
\My 
riterion is: Is it a Boolean?": A 
ard-sort eli
itation ofstudents' knowledge of programming 
onstru
tsMarian Petre Sally Fin
her Josh Tenenberg Ri
hard AndersonRuth Anderson Dennis Bouvier Sue Fitzgerald Ali
ia Guts
howSusan Haller Matthew Jadud Gary Lewandowski Raymond ListerRen�ee M
Cauley, John M
Taggart Briana Morrison Laurie MurphyChristine Prasad Brad Ri
hards Kate Sanders Terry S
ottDermot Shinners-Kennedy Lynda Thomas Suzanne WestbrookCarol ZanderJune 2003
1 Introdu
tionThis study examined the way in whi
h students understand programming 
on
epts. If we 
anunderstand the nature and stru
ture of students' knowledge about programming 
onstru
ts, thenwe may be able to use that understanding to help them learn. Edu
ators know whi
h 
on
eptsthey tea
h, but not what students internalise about those 
on
epts, nor what 
on
eptual stru
turesstudents build from them.Spe
i�
ally, we wanted to know whether students have meanings for:� individual programming 
on
epts,� groups of related 
on
epts, and� relationships among groups of related 
on
epts.For example, we might ask if students have a meaning for \tree." What 
on
epts do they group\tree" with, and what name do they give the group? If they group \tree" with \list" and \array"and 
all the group \data stru
tures," what other groups of 
on
epts do they asso
iate with \datastru
tures"?Be
ause of the diversity of resear
her and student population, it was important to 
hoose amethod not 
onstrained by any programming task or the syntax of a parti
ular programming lan-guage. We adopted a methodology, 
ard sorting, from knowledge a
quisition to eli
it ea
h parti
i-pant's knowledge stru
ture (mental model, 
on
eptual model) of programming 
on
epts.We made several key assumptions:� First, the way in whi
h a subje
t organizes 
on
epts in a 
ard sort re
e
ts the subje
t's mentalrepresentation of those 
on
epts.� Se
ond, by putting a 
ard into a meaningful 
ategory, subje
ts demonstrate that the 
on
epton the 
ard has some meaning for them.� Third, by putting a 
ard into a 
ategory, subje
ts indi
ate what the 
ategory and the related
riterion mean to them.By examining the ways in whi
h students sorted the 
ards, we hoped to gain insight into the
on
eptual stru
ture of their knowledge about programming 
onstru
ts and program 
onstru
tion.Our initial analysis of the data fo
used on the following questions:� Do students and edu
ators organize 
on
epts di�erently, and if so, how?� Are there di�eren
es between male and female students?1



� Are there di�eren
es between students based on the programming languages they know?� Are there signi�
ant indi
ators in students' use of \don't know" 
ategories?In Se
tion 2 of this paper, we review the related work on 
ard sorts and novi
e understanding ofprograms. In Se
tion 3, we dis
uss our resear
h methodology. In Se
tion 4, we present our analysis,and we dis
uss our results and dire
tions for future work in Se
tion 5.
2 Related Work2.1 Con
eptual stru
tureThe goal of this study was to investigate the 
on
eptual knowledge of \�rst-
ompeten
y" program-mers. In parti
ular, the study investigated the meaning students atta
h to programming 
on
epts.There is eviden
e to suggest that the way in whi
h subje
ts organize 
on
epts re
e
ts their mentalrepresentation of the way these 
on
epts are related. Adelson gave novi
e and expert programmersrandomly ordered lines of 
omputer 
ode and observed how they re
alled the 
ode and in what prox-imity the lines were re
alled. [1℄ The proximity of the lines' re
all was eviden
e that the subje
tswere imposing their own stru
ture on the unstru
tured data.Di�erent populations exhibit di�erent 
on
ept organization stru
tures. Various studies 
on-tribute to the notion that developing expertise is re
e
ted in knowledge 
onsolidation, and that
onsolidation of knowledge into meaningful 
on
eptual stru
tures is a re
e
tion of \deep learning",
hara
terised by abstra
ted meta-knowledge. For an overview, see e.g. Eysen
k and Keane [8℄ andMarton and S�alj�o [10℄. Adelson [1℄ noted that experts had more 
onsistent subje
tive organiza-tion than novi
es. One 
onsistent result in the novi
e-expert literature is that experts organizeor \
hunk" information di�erently from novi
es: they form abstra
tions based on deep (semanti
)
hara
teristi
s rather than on surfa
e (synta
ti
) 
hara
teristi
s. Allwood [3℄ noted that \novi
esused general memory strategies while experts used a more spe
i�
 strategy" and they \showed largevariation in their organization of the investigated 
on
epts." Their �ndings were similar to those ofChi et al. [4℄, whi
h indi
ated that novi
es sort information on the basis of surfa
e features whereasexperts sort on the basis of underlying stru
ture.2.2 Eli
itation of 
on
eptual stru
tureEli
itation of internal 
on
eptual stru
tures is problemati
 be
ause it requires plausible, observableintermediate representation. One mediating a
tivity des
ribed in the literature is 
ard sorting. In a
ard sort, subje
ts are presented with a set of 
ards, with ea
h 
ard having a single pi
ture, nameof a 
on
ept or a short des
ription written on it. Subje
ts are asked to sort all of the 
ards intodi�erent groups, naming both the groups and the basis or 
riterion along whi
h items are sorted.Subje
ts are then asked to repeat the sort { using a di�erent 
riterion { and then to keep on sortinguntil they have run out of 
riteria.For example, if the task was sorting pi
tures of di�erent types of house, a subje
t might sort theminto groups \bri
k," \stone," \wood," et
., with the 
riterion being \main material of 
onstru
tion."The se
ond time, the subje
t might divide the 
ards into groups 
alled \one," \two," and \three,"with the 
riterion being \number of 
oors in ea
h building."Card sorting (Rugg & M
George, [11℄) has been used to eli
it information on internal represen-tations of 
on
epts. Davies, Gilmore and Green ([5℄) used 
ard sorting of 
ode fragments to obtainexpert and novi
e 
omputer programmer's knowledge about relationships among program 
ompo-nents. Subje
ts were asked to sort the 
ards into 
ategories that had meaning to them and to justifytheir sort. Given Adelson's eviden
e [1℄, Davies et al ([5℄) expe
ted experts to base their 
ategoriza-tions on obje
ts and inheritan
e relationships and novi
es on synta
ti
 elements. Instead, resultsindi
ated that experts mainly based their 
lassi�
ations on the fun
tional relationships between
ode fragments while novi
es mainly derived their 
lassi�
ations from obje
t-based 
ategorizations.Davies et al. also predi
ted more 
onsistent 
lassi�
ations from experts and more arbitrary andidiosyn
rati
 sorts from novi
es: the 
ontrary was true.There is a tradition of using 
ard sorting as a way of eli
iting 
on
eptual stru
tures, in thegeneral literature and more spe
i�
ally within the dis
ipline of software. The relationships exposed

2



1 fun
tion 10 s
ope 19 type2 method 11 list 20 loop3 pro
edure 12 re
ursion 21 expression4 dependen
y 13 
hoi
e 22 tree5 obje
t 14 state 23 thread6 de
omposition 15 en
apsulation 24 iteration7 abstra
tion 16 parameter 25 array8 if-then-else 17 variable 26 event9 boolean 18 
onstantFigure 1: Stimuli used in 
ard sort task.
by 
ategorisation tasks are taken to re
e
t relationships in the subje
ts' internal representations andhen
e to lead to a model of their internal representations. [1℄
3 Study MethodologyThe study was unusual in its s
ope, involving more than twenty resear
hers from four 
ontinentsand six 
ountries. Ea
h resear
her was an experien
ed 
ollege-level 
omputer s
ien
e edu
ator. Theresear
hers' institutions in
luded publi
 and private institutions that used a variety of approa
hesto tea
hing programming. Ea
h resear
her 
olle
ted data from his or her own institution against astandard proto
ol; the 
ombined 
orpus in
luded 275 subje
ts.The primary method, des
ribed in more detail below, was a repeated single-
riterion 
ard sort[11℄ designed to eli
it subje
ts' knowledge of programming 
on
epts.3.1 Subje
tsThe 275 subje
ts in
luded 
omputer s
ien
e students and fa
ulty at twenty-one di�erent 
ollegesand universities in Australia, Barbados, Ireland, New Zealand, the United Kingdom, and the UnitedStates. Thirty-two were edu
ators, and 243 were students. Of the students, 185 were male and 58were female.The student subje
ts were \�rst 
ompeten
y programmers," that is, they were sele
ted at thepoint in their 
urri
ulum where they were 
onsidered 
apable of solving one of a set of programmingproblems drawn from the M
Cra
ken test set. [7℄ Their performan
e in 
omputer programming
ourses varied widely. The fa
ulty subje
ts in
luded edu
ators from the same institutions who hadexperien
e tea
hing introdu
tory programming (though they may not have taught any of the studentsubje
ts in this experiment).3.2 StimuliWe developed a set of twenty-six minimalist one-word prompts for programming 
on
epts (see Fig-ure 1). The 
on
epts were general ones, su
h as \tree" or \variable." The prompts were drawnfrom programming textbooks, from papers on program 
ategorizations, and from lists generated byprogramming experts and programming edu
ators.This stimulus set was �rst reviewed by two programming edu
ators and then tested with sevenparti
ipants from two lo
ations in
luding three �rst-year 
ollege programmers, and two 
omputingresear
hers. The stimulus set proved usable by all parti
ipants. Additional bene�ts in
lude sponta-neous parti
ipant viewpoints and manageable data. Further, preliminary 
luster analysis suggestedpotentially interesting novi
e vs. expert di�eren
es and indi
ations of mis
on
eptions.3.3 Interview Pro
edure3.3.1 Preliminary pro
edureSubje
ts were asked to 
omplete a ba
kground questionnaire (see sample questionnaire in Ap-pendix A), and to sign a 
onsent form after reading details of the experiment and dis
ussing them

3



with the resear
her. Subje
ts were then given a des
ription of the 
ard-sort task (Appendix B).Some resear
hers demonstrated a \
ard sort" using simple alternative stimuli.3.3.2 Card-sort taskWe gave the subje
ts the set of twenty-six index 
ards, ea
h labelled with a programming 
on
ept,and asked them to sort the 
ards into 
ategories using a single 
riterion. To avoid imposing our own
riteria or 
ategories, we asked the subje
ts to provide them. Parti
ipants were asked to providenames for ea
h group (
ategory), and for the overall 
riterion by whi
h the 
ards were sorted. Thisinformation was re
orded, along with a list of the 
ards 
ontained in ea
h 
ategory. Subje
ts wereasked to perform sorts repeatedly until they were unable (or unwilling) to 
arry out additional sorts.When the subje
ts indi
ated they 
ould think of no additional sorts, they were presented with atriadi
 prompt-a group of three 
ards-and asked to sort them into two 
ategories. If they were able to,they were then asked to organize the remaining 
ards a

ording to the same 
riterion. The resear
herre
orded whi
h 
ards were used for the triadi
 prompt, typi
ally obje
t, s
ope, en
apsulation. If theinitial triadi
 prompt was unsu

essful, some resear
hers tried a se
ond time.3.4 Data Colle
tion3.4.1 Ba
kground dataAge, gender, and programming language familiarity were 
olle
ted for ea
h subje
t. For studentparti
ipants, grades in programming 
ourses were also re
orded. Some institutions 
olle
ted addi-tional data, whi
h in
luded whether the student was full-time or part-time, whether they attendedday or night 
lasses, if the student held an external job, and if so, how many hours were workedea
h week, and if the job was in the 
omputer industry, the language used in their �rst and se
ondprogramming 
ourses, and at what age they began to program.3.4.2 Task dataCriterion names and 
ategory names were re
orded verbatim. The 
ards in ea
h 
ategory werere
orded by number. During sorting, some resear
hers also re
orded information on subje
ts' 
ard-handling behavior and, where appropriate, observational notes and ephemeral sorts.
4 Analysis and Dis
ussion4.1 Data Analysis Te
hniquesWe used several te
hniques to summarize and link the data. We entered 
ard-sort data into an Ex
eltable and uploaded this table (see example below) into a proje
t database to allow us to performautomated analysis on the entire dataset and subpopulations of it. We summarized the 
ard-sortdata for ea
h subje
t in a separate spreadsheet.A portion of the spreadsheet for one subje
t is given in Figure 2. The leftmost 
olumn 
ontainsthe 
riterion for ea
h sort (eight 
riteria for this student), with the �rst 
riterion being \tangibleand abstra
t." The next 
olumn lists the 
ategories in ea
h sort. In the �rst sort there are two
ategories \tangible" and \abstra
t," To the right of that 
olumn there are 
olumns representingthe 
ards. In the 
omplete spreadsheet, there are 26 su
h 
olumns, one 
olumn for ea
h 
ard. Inthe example below, however, not all 
olumns are shown. An \x" in a 
olumn indi
ates that the
ard in that 
olumn was pla
ed into the 
ategory listed on that row. For example, here the terms\fun
tion" and \pro
edure" were grouped in the same 
ategory (
o-o

urred) in all eight sorts, andterms \state" and \event" were grouped in seven of the eight sorts.A number of me
hanisms were used to assist analysis, 
olle
ted into a proje
t toolkit, someexploratory (to help us form more fo
used questions about the data), and some summative and
omparative (to provide numeri
al tools for 
hara
terisation):� Analysis of ba
kground 
hara
teristi
s by sub-population� Verbatim analysis (agreement on a
tual names of 
riteria and 
ategories)

4



Criteria name Category name fun
tion pro
edure state eventtangible and abstra
t tangible x xabstra
t x xprin
iples prin
iplesnot prin
iples x x x xdata pla
es to put datatypes of grouped datatypes of primitive dataeverything else x x x xprogramming stru
tures de�nitely programming stru
tures x xmight be programming stru
tures x xnot programming stru
turesapproa
hes my obje
t oriented world xmy stru
tured world x xoverlap xOO programming pure OO programmingnot OO programming x x x x
ontrol stru
tures 
ontrol stru
tureseverything else x x x xmodularisation modularisation x xeverything else x xFigure 2: Ex
erpt from one subje
t's data.
� Gist analysis on names (agreement on the meaning of 
riteria and 
ategories, despite di�erentverbatim naming)� Gist analysis on 
ards (identifying same or similar grouping of 
ards, regardless of naming)� Co-o

urren
e matri
es (identifying the frequen
y with whi
h 
ards appeared together) forindividuals and for sub-populations� Dendrograms generated from matri
es summarizing individuals' sorts� Distan
e analysis tool based on edit distan
e4.1.1 Analysis of ba
kground 
hara
teristi
s by sub-populationAn initial analysis of the data was made to determine 
ertain \demographi
s" of the overall pop-ulation su
h as average age over all subje
ts, gender breakdown, per
entage of subje
ts that werestudent versus expert, breakdown by a
ademi
 performan
e (students only), and breakdown byfamiliarity with spe
i�
 programming languages (Java, S
heme, C++, C, Pas
al, Ada, and others).4.1.2 Verbatim analysisVerbatim analysis a
ross 
riteria and 
ategory names was automated as part of the proje
t toolkit.4.1.3 Co-o

urren
e matri
es and gist analysis on 
ardsWe 
onstru
ted a 
o-o

urren
e matrix for ea
h subje
t. The matrix re
ords the frequen
y withwhi
h ea
h pair of 
ards are grouped in the same 
ategory over all sorts. With respe
t to subje
ts'sorts, we 
al
ulated average number of sorts per subje
t and average number of 
ategories per sort
riterion. For ea
h 
ategory of ea
h sort, we linked to other subje
ts with exa
tly the same 
ardsgiven in a 
ategory. We distinguished from this but also in
luded links to 
ategories with a one-
arddi�eren
e (one more 
ard, one less 
ard, or one di�erent 
ard). These links were summarized inpair-wise frequen
y tables whi
h 
ould be generated within a sub-population.

5



4.1.4 Gist analysis on namesWe also looked for sort 
riteria that had similar meaning (or gist). For example, we might 
onsidera sort 
riterion su
h as \obje
t-oriented 
on
epts" to have the same gist as a sort 
riterion 
alled\related to obje
t-oriented." Similarly, \loop," \iterative," \repetition," and \looping 
ow" mightall be 
onsidered to have the same gist. We used a tool to help identify 
riteria that possibly hadthe same gist by 
omparing keyword pairs in the 
riteria names. For example, from the 
riterionname \Con
epts A

ording to How DiÆ
ult to Use and Learn" we extra
ted open terms - nounsand verbs: \
on
epts," \use," and \learn," formed sets of size two 
on
epts, use, 
on
epts, learn,use, learn and 
ompared these to other 
riterion names. This worked as an initial sear
h tool forgist among 
riterion names; however, it would not have found the pair of 
riteria above, namely\programming stru
tures" and \imagining that I want to write a program." To �nd these mat
heswe worked as a group.4.1.5 DendrogramsUsing the programs EZCal
 and EZSort [6℄, a hierar
hi
al 
luster analysis was 
omputed on adistan
e matrix for ea
h subje
t. Initially we generated the distan
e matri
es using EZCal
 andEZSort; latterly we generated four distan
e matri
es: using Manhattan distan
e and Eu
lideandistan
e, and using Simple and Ja

ard's similarity measures subtra
ted from one to yield a distan
emeasure. From ea
h of these matri
es, we generated dendrograms using simple (nearest neighbour),
omplete (maximizing distan
e between 
lusters), and Ward's (minimizing intra-
luster distan
e)methods of 
lustering [2℄. These dendrograms were used as exploratory visualizations to help usfo
us our questions.4.1.6 Interpretation of DendrogramsA dendrogram is a hierar
hi
al 
lustering of sorting data. Consider the terms \fun
tion" and \pro-
edure" in the dendrogram below, the lines emanating from ea
h of those two terms are joined at theverti
al line labeled \0" indi
ating that these 
ards were always pla
ed in the same 
ategory. Re
allthat these terms 
o-o

urred eight out of eight times in the spreadsheet above. In 
ontrast, the linesemanating from the terms \state" and \event" join further to the right, indi
ating that althoughthey are frequently asso
iated, they are not always asso
iated. Re
all that these terms 
o-o

urredseven out of eight times in the spreadsheet. The lines emanating from the terms \method" and\obje
t" interse
t even further to the right indi
ating that they 
o-o

urred less often than \state"and \event." Moving from left to right in the dendrogram, terms are 
ombined into larger and larger
lusters. The more often terms o

ur together, the further to the left the 
onne
tion between them.
4.1.7 Distan
e Analysis ToolAnother approa
h to analysing the 
ard-sort data is to look at the distan
e between individual sorts.This 
an be used to look for similar 
ategorization a
ross individuals or as the basis for a 
lusteringanalysis. Our de�nition of distan
e is based on the notion of edit distan
e, whi
h 
ounts the numberof primitive operations to 
onvert one string to another. In this 
ase the primitive operation is tomove a 
ard between piles (or to a new pile). The distan
e between two sorts is de�ned to be theminimum number of moves to 
onvert one to another. It 
an be shown that this distan
e fun
tion isa metri
 so that it 
an be used as a basis for 
lustering analysis. The distan
e 
an be 
omputed by
omputing by �nding maximum weight mat
hing between the two sorts. A mat
hing between twosorts is a 
orresponden
e of piles, if the number of piles is not equal, then some piles will not have
orresponding piles in the other set. The weight of a mat
hing is the number of 
ommon elements in
orresponding piles. The maximum weight mat
hing gives the 
losest 
orresponden
e between twosorts. Sin
e the number of 
ards was 26, a mat
hing of weight 26 indi
ated perfe
t 
orresponden
e.We developed a tool to 
ompute the distan
e between sorts. This was a stand alone appli
ationwritten in C#. The 
ore of the appli
ation was an algorithm for 
omputing the maximum weightmat
hing in a 
omplete bipartite graph. The tool allowed pair-wise 
omparison of sort, as well as
omparing a sort against all other sorts, and 
omparing all pairs of sorts. Comparing a sort againstall other sorts allowed identifying the 
losest neighbors of a sort. The all pairs 
omparison was run

6



Figure 3: Moving left to right in the dendrogram, term 
lusters are repeatedly joined based on their\
luster" 
o-o

urren
e.
over the full set of 1198 sorts. We dis
overed 21 pairs of sorts with a mat
hing of weight 26 (perfe
t
orresponden
e), 48 pairs of weight 25 (distan
e one), and 163 pairs of weight 24 (distan
e 2).4.2 DiÆ
ulty of Learning, Order of LearningThe 
on
epts of \order of learning" and \level of diÆ
ulty" appeared frequently as sort 
riteria.Under \order of learning," we in
luded all the 
riteria that represented the sequential learningpro
ess, su
h as \order of learning," \order things were presented," \order things should have beenpresented," and \order of presentation in a textbook." Under \level of diÆ
ulty" we in
luded 
riteriasu
h as \simpleness," \
omplexity," and \more versus less advan
ed." Within ea
h of the \order oflearning" 
riteria, we identi�ed 
ategories that 
orresponded to \early" and \late," and within ea
hof the \level of diÆ
ulty" 
riteria we identi�ed 
ategories that 
orresponded to \easy" and \diÆ
ult."We then determined the frequen
ies with whi
h stimuli appeared in ea
h of these 
ategories.All of the stimuli 
ategorized most frequently as \easy" were also 
ategorized most frequently as\early." As shown in Figure 4 these in
lude 
on
epts su
h as \variable," \
onstant," and \fun
tion."Similarly, stimuli that were most frequently 
ategorized as \diÆ
ult" were also 
ategorized mostfrequently as \late" in the learning sequen
e. As shown in Figure 5, these in
luded 
on
epts su
has \en
apsulation," \de
omposition," and \abstra
tion."There is no inverse relationship. Nothing that appears in the \late" 
ategory appears in the\easy" 
ategory, and nothing that appears in the \early" 
ategory appears in the \diÆ
ult" 
ategory.None of the students who performed these sorts pla
ed \de
omposition," \en
apsulation," or \tree"

7



0% 20% 40% 60% 80% 100%

Function

Iteration

Expression

Type

Loop

If-then-else

Constant

Boolean

Variable

0% 20% 40% 60% 80% 100%

Expression

If-then-else

Type

Constant

Variable

Boolean

Figure 4: Stimuli 
ategorized as \early" or \easy."
in the \early" 
ategory, and none of them pla
ed \fun
tion," \pro
edure," \if-then-else," \boolean,"\variable," \
onstant," \loop," or \expression" in the \late" 
ategory. None of the students pla
ed\dependen
y" in the \easy" 
ategory, and none of them pla
ed \boolean" or \variable" in the\diÆ
ult" 
ategory.The students who performed these sorts appear to be representative of the student populationas a whole. There were eighteen of these students. As shown in Figure 6, the per
entage of womenin these subpopulations is 
omparable to that in the general student population. We found nodi�eren
es with regard to age, performan
e level, or programming-language ba
kground betweenthese students and the general student population.In addition to the eighteen students, �ve edu
ators performed sorts using \level of diÆ
ulty"and/or \order of learning" 
riteria. The 
ategorizations used by students were similar to, but notidenti
al to the 
ategorizations used by edu
ators. The stimuli the majority of the students 
at-egorized as \easy" were also 
ategorized as \easy" by a majority of the edu
ator subpopulation.However only two of the stimuli, \re
ursion" and \tree," that were most often 
ategorized as \dif-�
ult" by students were also 
ategorized as \diÆ
ult" by edu
ators. All of the stimuli most often
ategorized as \early" by the students were most often 
ategorized as \early" by the edu
ators, withthe ex
eption of \expression" and \type." \Expression" and \type" were 
ategorized by students as\early," but not by edu
ators.This data raises the question of whether material that is presented early is generally per
eivedas easy by the students, perhaps be
ause they have more time to absorb it, perhaps be
ause itis emphasized by the instru
tor. To answer this question, however, we need to obtain data fromstudents to whom 
on
epts have been presented in di�erent orders.

8



0% 20% 40% 60% 80% 100%

Encapsulation

Decomposition

List

Abstraction

Object

Recursion

Tree

0% 20% 40% 60% 80% 100%

Iteration

Scope

Decomposition

Dependency

Tree

Object

Encapsulation

Recursion

Abstraction

Figure 5: Stimuli 
ategorized as \late" or \diÆ
ult."
In parti
ular, it would be interesting to obtain data from students who are introdu
ed to abstra
t
on
epts su
h as \en
apsulation" early. The \late" and \diÆ
ult" 
on
epts in our data are also themore abstra
t 
on
epts. As a result, the apparent 
orrelation between order of learning and level ofdiÆ
ulty might be due to a general tenden
y to �nd 
on
rete 
on
epts easier.4.3 GenderAre there di�eren
es in the way in whi
h men and women students organize their knowledge ofprogramming 
on
epts? In order to answer this question, we 
ompared a number of fa
tors:� the number of sorts performed� the average number of 
ategories per sort� the use of binary sorts (that is, the sorts in whi
h there were pre
isely two 
ategories)� the use of oppositional 
riteria (
riteria where the 
ategories 
an be ordered along a s
ale)� the use of a \don't know" 
ategory.In the quantitative fa
tors we examined, there was little di�eren
e between male and femalestudents, as shown in Figure 7. The average number of sorts is similar for both genders (ex
ept forthe over-40 
ategory). On average, women have more 
ategories per sort (4.4 vs. 4.0). Women arealso slightly more likely to use both binary sorts (41.4% vs. 40%) and sorts involving oppositional
riteria (17.2% vs. 16.2%). 9



No. of subje
ts who are % of total subje
ts who arewomen men women menTotal student population 58 185 24% 76%\Order of learning" subpopulation 4 14 22% 78%\Level of diÆ
ulty" subpopulation 5 23 18% 82%Figure 6: \Order of learning" and \level of diÆ
ulty" subpopulations 
ompared with the generalstudent population.
Men Women TotalNumber of students 185 58 243Number of sorts 831 258 1089Number of 
ategories 3284 1131 4415Number of students who used binary sorts 74 24 98Number of students who used oppositional 
riteria 30 10 40Number of oppositional 
riteria 43 14 57Average number of sorts 4.5 4.4 4.5Average 
ategories / sort 4.0 4.4 4.1Per
ent who used binary sorts 40 41.4 40.3Per
ent who used oppositional 
riteria 16.2 17.2 16.5Figure 7: Breakdown by gender.

Based on a preliminary analysis, the qualitative data also revealed little di�eren
e between maleand female students. We identi�ed several groups of 
riteria that had approximately the samemeaning, as shown in Figure 8. Of this initial list, we fo
us on four: the 
reative analogies, theoppositional 
riteria, the emotional response, and the no-name 
riteria. Notably, the di�eren
ebetween males and females in ea
h of these areas was quite small.4.3.1 Creative analogiesFour 
riteria made analogies to situations outside of 
omputer s
ien
e. These sorts are summarizedin Figure 9.These analogies were made by four di�erent students, two male and two female. One femalestudent related the 
on
epts to painting, 
omparing some to the palette and others to the �nishedpainting. The other female student used a sports analogy, 
omparing 
on
epts to players, formations,and 
oa
hing. One male student 
ompared programming stru
tures to a Russian doll, apparentlythinking of nested programming stru
tures. Finally, the se
ond male student suggested an analogybetween the 
on
epts and the tools and materials used in 
onstru
tion.What 
an we 
on
lude? The numbers of male and female students suggesting these analogieswere equal. More signi�
antly, both were very small 
ompared to the total number of sorts. We
annot 
on
lude anything signi�
ant about gender di�eren
es from these examples, but it does seem
lear that very few of our subje
ts use 
on
epts from outside of 
omputer s
ien
e to organize theirknowledge about programming.4.3.2 S
alar 
riteria\S
alar 
riteria" are 
riteria that order the 
on
epts along a s
ale from one extreme to another:obje
ts vs. fun
tions, 
on
rete vs. abstra
t, design vs. implementation, 
ompile-time vs. runtime,and so forth. S
alar 
riteria may or may not result in binary sorts. For example, a student might
lassify all the 
ards as either \
on
rete" or \abstra
t," or might identify several levels of abstra
tion.Several subje
ts gave more than one s
alar 
riterion, so the number of subje
ts is 
onsistently lowerthan the number of 
riteria.We 
onje
tured that male students would have more sorts that fell into this group, and surpris-ingly, that turned out to be false. Of the sorts done by male students, 43 out of 831, or 5%, 
ontained
10



Abstra
t/abstra
tion BehaviourChange CodeComplexity Con
eptsCon
rete Control/
ontrol stru
tures/
ontrol 
owCreative analogies Datatype/data/data stru
ture/variablesDependen
y DesignDon'tknow/unknown/other/not appli
able Emotional rea
tionFun
tions GUI or event-orientedHierar
hy IdeasInformation hiding JudgementalLevel of diÆ
ulty/ease/simpli
ity LifetimeNatural language related No nameObje
t-oriented OppositionalParts of a program Pra
ti
alityProgramming language related Programming life
y
leProgramming paradigms RelationshipFigure 8: Possible \gists" found in the 
ard-sort 
riteria.
Criterion Gender of subje
t Related 
ategories Analogy tostru
ture - a sliding s
ale - male Most general, the artsthe Russian doll e�e
t 2nd most general,3nd most general,4th most general,not appli
ableElements of 
onstru
tion male 
onstru
tion materials 
onstru
tionPainting analogy female palette, the arts�nished produ
t,don't knowA
tors and manipulators female players, sportsformations,
oa
hing,unsureFigure 9: Criteria involving analogies to a situation outside 
omputer s
ien
e.

s
alar 
riteria. Of the sorts given by female students, 14 out of 258 
ontained s
alar 
riteria, whi
halso rounds to 5%. Considered as a per
entage of subje
ts, the results are also very 
lose. 16% ofthe male students (30 of 185) gave s
alar 
riteria, 
ompared to 17% of the female students (10 of58). Male and female students were essentially identi
al in this respe
t.4.3.3 Emotional responses to the 
on
eptsWe noted several 
riteria that expressed emotional responses to the 
on
epts on the 
ards. Thesein
luded \words I hate" (NS06), \things that 
ause me grief" (IS03), \things I'm 
omfortable with"(BS10), \
omfortableness" (NS06), \how 
omfortable I am on the topi
" (QS08), \overall likeness ofwhat I do" (MS05)1, and \usefulness to me"(MS05). Surprisingly, �ve of these responses 
ame from�ve di�erent male subje
ts, and two 
ame from a single female subje
t (MS05). It is surprising thatmore of these 
riteria were provided by male subje
ts than female, but as with the 
reative analogy
riteria, the numbers are so small that any 
on
lusion is tentative. In fa
t, again as with analogies,the low frequen
y of these 
riteria is itself striking. It may indi
ate that students do not organizetheir programming knowledge on this basis; alternatively it is possible that subje
ts believed these
riteria to be insuÆ
iently \serious," and therefore did not mention them to the resear
hers.
11



16-24 25-40 over 40 TotalNumber of students 187 41 15 243Men 147 28 10 185Women 40 13 5 58Number of sorts 867 170 52 1089Number of 
ategories 3499 727 189 4415Per
ent women 21.4 31.7 33.3 23.9Average sorts / student 4.6 4.1 3.5 4.5Average 
ategories / sort 4.0 4.3 3.6 4.1Figure 10: Comparison by age groups.
16-24 25-40 41+ All agesM F all M F all M F all M F allNumber of students 147 40 187 28 13 41 10 5 15 185 58 243Number of sorts 676 191 867 115 55 170 40 12 52 831 258 1089No. of 
ategories 2669 830 3499 473 254 727 143 47 189 3284 1131 4415Ave. sorts/subje
t 4.6 4.8 4.6 4.1 4.2 4.1 4.0 2.4 3.5 4.5 4.4 4.5Ave. 
ategories/sort 4.0 4.4 4.0 4.1 4.6 4.3 3.6 3.9 3.6 4.0 4.4 4.1Figure 11: Data for gender and age 
ombined.

4.3.4 Unnamed 
riteriaFinally, we 
onsider the unnamed 
riteria. Unnamed 
riteria are those that were not provided aname, for example, \Group 1," \Forgot to do it," or \no name." In general, these were 
ategorieswhere, even after intervention, the subje
t was unable to give a name to the 
ategory. Of the sortsgiven by female students, 4.68% were unnamed, while 6.24% of the sorts given by male studentswere unnamed. We do not yet have the relative per
entages by student. This is a slight di�eren
e,but it seems to 
on�rm our pre
on
eption that female students are more verbal.In summary, we found surprisingly little di�eren
e between the male and female students. Amore extensive qualitative analysis might reveal di�eren
es between the genders. Alternatively, ithas been 
onje
tured that 
omputer-s
ien
e students are a \di�erent breed" that are mu
h more likeea
h other than the larger population of students who have other majors.4.4 AgeDo students of di�erent ages organize 
omputer 
on
epts di�erently? In order to answer this ques-tion, we divided students into three groups: 16-24 (traditional 
ollege-student age, or 
lose to it),25-40, and over 40. 187 of our students were in or 
lose to the traditional student age, from 16-24.41 students were in the age-range 25-40, and 15 of them were over 40.A breakdown of several fa
tors by age is given in Figure 10. The average number of sorts de
lineswith in
reasing age. The average number of 
ategories per sort in
reases slightly from the youngestage group to the middle age group, and then drops substantially from the middle age group to theoldest age group (though the number of students in the oldest age group is quite small).4.5 Age and gender in 
ombinationComputations about gender and age are 
ombined in Figure 11. The average number of sorts issimilar for both genders in ea
h age group (ex
ept for the over-40 
ategory). In both genders,the average number of sorts de
lines with in
reasing age. Unlike the number of sorts, the numberof 
ategories per sort is 
onsistently di�erent between men and women. In ea
h one of the age
ategories, men have fewer 
ategories per sort.
12



Students Edu
atorsNumber of subje
ts 243 33Total number of sorts 1089 171Total number of 
ategories 4415 638Average number of sorts per subje
t 4.5 5.2Average number of 
ategories per sort 4.0 3.7Figure 12: Number of sorts, and number of 
ategories per sort, for students and edu
ators.
4.6 Students vs. edu
atorsWe also 
onsidered the average number of sorts, and the average number of 
ategories per sort, forthe edu
ators and the students in our sample. These 
omputations are summarized in Figure 12.Edu
ators, on average, had fewer sorts than students. Sin
e the edu
ators are generally older thanthe students, this supports the suggestion based on Figure 11 that the number of sorts de
reaseswith age.The average number of 
ategories per sort does not seem to de
rease with age, however, and it islower for edu
ators than for students. Edu
ators had slightly fewer 
ategories per sort on the average(3.7) than did students (4.0). 52% of the edu
ators did binary sorts. Interestingly, male edu
atorswere 
onsistent with students. 40% of male edu
ators did one or more binary sorts. 88% of femaleedu
ators did one or more binary sorts, but this per
entage is based on a small total sample size offemale edu
ators (n=8).4.7 \Don't Know" 
ategories4.7.1 Pro
essRugg and M
George ([11℄) advise that respondents be instru
ted \they 
an use the 
ategories of'other', 'not sure' and 'not appli
able': this identi�es areas where a 
ategory is being pushed beyondits range of 
onvenien
e, areas where respondents' knowledge ends, and various other very usefulthings." All interviews began with verbal instru
tions that state \You are wel
ome to use any
riteria you like, and any groups you like in
luding 'don't know', 'not sure' and not appli
able'."Sin
e the \don't know" 
ategory 
an reveal useful information about the subje
ts' knowledgestru
tures, it is important to examine the 
ards pla
ed in this 
ategory 
arefully. What are theprogramming terms that students are most frequently pla
ing into the \don't know" 
ategory? Dothese terms have 
ommon 
hara
teristi
s? Given the variation in institutions, experimenters, and
ountries, we �rst did a gist analysis of \don't know" among all of the sorts for all subje
ts. Thisyielded a variety of phrases in
luding, \things I didn't understand", unde�nable\, \haven't learned",\unfamiliar", and \in my bad gra
es".Sin
e there were students who 
lassi�ed 
ards in \don't know" in one sort and in a named
ategory in another, it was 
lear that \don't know" sometimes meant, \don't know in this 
ontext".There were also students who always pla
ed the same 
ards in a \don't know" 
ategory for everysort, indi
ating that the students did not know what the term meant in any 
ontext. In the balan
eof this analysis, we treat these two meanings of \don't know" as the same. 36% of the sorts 
ontaineda \don't know" 
ategory and 63% of subje
ts used a \don't know" 
ategory at least on
e.Observations during the interviews suggested that terms 
ategorized as \don't know" were fre-quently terms the resear
hers 
onsidered to be more abstra
t. Our 
onje
ture is that this observationis 
onsistent with the data from our entire population. To determine abstra
t terms for our analysis,eleven of the resear
hers were asked to 
lassify ea
h of the stimuli terms as \Con
rete" or \Abstra
t".Figure 13 shows the results of these 
lassi�
ations.Figure 14 shows the total number of times ea
h 
on
ept was pla
ed in a \don't know" 
ategoryby one of the student subje
ts.4.7.2 Dis
ussionTerms 
lassi�ed as \don't know" are frequently abstra
t terms. The six stimuli that resear
hersmost frequently pla
ed in the abstra
t 
ategory 
omprised 53% of the student \don't know" 
ate-

13



Number of resear
hers Stimuli(of 11) identifyingterm as abstra
t11 dependen
y, de
omposition, abstra
tion, en
apsulation7 state, tree3-5 obje
t, s
ope, list re
ursion, 
hoi
e, thread, event1-2 methods, pro
edure, type, expression, iteration, array, fun
tion0 if-then-else, boolean, parameter, variable, 
onstant, loopFigure 13: Abstra
t stimuli, as 
lassi�ed by resear
hers.
Occurrences of Stimuli in Student "Don't Know" Categories

271
234

196
175

163
151

100
85
83

47
46

36
32

21
20
20
19

11
11
9
8
6
5
3
2
1

0 50 100 150 200 250 300
decomposition

dependency 

state 

scope

abstraction

tree

iteration 

recursion 

function 

list 

if-then-else 

parameter

array 
Most frequently rated 
"abstract" by 
researchers

Figure 14: O

urren
es of stimuli in student \don't know" 
ategories.
gorizations. If we in
lude \thread," that total would be substantially larger, sin
e it was the se
ondmost frequently o

urring student \don't know" stimulus. Almost half of the resear
hers 
onsideredit to be abstra
t as well. Further, 88% of the \don't know" 
ategories 
ontained at least one ab-stra
t term. On the other hand, the six 
ards that none of the resear
hers 
ategorized as abstra
t
omprised only 1.8% of the student \don't know" 
ategorizations.4.8 Programming languages used by studentsSubje
ts reported familiarity with a large set of languages (68 in total). Prior to undertaking the
ard sorting exer
ise ea
h subje
t was asked to rate his or her familiarity with Java, C++, C, Ada,S
heme, Pas
al, and Visual Basi
. In addition, subje
ts were invited to enumerate \other" languagesthey were familiar with. No 
onstraints were imposed on subje
ts' views of what 
onstituted a\programming language". A total of 61 di�erent \other" languages were re
orded.In order, the six most popular languages were C++, Java, Visual Basi
, C, Pas
al, and S
heme.As shown in Figure 16, 79% of subje
ts reported some familiarity with C++, and 12.8% had usedS
heme. None of the remaining 62 languages had more than 16 mentions (out of 243 students).About 81% of the languages had ten mentions or fewer, and approximately 67% of the languageswere \single mentions" by individual subje
ts.For ea
h of the seven proje
t-spe
i�ed languages, plus any others they listed, students indi
atedtheir familiarity using an integer s
ore in the range 1-5, with 1 indi
ating \never used" and 5

14



2 3 4 5E S E S E S E SM F M F M F M F M F M F M F M FC++ 5 0 33 10 4 1 36 14 3 0 35 11 3 1 44 9Java 0 2 18 9 4 2 53 13 6 2 44 10 11 2 21 6VB 4 4 37 7 7 1 31 16 5 0 21 5 1 1 13 1C 3 0 44 11 2 5 25 4 6 1 16 2 14 0 8 1Pas
al 3 0 17 6 5 3 10 2 6 1 11 3 11 2 5 3S
heme 7 1 8 3 5 2 8 4 3 0 6 1 0 0 0 1Figure 15: Summary of the data regarding language familiarity for the six most frequently reportedlanguages. (\E" stands for \edu
ator," and \S" stands for \student." \1" indi
ates \never used,"and \5" indi
ates \have used a lot.")
2 3 4 5 Any of 2-5M F M F M F M F M F AllC++ 17.8 17.2 19.5 24.1 18.9 19.0 23.8 15.5 80 75.9 79.0Java 9.7 15.5 28.6 22.4 23.8 17.2 11.4 10.3 73.5 65.5 71.6VB 20 12.1 16.8 27.6 11.4 8.6 7.0 1.7 55.1 50 53.9C 23.8 19.0 13.5 6.9 8.6 3.4 4.3 1.7 50.3 31 45.7Pas
al 9.2 10.3 5.4 3.4 5.9 5.2 2.7 5.2 23.2 24.1 23.5S
heme 4.3 5.2 4.3 6.9 3.2 1.7 0 1.7 11.9 15.5 12.8Figure 16: Per
entage of male and female students familiar with ea
h of the six most popularlanguages, with levels of familiarity.

indi
ating \have used a lot." The familiarity rankings for the six most frequently-
ited languagesare summarized in Figure 15. C++ and Pas
al familiarity is evenly spread a
ross the rating levelswhile all the others diminish at the higher end.4.8.1 Programming language familiarity by genderUsing Figure 15 as a starting point, we 
omputed the per
entage of men and women who are familiarwith ea
h of the top six programming languages. The results of this 
omputation are presented inFigure 16. The top six languages are the same for both men and women, and they appear in thesame order. Men appear to rate themselves higher; this suggests a question for further investigation,whether men and women of similar ability generally give themselves di�erent ratings on this kind ofs
ale.Another question, one that we might be able to answer from our data, is whether men and womenreport knowledge (at least at some level) of the same number of languages, on average.4.8.2 Programming language familiarity for edu
ators vs. studentsSimilarly, we 
an use the data from Figure 15 as a basis for 
omparing the students and edu
atorsamong our subje
ts. The per
entages of students and edu
ators who report familiarity with the sixmost popular languages at various levels is given in Figure 17. As we might expe
t, the per
entageof edu
ators is generally higher than the per
entage of students who report knowledge of a givenlanguage. The per
entage of edu
ators who report knowledge of C, Pas
al, or S
heme is mu
h greaterthan the per
entage of students who report knowledge of those languages. The one ex
eption,surprisingly, is C++. 79% of students report some knowledge of C++, while only 51.5% of theedu
ators report knowledge of C++.The frequen
y of these languages is also di�erent in the two groups. Students, as mentionedabove, report knowledge of C++ most frequently, followed by Java, VB, C, Pas
al, and S
heme inthat order. For edu
ators, however, C and Pas
al are the most frequent (tied at 93.9%), followedby Java (at 87.9%), then with a signi�
ant dropo� to VB, S
heme, and C++, in that order. The
15



2 3 4 5 Any of 2-5E S E S E S E S E SC++ 15.1 17.7 15.1 20.6 9.1 18.9 12.1 21.8 51.5 79.0Java 6.1 11.1 18.2 27.2 24.2 22.2 39.4 11.1 87.9 71.6VB 24.2 18.1 24.2 19.3 15.1 10.7 6.1 5.8 69.7 53.9C 9.1 22.6 21.2 11.9 21.2 7.4 42.4 3.7 93.9 45.7Pas
al 9.1 9.5 24.2 4.9 21.2 5.8 39.4 3.3 93.9 23.5S
heme 24.2 4.5 21.2 4.9 9.1 2.9 0 0.4 54.5 12.8Figure 17: Per
entages of students and edu
ators familiar with the six most popular languages, withlevels of familiarity.
frequen
y of C and Pas
al is not surprising, given their popularity until re
ently, but again, theresult for C++ seems anomalous. Possibly some of the students are learning C++ in high s
hool,whi
h would explain the fa
t that their frequen
y is higher than the frequen
y of edu
ators at thesame institutions. But that still does not explain why relatively few edu
ators report knowledge ofC++.4.8.3 Most frequently o

urring 
ard sortsTo determine whether knowledge of parti
ular languages has an e�e
t on 
ategory formation, we
ounted how often ea
h 
ategory was formed, in other words, the number of sorts where that 
om-bination of stimuli o

urred as the entire 
ontents of a 
ategory. Then for ea
h of the six languagesthat were most popular with our subje
ts, we 
ounted the number of times ea
h 
ategory appearedin the sorts performed by students who reported some knowledge of that language.The top ten 
ategories overall were:1. List, Tree, Array (o

urred in 104 out of 1247 sorts)2. Thread (52 times)3. Re
ursion, Loop, Iteration (48 times)4. Fun
tion, Method, Pro
edure (38 times)5. If-Then-Else, Re
ursion, Loop, Iteration (33 times)6. De
omposition, Abstra
tion, En
apsulation (28 times)7. List, Array (28 times)8. Thread, Event (28 times)9. List, Tree (27 times)10. Obje
t, List, Tree, Array (24 times)The 
ategory appearing most frequently a
ross the entire population, \list", \tree", and \array",was language-independent - it was the most frequent 
ategory in ea
h of the six language subpopu-lations by a large margin. The top ten 
ategories for the six language subpopulations all in
ludedat least six of the ten most frequent 
ategories from the overall list, and 
ategories 1-3, 6, and 8from the overall list { \list, tree, array," \thread," \re
ursion, loop, iteration," \de
omposition,abstra
tion, en
apsulation," and \thread, event" { appeared on all of the language subpopulationlists. These similarities indi
ate that at least some aspe
ts of subje
ts' 
on
eptual stru
tures are
onsistent a
ross language.

16



4.8.4 Fun
tional-�rst studentsOnly 20 students assigned themselves a familiarity s
ore of three or higher for a fun
tional language,S
heme, and 17 of those 
ame from a single fun
tional-�rst institution. This makes it diÆ
ult todistinguish e�e
ts of language 
hoi
e from other institutional in
uen
es. The fun
tional-�rst studentshad 
hara
teristi
 \don't know" 
ategories, and members were likely to be most similar overall toanother fun
tional-�rst student. They grouped \re
ursion" and \iteration" together in 
ategoriesmore often than the overall population, but not by a large margin. (It is also worth noting that\iteration" o

urs more frequently with \re
ursion" a
ross all subje
ts than does any other term,supporting previous results with novi
e 
omputing students.Most edu
ators expressed familiarity with S
heme, Lisp, or Haskell, but this was not true of the243 students. None knew Haskell and only two expressed any familiarity with Lisp, neither of whi
hrated themselves above a two. Twenty student subje
ts assigned themselves a familiarity s
ore ofthree or higher for a fun
tional language, and in all 20 
ases the language was S
heme. Seventeenof these students 
ame from a single institution, making it diÆ
ult to distinguish e�e
ts of language
hoi
e from other institutional in
uen
es.Previous work with novi
e students has shown that imperative programmers form strong asso
i-ations between re
ursion and iteration, sin
e they s
a�old their 
on
ept of re
ursion o� of iteration.[9℄ This result is evident in our results as well. A
ross all 1258 sorts, \re
ursion" and \iteration"appeared in the same 
ategory 896 times. No other 
ard appeared with \re
ursion" as often. Thenext 
losest, \if-then-else", appeared 634 times. We found that students introdu
ed to programmingvia fun
tional languages asso
iate the terms more 
losely than the student population average, butthe group s
ore is not unique. The 17 students from the fun
tional-�rst institution grouped theterms together in 85 of their 110 sorts. Thus, \re
ursion" and \iteration" appeared in the same
ategory in 77% of the sorts done by fun
tional-�rst students versus 66% for the overall population.While no institutional average over 77% has yet been found, at least one institution had an averageof 76%.A more signi�
ant di�eren
e was that the fun
tional-�rst group members had a distin
tive patternto their \don't know" 
ategories, whi
h often 
ontained terms like \thread", \event", \en
apsula-tion", and \dependen
y".Gist analysis revealed another distin
tive 
hara
teristi
 that is likely the result of learning toprogram in a language without destru
tive modi�
ation: Ten of the 17 students performed sorts ona 
riterion having to do with mutability (e.g. \Changeability", \Amount a�e
table", \Variability",\Things that 
hange and things that stay the same"). In the remainder of the student population,only six sorts made this same distin
tion.Analysis of the data relating to programming languages suggests several additional questions,in
luding:� whether pro
edural-�rst and obje
t-�rst students have di�erent asso
iations with \Obje
t."Conje
ture: it's paired with \List" in a pro
edural-�rst group, while Obje
t-First Java studentsasso
iate it with \Variable."� whether fun
tional-�rst students think di�erently about the notion of \state". Here we mightlook for patterns in the dendrograms.� whether there are interesting di�eren
es between students who have used multiple languagesand those who have used just one?� whether there are interesting di�eren
es between students who have been taught the samelanguage with di�erent approa
hes? (For example, Java taught pro
edural-�rst vs. obje
ts-�rst.)
5 Con
lusions and Future WorkIn this study, we used a multiple, subje
t-de�ned, single-
riterion 
ard sort to eli
it students' 
on
ep-tual stru
tures. Unlike observational or programming task studies, 
ard sorts allow us to eli
it the
on
eptual stru
tures formed by students. Gathering data a
ross multiple s
hools and nations pro-vides insight on stru
tures 
ommon a
ross a wide variety of students as well as stru
tures parti
ularto subgroups of students. 17



Our initial analysis has several results:� The 
on
epts students pla
e in a \don't know" 
ategory are most often abstra
t.� Women 
onsistently have more 
ategories per sort.� The average number of sorts de
reases with age.� The most frequently formed 
ategory (list, tree, array) is independent of the languages withwhi
h a student is familiar.� It is suggested that 
on
epts learned early are easy, and 
on
epts learned late are hard.� Students have a strong asso
iation between re
ursion and iteration.� Fun
tional-�rst students appear to have distin
tive \don't-know" 
ategories.� Fun
tional-�rst students appear to be more likely to perform sorts based on \mutability" or\
hange."Some of these results need to be quali�ed. For example, there is strong support for the propositionthat the more abstra
t a 
on
ept is, the more likely students are to pla
e it in a \don't know"
ategory. Not all students distinguished 
learly between two types of \don't know" 
ategories,however, so sometimes these 
ategories in
lude 
on
epts the student doesn't know, and sometimesthey are 
on
epts the student knows, but 
an't �t into any of the other 
ategories.When examining the possible in
uen
e of programming language on 
on
ept formation, we 
on-sidered the most popular 
ategories. The most frequently formed 
ategory overall { list, tree, array{ it turns out, is also most frequent among all of the subpopulations of students who know C++, orJava, or one of the other popular languages among our subje
ts. Several of the top-ten 
ategoriesoverall are also top ten regardless of language. We have not yet looked at the top-ten 
ategoriesin any other 
ontext, so we don't know if there are subpopulations where this varies: male/female,old/young, by institution, et
. In addition, when we looked at programming languages, we groupedstudents by whether they reported having any exposure to a language at all. How mu
h in
uen
ewould a minimal exposure to a language have on 
on
ept formation? We would like to examinethis question further, taking into a

ount the students' CS1 language, or the language they reportknowing the best.Another very interesting result is really only suggested by our data: the idea that 
on
eptslearned early are easy, and 
on
epts learned late are hard. Only eighteen students did these sorts,and it's not 
lear how many of them did both (easy-hard and early-late). The 
orrelation so far isbased on aggregate data. Those who did do both sorts, if any, may all have learned things in thesame order; they may even have been from the same institution. To be sure of this result, we'd needto know what order students learned things in and in
lude students who learned things in di�erentorders. In parti
ular, it would be good to have some students who learned abstra
t 
on
epts su
has \en
apsulation" early, be
ause it may be that the real 
orrelation here is that 
on
rete things(whi
h happen to have been learned early) are easy, and abstra
t things (whi
h happen to have beenlearned late) are hard.Finally, the number of fun
tional-�rst students was also very small, and nearly all of them werefrom a single institution. Thus, the results 
on
erning fun
tional-�rst students, while interesting,must also be 
onsidered no more than suggestive.In addition to the results of the study we also have some meta-results, things we learned aboutthe pro
ess of 
arrying out a study on this s
ale.� Although we used the M
Cra
ken task as the parti
ipation dis
riminator, it required a sub-je
tive estimation by individual resear
hers and may have yielded students at di�erent levelsof preparedness. Similarly, the ne
essities of s
heduling the sorting interviews meant thatstudents who sorted later may have had more 
omputer s
ien
e instru
tion.� This study used edu
ators but did not 
on
entrate on 
olle
ting a wide 
ross-se
tion of experts.We have little information about the edu
ators, su
h as their level of expertise or whether theyhave taught the students in this study.
18



� The meaning of \don't know" is problemati
. Some resear
hers had their students makeexpli
it whi
h \don't know" they meant, but others did not.� Con
lusions based on subje
t self-rating of programming language experien
e re
e
t the 
on�-den
e of the individual and may be skewed along the lines of ra
e, gender or ethni
ity. Althoughwe attempted to standardize evaluations of student performan
e, ratings for students may notbe uniform a
ross institutions. In addition, this evaluation of student performan
e may nottake into a

ount fa
tors su
h as the �rst programming language used or the amount andsour
e of previous programming experien
e (e.g. AP 
redit, transfer 
redit).� Data analysis of a suÆ
iently ri
h and interesting data set always takes longer than you think.The data set gathered in this study represents the largest and most diverse 
olle
tion of materialrelating to 
on
eptual stru
tures of �rst 
ompeten
y programmers to date. We have identi�edseveral themes in the data, but there is mu
h more to be done; this ri
h data set will support furtherinvestigation.Moreover, if our data is 
ombined with new material, more wide-ranging questions might beaddressed. For example, an in-depth study of edu
ators and industry professionals may provideinsight into their 
on
eptual stru
tures, whi
h might be related to their ba
kground, training, and
areer, whi
h may provide a ri
her 
omparator for student hierar
hies. A longitudinal study tra
kingstudent 
on
eptual stru
tures may provide insights into how these 
hange over time and how they
orrelate with an expert population.
A
knowledgementsThe Bootstrapping proje
t was supported by the National S
ien
e Foundation Grant No. DUE-0122560. We are grateful to Barbados Community College for data gathering opportunities; toGordon Rugg, for advi
e and guidan
e on 
ard sorting; to Robin Blume-Kohout for advi
e onmatrix 
omparability; to Ian Utting for propping up the workshop leaders; to Kate Deibel andJanet Davis for help with data 
olle
tion; to Karen Furuya for help with data analysis; and to NoelWelsh and Jim Bender.
Authors' AÆliationsMarian Petre Computing Department, The Open University, Milton Keynes, MK7 6AA, UK.m.petre�open.a
.ukSally Fin
her Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.S.A.Fin
her�kent.a
.ukJosh Tenenberg Computing and Software Systems, University of Washington Ta
oma, Ta
oma,WA 98402, USA. jtenenbg�u.washington.eduRuth Anderson Department of Computer S
ien
e, University of Virginia, Charlottesville, VA 22904,USA. ruth�
s.virginia.eduDennis Bouvier Computer S
ien
e Department, Saint Louis University, St. Louis, MO 63103, USA.bouvier�
s.slu.eduSue Fitzgerald Metropolitan State University, Minneapolis, MN 55403, USA. sue.�tzgerald�metrostate.eduAli
ia Guts
how Information Systems Te
hnology, Blue Ridge Community College, Weyers Cave,VA 24486, USA. guts
howA�br

.eduSusan Haller Computer S
ien
e Department, University of Wis
onsin Parkside, Kenosha, Wis
onsin53141, USA. haller�
s.uwp.eduGary Lewandowski Math/CS Department, Xavier University, Cin
innati, OH 45207, USA. lewandow�
s.xu.eduRaymond Lister Software Engineering Department, University of Te
hnology, Sydney, Australia.raymond�it.uts.edu.au 19



Ren�ee M
Cauley Computer S
ien
e Department, College of Charleston, Charleston, SC 29424,USA. m

auley�
s.
of
.eduJohn M
Taggart Department of Mathemati
s and Computer S
ien
e, Drake University, DesMoines, IA 50311, USA. john.m
taggart�drake.eduBriana B. Morrison Computer S
ien
e Department, Southern Polyte
hni
 State University, Mari-etta, GA 30060, USA. bmorriso�spsu.eduLaurie Murphy Computer S
ien
e and Computer Engineering Department, Pa
i�
 Lutheran Uni-versity, Ta
oma, WA 98447, USA. murphyl
�plu.eduChristine Prasad S
hool of Computing and Information Te
hnology, UNITEC Institute of Te
hnol-ogy, Au
kland, New Zealand. 
prasad�unite
.a
.nzBrad Ri
hards Computer S
ien
e Department, Vassar College, Poughkeepsie, NY 12604, USA.ri
hards�
s.vassar.eduKate Sanders Math/CS Department, Rhode Island College, Providen
e, RI 02906, USA. ksanders�ri
.eduTerry S
ott Department of Mathemati
al S
ien
es, University of Northern Colorado, Greeley, CO80639, USA. ts
ott��sher.un
o.eduDermot Shinners-Kennedy Department of Computer S
ien
e and Information Systems, Universityof Limeri
k, Limeri
k, Ireland. Dermot.Shinners-Kennedy�ul.ieLynda Thomas Department of Computer S
ien
e, University of Wales, Aberystwyth, Dyfed, SY233DB, Wales, UK. ltt�aber.a
.ukSuzanne Westbrook Computer S
ien
e Department, University of Arizona, Tu
son, AZ 85721, USA.sw�
s.arizona.eduCarol Zander Computing & Software Systems, University of Washington Bothell, Bothell, WA98011, USA. zander�u.washington.edu

20



Referen
es[1℄ Beth Adelson. Problem solving and the development of abstra
t 
ategories in programminglanguages. Memory and Cognition, 9(4):422{433, 1981.[2℄ M. S. Aldenderfer and R. K. Blash�eld. Cluster Analysis. Sage Publi
ations, 1984.[3℄ C. M. Allwood. Novi
es on the 
omputer: A review of the literature. International Journal ofMan-Ma
hine Studies, 25:633{658, 1986.[4℄ M. T. H. Chi, R. Glazer, and M. J. Farr, editors. The nature of expertise. Erlbaum, 1988.[5℄ Simon P. Davies, David J. Gilmore, and Thomas R. G. Green. Are obje
ts that important?the e�e
ts of expertise and familiarity on the 
lassi�
ation of obje
t-oriented 
ode. Human-Computer Intera
tion, 10(2 & 3):227{248, 1995.[6℄ Jianming Dong, Shirley Martin, and Paul Waldo. A user input and analysis tool for informationar
hite
ture. (http://www-3.ibm.
om/ibm/easy/eou ext.nsf/Publish/410), June 2004.[7℄ Mi
hael M
Cra
ken et al. A multi-national, multi-institutional study of assessment of pro-gramming skills of �rst-year CS students. ACM SIGCSE Bulletin, 33(4):125{140, De
ember2001.[8℄ M. W. Eysen
k and M. T. Keane. A Handbook of Cognitive Psy
hology. Psy
hology Press,1995.[9℄ C. M. Kessler and J. R. Anderson. Learning 
ow of 
ontrol: Re
ursive and iterative pro
edures.Human-Computer Intera
tion, 2, 1986.[10℄ F. Marton and R. S�alj�o. On qualitative di�eren
es in learning: Out
ome and pro
ess. BritishJournal of Edu
ational Psy
hology, 46:4{11, 1976.[11℄ G. Rugg and P. M
George. The sorting te
hniques: Card sorts, pi
ture sorts and item sorts.Expert Systems, 14(2):80{93, 1997.

21



Appendi
esA Ba
kground QuestionnaireSubje
t Identi�er:Age:Gender: M FAre you a: full-time part-time student?Do you generally attend day night 
lasses?Do you hold an external job? Yes NoIf so, how many hours per week (on average) do you work?If so, is the job in the 
omputer industry? Yes NoWhat programming language was taught in your (CS1) 
lass?What programming language was taught in your (CS2) 
lass?At what age did you begin to program?
A.1 Programming Experien
eOn a s
ale of 1 (never used) to 5 (have used a lot) please rate your familiarity with the followingprogramming languages (pla
e an X in the appropriate 
olumn):1 2 3 4 5JavaC++CAdaS
hemePas
alVisual Basi
 (VB)Other (please list)

Thank you.

22



B Instru
tions for Card SortB.1 Introdu
tionYou will be given some 
ards to sort. Ea
h 
ard will have the name of a programming 
on
ept onit. We would like you to sort the 
ards into groups, using one 
riterion at a time. When you have�nished sorting, we will ask you what the groups were that you sorted the 
ards into, and what the
riterion was for that sort. On
e this has been done, we would like you to sort the 
ards again-usinga di�erent 
riterion-and then to keep on sorting them until you have run out of 
riteria.For example, if the task was sorting pi
tures of di�erent types of house, you might sort theminto groups \bri
k", \stone", \wood", et
., depending on their main material of 
onstru
tion; these
ond time you might divide the 
ards into groups 
alled \one", \two" and \three", depending onthe number of 
oors in ea
h building.In this task, we would like you to 
on
entrate on how programs are 
onstru
ted, rather than onsuper�
ial surfa
e detail. For instan
e, if you were sorting pi
tures of houses, you might sort thehouses in a variety of ways relating to 
onstru
tion, su
h as whether they required deep foundations,or whether the bri
kwork would be 
ompli
ated, or whether there were internal load-bearing walls,rather than on super�
ial details su
h as the 
olour of the bri
k.You are wel
ome to use any 
riteria you like, and any groups you like, in
luding \don't know",\not sure" and \not appli
able". The main thing is to use only one 
riterion in ea
h sort-pleasedon't lump two or more in together. If you're not sure about something, just ask.You may have noti
ed that the 
ards are numbered: this is for 
onvenien
e when re
ording theresults. The numbering is random, so please don't use that as a 
riterion for sorting!If you have any 
omments or questions, then please say, and we will sort them out.Thank you for your help.

23



C History of the Bootstrapping Proje
tBootstrapping Resear
h in Computer S
ien
e Edu
ation was a proje
t intended as a hands-on \wayin" to high-quality 
omputer s
ien
e edu
ation resear
h for 
omputer s
ien
e higher-edu
ation fa
-ulty. The proje
t was supported by the National S
ien
e Foundation Grant No. DUE-0122560and by Washington State's Institute of Te
hnology at the University of Washington-Ta
oma. Boot-strapping used a workshop format to bring pra
titioners and expert resear
hers together to initiateprin
ipled, large-s
ale tea
hing and learning resear
h.The key obje
tives of the proje
t were:� To improve the state of 
omputer s
ien
e edu
ation resear
h and thereby to improve the stateof CS edu
ation by developing skills (in the design, 
ondu
t, and management of resear
h) ofCS edu
ators by exposing them to relevant theory and methods.� To establish resear
h relationships that extend beyond the duration of the workshops, 
on-tributing to a resear
h 
ommunity able to sustain a 
onstru
tive dis
ourse and ongoing 
ollab-oration.� To engender skills and 
on�den
e that allow parti
ipants to initiate subsequent resear
h andengage in the wider resear
h 
ommunity.C.1 Parti
ipantsThe workshop leaders 
hose twenty-one workshop parti
ipants from over sixty appli
ants. Theparti
ipants 
ame from a range of host institutions in
luding 
ommunity 
olleges, primarily under-graduate 
olleges, and resear
h universities from four 
ontinents and six 
ountries. The parti
ipantsbrought diverse expertise, enthusiasm, and a high-level of energy to the proje
t.C.2 First workshopParti
ipation in the proje
t in
luded a 
ommitment to attend two workshops given one year apart andto perform the study des
ribed in the experiment kit in the interim. The initial workshop took pla
eJune 1 - June 6, 2002 in Port Townsend, Washington. This workshop provided an \entry point" intotheoreti
al and empiri
al perspe
tives on Computer S
ien
e Edu
ation Resear
h. The workshop tooka \trading zone" approa
h by borrowing heavily from other dis
iplines in
luding edu
ation, adultlearning, business, engineering, HCI and arti�
ial intelligen
e, 
ognitive psy
hology, and other so
ials
ien
es. The workshop emphasized the \Six Guiding Prin
iples of S
ienti�
 Resear
h" detailedin the National Resear
h Coun
il Report S
ienti�
 Resear
h in Edu
ation. Parti
ipants used theworkshop to build 
ollaborative relationships with other CS higher-ed fa
ulty.Sessions on resear
h methodology 
overed the design of resear
h proje
ts, in
luding the impor-tan
e of fo
al questions, eviden
e and analysis. The framing of resear
h questions and how toinvestigate them were key topi
s. Other topi
s in
luded resear
h ethi
s, approa
hes to annotatedbibliographies, and re
ord keeping.To 
omplement the le
ture and dis
ussion, the parti
ipants pra
ti
ed eli
itation te
hniques su
has stru
tured and unstru
tured interviews and laddering. Additionally, the parti
ipants learned todo 
ard sorts, the eli
itation te
hnique used in the experiment kit. The experiment kit introdu
edin this proje
t addresses programming understanding and 
on
eptual foundations of programmingskills in �rst- and se
ond-year undergraduate students.C.3 Intervening A
tivitiesDuring the following year, all workshop parti
ipants 
ondu
ted 
ard sort interviews of students andedu
ators within their own institutions. Parti
ipants maintained 
onta
t with one another throughthe proje
t mailing list and via informal meetings during the SIGCSE Te
hni
al Symposium. Ad-ditional a
tivities 
arried out in
luded their institutional requirements for human subje
ts resear
h.Parti
ipants also performed preliminary analysis on their own subje
t data.
24



C.4 Capstone WorkshopTwenty of the twenty-one parti
ipants returned for the June 7 - June 12, 2003, 
apstone workshopwith data in hand. Over 270 subje
ts and experts had been interviewed. Data was 
ombinedand ane
dotal results were shared. The hard work began with the analysis of the data. Everyparti
ipant was responsible for formulating questions about the data and analysing. This proje
tpaper was written by all parti
ipants, and plans were made to report and disseminate results morewidely to the Computer S
ien
e Edu
ation 
ommunity, through workshops, 
onferen
es, journalpubli
ations et
.A 
riti
al fo
us of the se
ond workshop was that ea
h parti
ipant prepared a resear
h plan fora further study, either individual or in 
ollaboration, related to their own interests. These were
ritiqued and revised in groups and in plenary. In addition, plans for future 
ollaborations andfurther analysis of the proje
t data were dis
ussed.

25


