.4 4.5
Average categories / sort 4.0 4.4 4.1
Percent who used binary sorts 40 414 40.3
Percent who used oppositional criteria 16.2 17.2 16.5

Figure 7: Breakdown by gender.

Based on a preliminary analysis, the qualitative data also revealed little difference between male
and female students. We identified several groups of criteria that had approximately the same
meaning, as shown in Figure 8. Of this initial list, we focus on four: the creative analogies, the
oppositional criteria, the emotional response, and the no-name criteria. Notably, the difference
between males and females in each of these areas was quite small.

4.3.1 Creative analogies

Four criteria made analogies to situations outside of computer science. These sorts are summarized
in Figure 9.

These analogies were made by four different students, two male and two female. One female
student related the concepts to painting, comparing some to the palette and others to the finished
painting. The other female student used a sports analogy, comparing concepts to players, formations,
and coaching. One male student compared programming structures to a Russian doll, apparently
thinking of nested programming structures. Finally, the second male student suggested an analogy
between the concepts and the tools and materials used in construction.

What can we conclude? The numbers of male and female students suggesting these analogies
were equal. More significantly, both were very small compared to the total number of sorts. We
cannot conclude anything significant about gender differences from these examples, but it does seem
clear that very few of our subjects use concepts from outside of computer science to organize their
knowledge about programming.

4.3.2 Scalar criteria

“Scalar criteria” are criteria that order the concepts along a scale from one extreme to another:
objects vs. functions, concrete vs. abstract, design vs. implementation, compile-time vs. runtime,
and so forth. Scalar criteria may or may not result in binary sorts. For example, a student might
classify all the cards as either “concrete” or “abstract,” or might identify several levels of abstraction.
Several subjects gave more than one scalar criterion, so the number of subjects is consistently lower
than the number of criteria.

We conjectured that male students would have more sorts that fell into this group, and surpris-
ingly, that turned out to be false. Of the sorts done by male students, 43 out of 831, or 5%, contained

10

Abstract /abstraction Behaviour

Change Code

Complexity Concepts

Concrete Control/control structures/control flow
Creative analogies Datatype/data/data structure/variables
Dependency Design
Don’tknow/unknown/other/not applicable Emotional reaction

Functions GUI or event-oriented

Hierarchy Ideas

Information hiding Judgemental

Level of difficulty/ease/simplicity Lifetime

Natural language related No name

Object-oriented Oppositional

Parts of a program Practicality

Programming language related Programming lifecycle

Programming paradigms Relationship

Figure 8: Possible “gists” found in the card-sort criteria.

Criterion Gender of subject | Related categories Analogy to
structure - a sliding scale - | male Most general, the arts
the Russian doll effect 2nd most general,

3nd most general,
4th most general,
not applicable
Elements of construction male construction materials | construction
Painting analogy female palette, the arts
finished product,
don’t know
Actors and manipulators female players, sports
formations,
coaching,
unsure

Figure 9: Criteria involving analogies to a situation outside computer science.

scalar criteria. Of the sorts given by female students, 14 out of 258 contained scalar criteria, which
also rounds to 5%. Considered as a percentage of subjects, the results are also very close. 16% of
the male students (30 of 185) gave scalar criteria, compared to 17% of the female students (10 of
58). Male and female students were essentially identical in this respect.

4.3.3 Emotional responses to the concepts

We noted several criteria that expressed emotional responses to the concepts on the cards. These
included “words I hate” (NS06), “things that cause me grief” (IS03), “things I'm comfortable with”
(BS10), “comfortableness” (NS06), “how comfortable I am on the topic” (QS08), “overall likeness of
what I do” (MS05)1, and “usefulness to me”(MSO05). Surprisingly, five of these responses came from
five different male subjects, and two came from a single female subject (MS05). It is surprising that
more of these criteria were provided by male subjects than female, but as with the creative analogy
criteria, the numbers are so small that any conclusion is tentative. In fact, again as with analogies,
the low frequency of these criteria is itself striking. It may indicate that students do not organize
their programming knowledge on this basis; alternatively it is possible that subjects believed these
criteria to be insufficiently “serious,” and therefore did not mention them to the researchers.

11

16-24 | 25-40 | over 40 | Total
Number of students 187 41 15 243
Men 147 28 10 185
Women 40 13 5 58
Number of sorts 867 170 52 1089
Number of categories 3499 727 189 4415
Percent women 214 31.7 33.3 23.9
Average sorts / student 4.6 4.1 3.5 4.5
Average categories / sort 4.0 4.3 3.6 4.1

Figure 10: Comparison by age groups.

16-2 2540 11+ All ages

M F all M F all M F all M F all

Number of students 147 40 187 28 13 41 10 5 15 185 58 243

Number of sorts 676 | 191 | 867 | 115 | 55 | 170 | 40 | 12 | 52 | 831 | 258 | 1089

No. of categories 2669 | 830 | 3499 | 473 | 2564 | 727 | 143 | 47 | 189 | 3284 | 1131 | 4415

Ave. sorts/subject 46 | 48 | 46 | 41 | 42 | 41 | 40 |24 | 35| 45 4.4 4.5

Ave. categories/sort | 4.0 | 44 | 40 | 41 | 46 | 43 | 3.6 [3.9 | 3.6 | 4.0 | 44 | 4.1

Figure 11: Data for gender and age combined.

4.3.4 Unnamed criteria

Finally, we consider the unnamed criteria. Unnamed criteria are those that were not provided a
name, for example, “Group 1,” “Forgot to do it,” or “no name.” In general, these were categories
where, even after intervention, the subject was unable to give a name to the category. Of the sorts
given by female students, 4.68% were unnamed, while 6.24% of the sorts given by male students
were unnamed. We do not yet have the relative percentages by student. This is a slight difference,
but it seems to confirm our preconception that female students are more verbal.

In summary, we found surprisingly little difference between the male and female students. A
more extensive qualitative analysis might reveal differences between the genders. Alternatively, it
has been conjectured that computer-science students are a “different breed” that are much more like
each other than the larger population of students who have other majors.

4.4 Age

Do students of different ages organize computer concepts differently? In order to answer this ques-
tion, we divided students into three groups: 16-24 (traditional college-student age, or close to it),
25-40, and over 40. 187 of our students were in or close to the traditional student age, from 16-24.
41 students were in the age-range 25-40, and 15 of them were over 40.

A breakdown of several factors by age is given in Figure 10. The average number of sorts declines
with increasing age. The average number of categories per sort increases slightly from the youngest
age group to the middle age group, and then drops substantially from the middle age group to the
oldest age group (though the number of students in the oldest age group is quite small).

4.5 Age and gender in combination

Computations about gender and age are combined in Figure 11. The average number of sorts is
similar for both genders in each age group (except for the over-40 category). In both genders,
the average number of sorts declines with increasing age. Unlike the number of sorts, the number
of categories per sort is consistently different between men and women. In each one of the age
categories, men have fewer categories per sort.

12

Students | Educators
Number of subjects 243 33
Total number of sorts 1089 171
Total number of categories 4415 638
Average number of sorts per subject 4.5 5.2
Average number of categories per sort 4.0 3.7

Figure 12: Number of sorts, and number of categories per sort, for students and educators.

4.6 Students vs. educators

We also considered the average number of sorts, and the average number of categories per sort, for
the educators and the students in our sample. These computations are summarized in Figure 12.
Educators, on average, had fewer sorts than students. Since the educators are generally older than
the students, this supports the suggestion based on Figure 11 that the number of sorts decreases
with age.

The average number of categories per sort does not seem to decrease with age, however, and it is
lower for educators than for students. Educators had slightly fewer categories per sort on the average
(3.7) than did students (4.0). 52% of the educators did binary sorts. Interestingly, male educators
were consistent with students. 40% of male educators did one or more binary sorts. 88% of female
educators did one or more binary sorts, but this percentage is based on a small total sample size of
female educators (n=8).

4.7
4.7.1 Process

“Don’t Know” categories

Rugg and McGeorge ([11]) advise that respondents be instructed “they can use the categories of
‘other’, 'not sure’ and 'not applicable’: this identifies areas where a category is being pushed beyond
its range of convenience, areas where respondents’ knowledge ends, and various other very useful
things.” All interviews began with verbal instructions that state “You are welcome to use any
criteria you like, and any groups you like including ’don’t know’, 'not sure’ and not applicable’.”

Since the “don’t know” category can reveal useful information about the subjects’ knowledge
structures, it is important to examine the cards placed in this category carefully. What are the
programming terms that students are most frequently placing into the “don’t know” category? Do
these terms have common characteristics? Given the variation in institutions, experimenters, and
countries, we first did a gist analysis of “don’t know” among all of the sorts for all subjects. This
yielded a variety of phrases including, “things I didn’t understand”, undefinable“, “haven’t learned”,
“unfamiliar”, and “in my bad graces”.

Since there were students who classified cards in “don’t know” in one sort and in a named
category in another, it was clear that “don’t know” sometimes meant, “don’t know in this context”.
There were also students who always placed the same cards in a “don’t know” category for every
sort, indicating that the students did not know what the term meant in any context. In the balance
of this analysis, we treat these two meanings of “don’t know” as the same. 36% of the sorts contained
a “don’t know” category and 63% of subjects used a “don’t know” category at least once.

Observations during the interviews suggested that terms categorized as “don’t know” were fre-
quently terms the researchers considered to be more abstract. Our conjecture is that this observation
is consistent with the data from our entire population. To determine abstract terms for our analysis,
eleven of the researchers were asked to classify each of the stimuli terms as “Concrete” or “Abstract”.
Figure 13 shows the results of these classifications.

Figure 14 shows the total number of times each concept was placed in a “don’t know” category
by one of the student subjects.

4.7.2 Discussion

Terms classified as “don’t know” are frequently abstract terms. The six stimuli that researchers
most frequently placed in the abstract category comprised 53% of the student “don’t know” cate-

13

Number of researchers | Stimuli

(of 11) identifying

term as abstract

11 dependency, decomposition, abstraction, encapsulation

7 state, tree

3-5 object, scope, list recursion, choice, thread, event

1-2 methods, procedure, type, expression, iteration, array, function
0 if-then-else, boolean, parameter, variable, constant, loop

Figure 13: Abstract stimuli, as classified by researchers.

Occurrences of Stimuli in Student "Don't Know" Categories

array B2
B3 m Most frequently rated
parameter :l:l 5 "abstract] by
=6 researchers
if-then-else =1 8
list =111
function =19
recursion ::I 20

iteration | 32

scope

100

] 1151
state 163
175
dependency 96
| 1234
decomposition *# 271

0 50 100 150 200 250 300

)

Figure 14: Occurrences of stimuli in student “don’t know” categories.

gorizations. If we include “thread,” that total would be substantially larger, since it was the second
most frequently occurring student “don’t know” stimulus. Almost half of the researchers considered
it to be abstract as well. Further, 88% of the “don’t know” categories contained at least one ab-
stract term. On the other hand, the six cards that none of the researchers categorized as abstract
comprised only 1.8% of the student “don’t know” categorizations.

4.8 Programming languages used by students

Subjects reported familiarity with a large set of languages (68 in total). Prior to undertaking the
card sorting exercise each subject was asked to rate his or her familiarity with Java, C++4, C, Ada,
Scheme, Pascal, and Visual Basic. In addition, subjects were invited to enumerate “other” languages
they were familiar with. No constraints were imposed on subjects’ views of what constituted a
“programming language”. A total of 61 different “other” languages were recorded.

In order, the six most popular languages were C++, Java, Visual Basic, C, Pascal, and Scheme.
As shown in Figure 16, 79% of subjects reported some familiarity with C++, and 12.8% had used
Scheme. None of the remaining 62 languages had more than 16 mentions (out of 243 students).
About 81% of the languages had ten mentions or fewer, and approximately 67% of the languages
were “single mentions” by individual subjects.

For each of the seven project-specified languages, plus any others they listed, students indicated
their familiarity using an integer score in the range 1-5, with 1 indicating “never used” and 5

14

2 3 7 5

E S E S E g E S

M| F|M|F | M|F| M| F | M|F| M| F|M|F|M|F
Ct+ 510 (33[10| 4 |1]36|14]3]0]35]11 11449
Java 0 2189 4253|136 |2 44]10|11]2]21]6
VB 4 437|771]31|16]5 0215 |1]1]13[1
C 3044|112 |5]251 4|6 [1]|16]214]0]8 1
Pascal | 3 | 0|17 6 | 5 |3 |10] 2 |6 |1]11]| 3 |11|2] 5 |3
Scheme | 7 | 1| 8 | 3|5 |28 | 4]3[0|6]1]0]0]o0]1

Figure 15: Summary of the data regarding language familiarity for the six most frequently reported
languages. (“E” stands for “educator,” and “S” stands for “student.” “1” indicates “never used,”
and “5” indicates “have used a lot.”)

2 3 4 5 Any of 2-5
M F M F M F M F M F All
C++ 17.8 | 17.2 | 19.5 | 24.1 | 18.9 | 19.0 | 23.8 | 155 | 80 | 75.9 | 79.0

Java 9.7 | 155 | 28.6 | 224 | 23.8 | 17.2 | 11.4 | 10.3 | 73.5 | 65.5 | 71.6
VB 20 | 12.1 | 16.8 | 27.6 | 11.4 | 8.6 7.0 1.7 | 55.1 | 50 | 53.9
C 23.8 1190|135 | 69 | 86 | 3.4 | 4.3 1.7 | 50.3 | 31 | 45.7

Pascal 92 1103 | 54 | 34 | 59 | 5.2 2.7 | 5.2 | 232|241 | 23.5
Scheme | 4.3 52 | 43 | 6.9 | 3.2 1.7 0 1.7 | 11.9 | 15.5 | 12.8

Figure 16: Percentage of male and female students familiar with each of the six most popular
languages, with levels of familiarity.

indicating “have used a lot.” The familiarity rankings for the six most frequently-cited languages
are summarized in Figure 15. C++ and Pascal familiarity is evenly spread across the rating levels
while all the others diminish at the higher end.

4.8.1 Programming language familiarity by gender

Using Figure 15 as a starting point, we computed the percentage of men and women who are familiar
with each of the top six programming languages. The results of this computation are presented in
Figure 16. The top six languages are the same for both men and women, and they appear in the
same order. Men appear to rate themselves higher; this suggests a question for further investigation,
whether men and women of similar ability generally give themselves different ratings on this kind of
scale.

Another question, one that we might be able to answer from our data, is whether men and women
report knowledge (at least at some level) of the same number of languages, on average.

4.8.2 Programming language familiarity for educators vs. students

Similarly, we can use the data from Figure 15 as a basis for comparing the students and educators
among our subjects. The percentages of students and educators who report familiarity with the six
most popular languages at various levels is given in Figure 17. As we might expect, the percentage
of educators is generally higher than the percentage of students who report knowledge of a given
language. The percentage of educators who report knowledge of C, Pascal, or Scheme is much greater
than the percentage of students who report knowledge of those languages. The one exception,
surprisingly, is C++. 79% of students report some knowledge of C++, while only 51.5% of the
educators report knowledge of C++.

The frequency of these languages is also different in the two groups. Students, as mentioned
above, report knowledge of C++ most frequently, followed by Java, VB, C, Pascal, and Scheme in
that order. For educators, however, C and Pascal are the most frequent (tied at 93.9%), followed
by Java (at 87.9%), then with a significant dropoff to VB, Scheme, and C++, in that order. The

15

2 3 4 5 Any of 2-5
E S E S E S E S E S
C++ 15.1 | 17.7 | 15.1 | 20.6 | 9.1 18.9 | 12.1 | 21.8 | 51.5 | 79.0
Java 6.1 | 11.1 | 182 | 27.2 | 24.2 | 22.2 | 394 | 11.1 | 87.9 | 71.6
VB 24.2 | 181 | 24.2 | 19.3 | 15.1 | 10.7 | 6.1 5.8 | 69.7 | 53.9
C 9.1 | 226 | 21.2 | 11.9 | 21.2 | 7.4 | 424 | 3.7 | 93.9 | 45.7
Pascal 9.1 95 (242 | 49 |21.2| 58 394 | 3.3 | 93.9 | 23.5
Scheme | 24.2 | 4.5 | 21.2 | 4.9 9.1 2.9 0 0.4 | 54.5 | 12.8

Figure 17: Percentages of students and educators familiar with the six most popular languages, with
levels of familiarity.

frequency of C and Pascal is not surprising, given their popularity until recently, but again, the
result for C++ seems anomalous. Possibly some of the students are learning C++ in high school,
which would explain the fact that their frequency is higher than the frequency of educators at the
same institutions. But that still does not explain why relatively few educators report knowledge of
C++.

4.8.3 Most frequently occurring card sorts

To determine whether knowledge of particular languages has an effect on category formation, we
counted how often each category was formed, in other words, the number of sorts where that com-
bination of stimuli occurred as the entire contents of a category. Then for each of the six languages
that were most popular with our subjects, we counted the number of times each category appeared
in the sorts performed by students who reported some knowledge of that language.

The top ten categories overall were:

1. List, Tree, Array (occurred in 104 out of 1247 sorts)
2. Thread (52 times)
3. Recursion, Loop, Iteration (48 times)
4. Function, Method, Procedure (38 times)
5. If-Then-Else, Recursion, Loop, Iteration (33 times)
6. Decomposition, Abstraction, Encapsulation (28 times)
7. List, Array (28 times)
8. Thread, Event (28 times)
9. List, Tree (27 times)
10. Object, List, Tree, Array (24 times)

The category appearing most frequently across the entire population, “list”, “tree”, and “array”,
was language-independent - it was the most frequent category in each of the six language subpopu-
lations by a large margin. The top ten categories for the six language subpopulations all included
at least six of the ten most frequent categories from the overall list, and categories 1-3, 6, and 8
from the overall list — “list, tree, array,” “thread,” “recursion, loop, iteration,” “decomposition,
abstraction, encapsulation,” and “thread, event” — appeared on all of the language subpopulation
lists. These similarities indicate that at least some aspects of subjects’ conceptual structures are
consistent across language.

16

4.8.4 Functional-first students

Only 20 students assigned themselves a familiarity score of three or higher for a functional language,
Scheme, and 17 of those came from a single functional-first institution. This makes it difficult to
distinguish effects of language choice from other institutional influences. The functional-first students
had characteristic “don’t know” categories, and members were likely to be most similar overall to
another functional-first student. They grouped “recursion” and “iteration” together in categories
more often than the overall population, but not by a large margin. (It is also worth noting that
“iteration” occurs more frequently with “recursion” across all subjects than does any other term,
supporting previous results with novice computing students.

Most educators expressed familiarity with Scheme, Lisp, or Haskell, but this was not true of the
243 students. None knew Haskell and only two expressed any familiarity with Lisp, neither of which
rated themselves above a two. Twenty student subjects assigned themselves a familiarity score of
three or higher for a functional language, and in all 20 cases the language was Scheme. Seventeen
of these students came from a single institution, making it difficult to distinguish effects of language
choice from other institutional influences.

Previous work with novice students has shown that imperative programmers form strong associ-
ations between recursion and iteration, since they scaffold their concept of recursion off of iteration.
[9] This result is evident in our results as well. Across all 1258 sorts, “recursion” and “iteration”
appeared in the same category 896 times. No other card appeared with “recursion” as often. The
next closest, “if-then-else”, appeared 634 times. We found that students introduced to programming
via functional languages associate the terms more closely than the student population average, but
the group score is not unique. The 17 students from the functional-first institution grouped the
terms together in 85 of their 110 sorts. Thus, “recursion” and “iteration” appeared in the same
category in 77% of the sorts done by functional-first students versus 66% for the overall population.
While no institutional average over 77% has yet been found, at least one institution had an average
of 76%.

A more significant difference was that the functional-first group members had a distinctive pattern
to their “don’t know” categories, which often contained terms like “thread”, “event”, “encapsula-
tion”, and “dependency”.

Gist analysis revealed another distinctive characteristic that is likely the result of learning to
program in a language without destructive modification: Ten of the 17 students performed sorts on
a criterion having to do with mutability (e.g. “Changeability”, “Amount affectable”, “Variability”,
“Things that change and things that stay the same”). In the remainder of the student population,
only six sorts made this same distinction.

Analysis of the data relating to programming languages suggests several additional questions,
including:

e whether procedural-first and object-first students have different associations with “Object.”
Conjecture: it’s paired with “List” in a procedural-first group, while Object-First Java students
associate it with “Variable.”

e whether functional-first students think differently about the notion of “state”. Here we might
look for patterns in the dendrograms.

e whether there are interesting differences between students who have used multiple languages
and those who have used just one?

e whether there are interesting differences between students who have been taught the same
language with different approaches? (For example, Java taught procedural-first vs. objects-

first.)

5 Conclusions and Future ork

In this study, we used a multiple, subject-defined, single-criterion card sort to elicit students’ concep-
tual structures. Unlike observational or programming task studies, card sorts allow us to elicit the
conceptual structures formed by students. Gathering data across multiple schools and nations pro-
vides insight on structures common across a wide variety of students as well as structures particular
to subgroups of students.

17

Our initial analysis has several results:

e The concepts students place in a “don’t know” category are most often abstract.
e Women consistently have more categories per sort.

e The average number of sorts decreases with age.

e The most frequently formed category (list, tree, array) is independent of the languages with
which a student is familiar.

e It is suggested that concepts learned early are easy, and concepts learned late are hard.
e Students have a strong association between recursion and iteration.
e Functional-first students appear to have distinctive “don’t-know” categories.

e Functional-first students appear to be more likely to perform sorts based on “mutability” or
“change.”

Some of these results need to be qualified. For example, there is strong support for the proposition
that the more abstract a concept is, the more likely students are to place it in a “don’t know”
category. Not all students distinguished clearly between two types of “don’t know” categories,
however, so sometimes these categories include concepts the student doesn’t know, and sometimes
they are concepts the student knows, but can’t fit into any of the other categories.

When examining the possible influence of programming language on concept formation, we con-
sidered the most popular categories. The most frequently formed category overall — list, tree, array
— it turns out, is also most frequent among all of the subpopulations of students who know C++, or
Java, or one of the other popular languages among our subjects. Several of the top-ten categories
overall are also top ten regardless of language. We have not yet looked at the top-ten categories
in any other context, so we don’t know if there are subpopulations where this varies: male/female,
old/young, by institution, etc. In addition, when we looked at programming languages, we grouped
students by whether they reported having any exposure to a language at all. How much influence
would a minimal exposure to a language have on concept formation? We would like to examine
this question further, taking into account the students’ CS1 language, or the language they report
knowing the best.

Another very interesting result is really only suggested by our data: the idea that concepts
learned early are easy, and concepts learned late are hard. Only eighteen students did these sorts,
and it’s not clear how many of them did both (easy-hard and early-late). The correlation so far is
based on aggregate data. Those who did do both sorts, if any, may all have learned things in the
same order; they may even have been from the same institution. To be sure of this result, we’d need
to know what order students learned things in and include students who learned things in different
orders. In particular, it would be good to have some students who learned abstract concepts such
as “encapsulation” early, because it may be that the real correlation here is that concrete things
(which happen to have been learned early) are easy, and abstract things (which happen to have been
learned late) are hard.

Finally, the number of functional-first students was also very small, and nearly all of them were
from a single institution. Thus, the results concerning functional-first students, while interesting,
must also be considered no more than suggestive.

In addition to the results of the study we also have some meta-results, things we learned about
the process of carrying out a study on this scale.

e Although we used the McCracken task as the participation discriminator, it required a sub-
jective estimation by individual researchers and may have yielded students at different levels
of preparedness. Similarly, the necessities of scheduling the sorting interviews meant that
students who sorted later may have had more computer science instruction.

e This study used educators but did not concentrate on collecting a wide cross-section of experts.
We have little information about the educators, such as their level of expertise or whether they
have taught the students in this study.

18

e The meaning of “don’t know” is problematic. Some researchers had their students make
explicit which “don’t know” they meant, but others did not.

e Conclusions based on subject self-rating of programming language experience reflect the confi-
dence of the individual and may be skewed along the lines of race, gender or ethnicity. Although
we attempted to standardize evaluations of student performance, ratings for students may not
be uniform across institutions. In addition, this evaluation of student performance may not
take into account factors such as the first programming language used or the amount and
source of previous programming experience (e.g. AP credit, transfer credit).

e Data analysis of a sufficiently rich and interesting data set always takes longer than you think.

The data set gathered in this study represents the largest and most diverse collection of material
relating to conceptual structures of first competency programmers to date. We have identified
several themes in the data, but there is much more to be done; this rich data set will support further
investigation.

Moreover, if our data is combined with new material, more wide-ranging questions might be
addressed. For example, an in-depth study of educators and industry professionals may provide
insight into their conceptual structures, which might be related to their background, training, and
career, which may provide a richer comparator for student hierarchies. A longitudinal study tracking
student conceptual structures may provide insights into how these change over time and how they
correlate with an expert population.

Acknowledgements

The Bootstrapping project was supported by the National Science Foundation Grant No. DUE-
0122560. We are grateful to Barbados Community College for data gathering opportunities; to
Gordon Rugg, for advice and guidance on card sorting; to Robin Blume-Kohout for advice on
matrix comparability; to Ian Utting for propping up the workshop leaders; to Kate Deibel and
Janet Davis for help with data collection; to Karen Furuya for help with data analysis; and to Noel
Welsh and Jim Bender.

Authors’ Affiliations

Marian Petre Computing Department, The Open University, Milton Keynes, MK7 6AA, UK.
m.petreQopen.ac.uk

Sally Fincher Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.
S.A.Fincher@kent.ac.uk

Josh Tenenberg Computing and Software Systems, University of Washington Tacoma, Tacoma,
WA 98402, USA. jtenenbg@u.washington.edu

Ruth Anderson Department of Computer Science, University of Virginia, Charlottesville, VA 22904,
USA. ruth@cs.virginia.edu

Dennis Bouvier Computer Science Department, Saint Louis University, St. Louis, MO 63103, USA.
bouvier@cs.slu.edu

Sue Fitzgerald Metropolitan State University, Minneapolis, MN 55403, USA. sue.fitzgerald@metrostate.edu

Alicia Gutschow Information Systems Technology, Blue Ridge Community College, Weyers Cave,
VA 24486, USA. gutschowA@brcc.edu

Susan Haller Computer Science Department, University of Wisconsin Parkside, Kenosha, Wisconsin
53141, USA. haller@cs.uwp.edu

Gary Lewandowski Math/CS Department, Xavier University, Cincinnati, OH 45207, USA. lewandow@cs.xu.edu
Raymond Lister Software Engineering Department, University of Technology, Sydney, Australia.

raymond@it.uts.edu.au

19

Renée McCauley Computer Science Department, College of Charleston, Charleston, SC 29424,
USA. mccauley@cs.cofc.edu

John McTaggart Department of Mathematics and Computer Science, Drake University, Des
Moines, TA 50311, USA. john.mctaggart@drake.edu

Briana B. Morrison Computer Science Department, Southern Polytechnic State University, Mari-
etta, GA 30060, USA. bmorriso@spsu.edu

Laurie Murphy Computer Science and Computer Engineering Department, Pacific Lutheran Uni-
versity, Tacoma, WA 98447, USA. murphylc@plu.edu

Christine Prasad School of Computing and Information Technology, UNITEC Institute of Technol-
ogy, Auckland, New Zealand. cprasad@unitec.ac.nz

Brad Richards Computer Science Department, Vassar College, Poughkeepsie, NY 12604, USA.
richards@cs.vassar.edu

Kate Sanders Math/CS Department, Rhode Island College, Providence, RI 02906, USA. ksanders@ric.edu

Terry Scott Department of Mathematical Sciences, University of Northern Colorado, Greeley, CO
80639, USA. tscott@fisher.unco.edu

Dermot Shinners-Kennedy Department of Computer Science and Information Systems, University
of Limerick, Limerick, Ireland. Dermot.Shinners-Kennedy@ul.ie

Lynda Thomas Department of Computer Science, University of Wales, Aberystwyth, Dyfed, SY23
3DB, Wales, UK. Itt@aber.ac.uk

Suzanne Westbrook Computer Science Department, University of Arizona, Tucson, AZ 85721, USA.
sw@Qcs.arizona.edu

Carol Zander Computing & Software Systems, University of Washington Bothell, Bothell, WA
98011, USA. zander@u.washington.edu

20

eferences

[1]

Beth Adelson. Problem solving and the development of abstract categories in programming
languages. Memory and Cognition, 9(4):422-433, 1981.

M. S. Aldenderfer and R. K. Blashfield. Cluster Analysis. Sage Publications, 1984.

C. M. Allwood. Novices on the computer: A review of the literature. International Journal of

Man-Machine Studies, 25:633-658, 1986.
M. T. H. Chi, R. Glazer, and M. J. Farr, editors. The nature of expertise. Erlbaum, 1988.

Simon P. Davies, David J. Gilmore, and Thomas R. G. Green. Are objects that important?
the effects of expertise and familiarity on the classification of object-oriented code. Human-
Computer Interaction, 10(2 & 3):227-248, 1995.

Jianming Dong, Shirley Martin, and Paul Waldo. A user input and analysis tool for information
architecture. (http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/410), June 2004.

Michael McCracken et al. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4):125-140, December
2001.

M. W. Eysenck and M. T. Keane. A Handbook of Cognitive Psychology. Psychology Press,
1995.

C. M. Kessler and J. R. Anderson. Learning flow of control: Recursive and iterative procedures.
Human-Computer Interaction, 2, 1986.

F. Marton and R. S&ljo. On qualitative differences in learning: Outcome and process. British
Journal of Educational Psychology, 46:4-11, 1976.

G. Rugg and P. McGeorge. The sorting techniques: Card sorts, picture sorts and item sorts.
Ezpert Systems, 14(2):80-93, 1997.

21

Appendices

A Background Questionnaire

Subject Identifier:
Age: ____________
Gender: M F

Are you a: full-time part-time student?

Do you generally attend day night classes?

Do you hold an external job? Yes No

If so, how many hours per week (on average) do you work? _____________
If so, is the job in the computer industry? Yes No

What programming language was taught in your (CS1) class? ___________
What programming language was taught in your (CS2) class? ___________
At what age did you begin to program? _________

A.1 Programming Experience

On a scale of 1 (never used) to 5 (have used a lot) please rate your familiarity with the following
programming languages (place an X in the appropriate column):

1121345

Java

C++

C

Ada

Scheme

Pascal

Visual Basic (VB)
Other (please list)

Thank you.

22

B Instructions for Card Sort

B.1 Introduction

You will be given some cards to sort. Each card will have the name of a programming concept on
it. We would like you to sort the cards into groups, using one criterion at a time. When you have
finished sorting, we will ask you what the groups were that you sorted the cards into, and what the
criterion was for that sort. Once this has been done, we would like you to sort the cards again-using
a different criterion-and then to keep on sorting them until you have run out of criteria.

For example, if the task was sorting pictures of different types of house, you might sort them
into groups “brick”, “stone”, “wood”, etc., depending on their main material of construction; the
second time you might divide the cards into groups called “one”, “two” and “three”, depending on
the number of floors in each building.

In this task, we would like you to concentrate on how programs are constructed, rather than on
superficial surface detail. For instance, if you were sorting pictures of houses, you might sort the
houses in a variety of ways relating to construction, such as whether they required deep foundations,
or whether the brickwork would be complicated, or whether there were internal load-bearing walls,
rather than on superficial details such as the colour of the brick.

You are welcome to use any criteria you like, and any groups you like, including “don’t know”,
“not sure” and “not applicable”. The main thing is to use only one criterion in each sort-please
don’t lump two or more in together. If you’re not sure about something, just ask.

You may have noticed that the cards are numbered: this is for convenience when recording the
results. The numbering is random, so please don’t use that as a criterion for sorting!

If you have any comments or questions, then please say, and we will sort them out.

Thank you for your help.

23

C History of the Bootstrapping Project

Bootstrapping Research in Computer Science Education was a project intended as a hands-on “way
in” to high-quality computer science education research for computer science higher-education fac-
ulty. The project was supported by the National Science Foundation Grant No. DUE-0122560
and by Washington State’s Institute of Technology at the University of Washington-Tacoma. Boot-
strapping used a workshop format to bring practitioners and expert researchers together to initiate
principled, large-scale teaching and learning research.

The key objectives of the project were:

e To improve the state of computer science education research and thereby to improve the state
of CS education by developing skills (in the design, conduct, and management of research) of
CS educators by exposing them to relevant theory and methods.

e To establish research relationships that extend beyond the duration of the workshops, con-
tributing to a research community able to sustain a constructive discourse and ongoing collab-
oration.

e To engender skills and confidence that allow participants to initiate subsequent research and
engage in the wider research community.

C.1 Participants

The workshop leaders chose twenty-one workshop participants from over sixty applicants. The
participants came from a range of host institutions including community colleges, primarily under-
graduate colleges, and research universities from four continents and six countries. The participants
brought diverse expertise, enthusiasm, and a high-level of energy to the project.

C.2 First workshop

Participation in the project included a commitment to attend two workshops given one year apart and
to perform the study described in the experiment kit in the interim. The initial workshop took place
June 1 - June 6, 2002 in Port Townsend, Washington. This workshop provided an “entry point” into
theoretical and empirical perspectives on Computer Science Education Research. The workshop took
a “trading zone” approach by borrowing heavily from other disciplines including education, adult
learning, business, engineering, HCI and artificial intelligence, cognitive psychology, and other social
sciences. The workshop emphasized the “Six Guiding Principles of Scientific Research” detailed
in the National Research Council Report Scientific Research in Education. Participants used the
workshop to build collaborative relationships with other CS higher-ed faculty.

Sessions on research methodology covered the design of research projects, including the impor-
tance of focal questions, evidence and analysis. The framing of research questions and how to
investigate them were key topics. Other topics included research ethics, approaches to annotated
bibliographies, and record keeping.

To complement the lecture and discussion, the participants practiced elicitation techniques such
as structured and unstructured interviews and laddering. Additionally, the participants learned to
do card sorts, the elicitation technique used in the experiment kit. The experiment kit introduced
in this project addresses programming understanding and conceptual foundations of programming
skills in first- and second-year undergraduate students.

C.3 Intervening Activities

During the following year, all workshop participants conducted card sort interviews of students and
educators within their own institutions. Participants maintained contact with one another through
the project mailing list and via informal meetings during the SIGCSE Technical Symposium. Ad-
ditional activities carried out included their institutional requirements for human subjects research.
Participants also performed preliminary analysis on their own subject data.

24

C.4 Capstone Workshop

Twenty of the twenty-one participants returned for the June 7 - June 12, 2003, capstone workshop
with data in hand. Over 270 subjects and experts had been interviewed. Data was combined
and anecdotal results were shared. The hard work began with the analysis of the data. Every
participant was responsible for formulating questions about the data and analysing. This project
paper was written by all participants, and plans were made to report and disseminate results more
widely to the Computer Science Education community, through workshops, conferences, journal
publications etc.

A critical focus of the second workshop was that each participant prepared a research plan for
a further study, either individual or in collaboration, related to their own interests. These were
critiqued and revised in groups and in plenary. In addition, plans for future collaborations and
further analysis of the project data were discussed.

25

