
To appear in Proceedings of HCI International 2001 9th International Conference on Human-Computer Interaction,
August 5-10, 2001, New Orleans, USA

1

A Pattern-Supported Approach to the User Interface Design Process

Åsa Granlund

Ericsson Radio Systems AB
Box 1248

S-581 12 LINKÖPING, Sweden
asa.granlund@era.ericsson.se

Daniel Lafrenière

GESPRO Technologies
1245 chemin Sainte-Foy, Édifice 1

Québec (QC), Canada G1S 4P2
lafrenid@gespro.com

David A. Carr

Institutionen för Systemteknik
Luleå University of Technology

S-971 87 LULEÅ, Sweden
david@sm.luth.se

ABSTRACT

Patterns describe generic solutions to common problems in context. Originating from the world of architecture,
patterns have been used mostly in object-oriented programming and data analysis. The goal of HCI patterns is to
create an inventory of solutions to help designers (and usability engineers) to resolve UI development problems that
are common, difficult and frequently encountered. In this paper, we present our pattern-supported approach to user
interface design in the context of information visualization. Using a concrete example from the telecommunications
domain, we will focus on a task/subtask pattern to illustrate how knowledge about a task and an appropriate interac-
tion design solution can be captured and communicated.

1 INTRODUCTION

1.1 What Is a Pattern?

A pattern is a formalized description of a proven concept that expresses non-trivial solutions to a UI design prob-
lem. The primary goal of patterns in general is to create an inventory of solutions to help UI designers resolve UI
development problems that are common, difficult and frequently encountered. (adapted from Loureiro & Plummer,
1999)

A pattern is a format for describing a solution to a design problem. Patterns originate from architecture and were
introduced by Christopher Alexander (Alexander, et. al., 1977; Alexander, 1979) in the mid-70’s. Alexander noticed
that certain solutions always apply to the same recurring problems and developed patterns as a design knowledge
documentation method.

Software Engineering (Gamma, Helm, Johnson & Vlissides, 1995) adopted the pattern as a way to facilitate reuse
of software. Early attempts at reuse of components often failed because the units were too small and did not mesh
well together. Software patterns were adopted to allow sharing of larger units, and they specify in quite fine detail
how components interact. As such they are much more prescriptive than patterns for architecture.

User interface designers also noticed that certain design problems occurred over and over. These problems gener-
ally have known good solutions. However, there has been a problem communicating them. Guidelines represent a
possible solution, but they are generally seen as hard to interpret and as requiring excessive effort to find relevant
material (Mahemoff & Johnston, 1998). For this reason, there has been an increasing interest in patterns to docu-
ment user-interface design solutions. The SIGCHI’97 workshop on patterns (Bayle, et. al., 1998) saw patterns as a
way of dealing with the increasing complexity and diversity of HCI design.

Tidwell (1999) describes patterns as “… possible good solutions to a common design problem within a certain
context, by describing the invariant qualities of all those solutions.” Simply put, patterns can be said to provide pow-
erful and generic design guidance in a format that is consistent and easy to read and understand – they convey
knowledge about good design.

Patterns are used implicitly by many skilled UI designers who have found solutions that have worked for them in
the past. However, these designers usually keep little in the way of formal (documented) descriptions of these solu-
tions. Thus, there are in fact both implicit patterns and formal (explicit) patterns. Explicit patterns can be used as a
means of collecting and formalizing this knowledge. Using HCI patterns for capturing and documenting design
knowledge is currently a hot topic, and there are many reasons for this interest (Erickson, 1998):

• Patterns provide a lingua franca that can be read and understood by all, regardless of background.

• The existing formal ways of documenting UI design knowledge are often weak – patterns offer a good way of
capturing and transferring this knowledge. They are presented consistently, are easy to read, and provide back-

To appear in Proceedings of HCI International 2001 9th International Conference on Human-Computer Interaction,
August 5-10, 2001, New Orleans, USA

2

ground reasoning. The format provides information about the problem at hand, the context, a solution and also the
rationale behind this solution.

• They promote reuse.

• Patterns are a valuable source of information, supporting both the analysis and the current situation and the design
of the new system.

However, we believe that patterns cannot serve as a single source of design knowledge. They must still be com-
plemented by traditional sources of information. But, they will point to information that is generally valid (for a
specific domain) and also to designs that have proven good for similar projects. Since the description format pro-
vides reasoning and motivation, a pattern’s relevance for the current project can be tested and evaluated.

Patterns must also be part of a language of interrelated patterns, participating in and supporting each other, in or-
der to be truly useful. The pattern language works on different scales, and promotes the iterative growth of a design.

1.2 HCI Patterns Are Different
Patterns differ from design guidelines. Guidelines aim at coherence among user interfaces by documenting all the

intricacies of a particular user interface (such as Windows or MacOS). However, guidelines focus mostly on win-
dow/widget issues while neglecting the knowledge required for proper UI design. In fact, the major forces influenc-
ing design: the user, the context, and the task, are missing from guidelines. Design rationale is missing, too. Patterns
capture and document all of this important knowledge. They are also more invariant over time.

HCI patterns also differ from other pattern types. Software engineering patterns tend to specify a very strong in-
terrelationship among component descriptions. The emphasis is on interface specification among components. How-
ever, user-interface designers see these patterns as too rigid and too detailed. User interface designers are concerned
with esthetics and social aspects as well as function. They also want freedom to innovate and express themselves.
These desires, combined with the fact that HCI is a young discipline where much is unknown, make a pure engi-
neering approach inappropriate. Thus, HCI patterns are closer to architectural patterns. However, HCI patterns are
also tied to software systems and as such must take software issues into consideration.

1.3 The PSA Approach
Up to this point, most of the work on patterns in HCI has focused on screen design issues. Our pattern-supported

approach (PSA) to the user interface design process suggests a wider scope for the use of patterns by looking at the
overall user-oriented interface design process. PSA addresses patterns not only at the design phase, but before de-
sign. (See Figure 1.)

Based on the fact that the usability of a system emerges as the product of the user, the task and the context of use,
PSA integrates this knowledge in most of its patterns, dividing the forces in the pattern description correspondingly
(i.e., describing Task, User, and Context forces). PSA provides a double-linked chain of patterns (parts of an
emerging pattern language) that support each step of the design process (Figure 2). For example, task patterns point
to Structure and Navigation Patterns, which in turn point to GUI Design Patterns, and vice-versa. These patterns
offer a way to capture and communicate knowledge from previous designs (including the knowledge from system
definition, task/user analysis and structure & navigation design). Given a mature language of patterns belonging to
the described classes, the PSA approach provides an entry point to this pattern language, and suggests (without re-
stricting the pattern usage) a chain of appropriate patterns at different levels of analysis and design.

Business
Domain
Patterns

Business
Domain
Patterns

Business
Process
Patterns

Business
Process
Patterns

Task
Patterns

Task
Patterns

System
Definition
System

Definition
Task/User
Analysis

Task/User
Analysis

User Interface
Architecture

User Interface
Architecture

Structure &
Navigation

Design
Patterns

Structure &
Navigation

Design
Patterns

DesignDesign

GUI
Design
Patterns

 GUI
Design

Patterns

Information PatternsInformation PatternsInformation Patterns UI Design PatternsUI Design PatternsUI Design Patterns

Subtask
Pattern

Subtask
Pattern

Subtask
Pattern

Subtask
Pattern

Figure 1 – The PSA Framework

To appear in Proceedings of HCI International 2001 9th International Conference on Human-Computer Interaction,
August 5-10, 2001, New Orleans, USA

3

Here is a brief overview of the PSA patterns:

• Business Domain Patterns describe the type of business, its goals, plus the typical actors and business processes
involved. They provide a starting point for initially defining the system design by pointing to relevant Business
Process patterns and thereby to Task patterns. They help communicate the System Vision.

• Business Process Patterns describe typical processes and actors involved in the delivery of services/goods in
compliance with the business goals. They narrow down the system definition and point to specific Task patterns to
be considered.

• Task Patterns are used for capturing and passing on knowledge about the task, typical users, and their work con-
text from previous similar projects, and for suggesting an appropriate interaction design solution. They point to
Structure & Navigation Design patterns that describe solutions that have proven suitable for the task type in pre-
vious designs.

• Structure & Navigation Design Patterns describe ways to structure information and implement navigation in
order to support the user’s task. This design is based on the information described in the Task patterns.

• GUI Design Patterns document GUI design issues based upon information described in the Task Patterns and
Structure & Navigation Design Patterns. They are based on the work of Tidwell (1999).

PSA is concerned with domain specific pattern support, that is: Business Domain, Business Process and Task pat-
terns that describe a specific domain. We believe that this level of specificity is necessary – if the patterns are too
abstract, they will not be useful in practice. However, it is desirable to make them as general and invariant as possi-
ble. Knowledge gained from this work will later be used to attempt the generalization that will also support transfer
of design knowledge between domains.

Structure & Navigation Design patterns and GUI Design patterns, however, are general from the start, since they
are not dependent on the domain. This means that the information in the Business Domain and Business Process and
Task patterns leads up to suggestions for suitable Structure & Navigation Design patterns. Structure & Navigation
Design patterns in turn point to GUI Design patterns, but the Structure & Navigation Design pattern in itself is not
based on domain specific knowledge about task, user, and context.

2 FORMAT AND USE OF PSA PATTERNS
In order to demonstrate the use of PSA patterns, we will discuss the form of PSA patterns and illustrate their use

with excerpts from a task pattern and a subtask pattern taken from our project to build a pattern language for system
design for radio network management (mobile telephony). The patterns selected document part of the activity
around optimizing the operation of the radio network. They also incorporate recommendations for the use of infor-
mation visualization in this activity. The patterns incorporate guidance on design for visualization (Carr, 1999) into
the context of managing cellular telephone networks.

We present only task and subtask patterns. In a design project, a set of relevant task patterns would have been se-
lected during discussions with stakeholders, using Business Domain and Business Process patterns to guide the
selection. The Task pattern can then be used for planning task and user analysis (and in some cases substitute for
these activities, where for some reason, they cannot be carried out).

2.1 Task Patterns
Task patterns describe complex tasks, and point to subtask patterns that in turn describe parts of the task. They are

used for capturing knowledge from previous similar projects, and use Description, Context and Forces to pass on the
knowledge regarding: the task, typical users, their work context, and an appropriate interaction design solution. The
Task pattern description consists of the following sections:
• Name – describes the task. A pattern called “Radio Network Optimization ” would be a more specific instantia-

tion of the more generic pattern “Network Optimization”, which can apply to many different domains.

• Context – describes the goal of the design, specifying the user and the requirements of the task.

• Problem – describes the design problem at hand. Whenever there are competing concerns (forces) there will also
be a problem – without the competing concerns, the solution is trivial, and there is no problem.

Business
Domain
Patterns

BusinessBusiness
DomainDomain
PatternsPatterns

Business
Process
Patterns

BusinessBusiness
ProcessProcess
PatternsPatterns

Task
Patterns

TaskTask
PatternsPatterns

Subtask
Pattern

SubtaskSubtask
PatternPattern

Subtask
Pattern

SubtaskSubtask
PatternPattern

Structure &
Navigation

Design
Patterns

Structure &Structure &
NavigationNavigation

DesignDesign
PatternsPatterns

 GUI
Design

Patterns

 GUI GUI
DesignDesign

PatternsPatterns

Figure 2 – Links between PSA Patterns

To appear in Proceedings of HCI International 2001 9th International Conference on Human-Computer Interaction,
August 5-10, 2001, New Orleans, USA

4

• Example – is used to clarify the task. This adds a feeling for the task at hand, and PSA tries to use a storyboard in
order to make the example more vivid and easier to understand.

• Forces – describe all the, often conflicting, factors that influence design, directly or indirectly. PSA uses detailed
forces, specific to the domain, but generic within it. The richness provides all the recurring information that would
typically be gathered during task and user analysis. Information that is “project specific” does not fit into the Force
description. Forces are divided into task, user, and context forces. The task forces describe task characteristics and
special requirements. They build on general knowledge (e.g., regarding visualization tasks), but are made specific
to the task (e.g., radio network optimization) in order to help the reader more clearly understand the problem. The
reader avoids mental translation between general task characteristics and radio network optimization. The Force
descriptions about the user are inspired by “personas” (Cooper, 1999), in that they paint a picture of a typical user.
The information could easily be used as a basis for a full “persona” description in order to exemplify the user.
Context forces are used to capture environmental and social factors that influence the work.

• Design Solution – communicates design considerations for the task and “guidelines” emerging from the forces.
Since this pattern describes a complex task containing many subtasks, this interaction design solution (Figure 3)
concerns overall interaction issues. For design on lower levels, each contained subtask pattern will contribute its
own guidance.

• Resulting Subtask Patterns – describe the smaller tasks that are part of the complex task described in the pattern.
These are generic, making up building blocks, while at the same time having their own pattern descriptions with
forces, related Subtask patterns, and related Structure & Navigation patterns. For example, the Subtask patterns for
our Optimize Radio Network pattern are: Graphic Overview, Zoom, Filter Details-on-demand, Relate, and His-
tory. They are derived from Shneiderman’s visual information seeking tasks (Shneiderman, 1996).

• Resulting Structure & Navigation Patterns – suggest a way of navigating (and thereby implicitly structuring)
the data/functions on the level of the complex task described in the pattern, in other words, the overall structure
and navigation. Structure and navigation for parts of the task may well be different, and this is described in the re-
sulting subtask patterns.

• Resulting GUI Design Patterns – suggest suitable patterns for GUI design solutions.

2.2 Subtask Patterns
All complex tasks are made up of smaller tasks – subtasks. Trying to describe a complex task in one pattern would

be very difficult, and the description would quickly become large and unwieldy. Using the strength of a pattern
language, we can let the task pattern point to subtask patterns that participate in the complex overall task. The sub-
task patterns are typically (at least from our experience so far) generic and not dependant on user task and context.
This is due to the granularity of the description. They have the same components as the task pattern, describe solu-

The task forces emphasize the lack of structured workflow, the need to handle large amounts of data, and the need
for displaying data based on the context of the specific network optimization problem. These forces and the specifics
of the problem statement suggest information visualization as a solution. Information visualization is appropriate
where the user has a task that is not easy to specify and involves large amounts of data (Carr, 1999). One can assume
that the user will follow Shneiderman’s information seeking mantra (Shneiderman, 1996): “Overview first, zoom
and filter, then details on demand”. This suggests the following organization for the design:

• Use a two-dimensional map image for overview. This map image should be as simple and uncluttered as possible,
only providing the critical information at any given time.

• Provide zooming and panning of the map. Semantic zooming should be supported, where greater detail is revealed
as the user zooms in.

• Provide flexible, direct-manipulation-based filtering. Dynamic queries (Ahlberg & Shneiderman, 1994) are an
example design.

• Provide details-on-demand for all relevant objects in the map image. Make sure that the user doesn’t lose spatial
context when drilling-down.

• When using multiple views of the same data, make sure that their contents are synchronized. Consider a design
similar to “snap-together visualizations” (North & Shneiderman, 2000) where users can quickly construct their
own customized visualization consisting of multiple coordinated views.

Figure 3 – Design solution for the Optimize Radio Network pattern.

To appear in Proceedings of HCI International 2001 9th International Conference on Human-Computer Interaction,
August 5-10, 2001, New Orleans, USA

5

tions for interaction design and point to structure and navigation patterns at this lower level of detail. This should be
quite intuitive – any complex system may have an overall structure, navigation model, and interaction design solu-
tion, and at the same time have subparts with varying solutions within it. The subtask pattern also refers to related
subtask patterns.

There are two main differences between task and subtask pattern descriptions. Subtask forces are generally a sub-
set of task forces or derived from them. They are specific to the subtask, and are not divided into Task, User, and
Context Forces. At this level of detail the description is general for many complex tasks, regardless of the domain.
From this point of view, forces are more general than for task patterns, and independent of task, user, or context.
Also, subtask patterns have been found to be independent of a specific problem. Their design solution needs to be
described in general terms

3 CONCLUSIONS AND FUTURE WORK
Up to this point, we have had only positive feedback from interaction designers presented with the approach. Peo-

ple appreciate the strength of the format, and believe it would really support them in their work. However, we have
just started building a language of patterns, and many questions remain unsolved.

From a constructional point of view, we are currently working with the format of the structure and navigation
patterns. Originally, the approach offered conceptual design patterns, but as these turned out to be too abstract to be
useful, and we turned to the more practical subtask patterns. We are, however, striving to capture the more complex
aspects of modeling.

We are also concerned with the robustness of the chain of patterns that we offer. What happens if some but not all
forces apply? Can the link to the next level of patterns be trusted? We are thinking of having a “template” compo-
nent for which pointers are always valid. But at the same time, we are concerned that the approach and related pat-
terns will become too unwieldy. Our goal is that the user of the patterns should never be concerned with the
construction of the patterns – they must be easy and intuitive.

But above all, the approach and the patterns need to be adapted and validated through practical usage. Today, the
patterns do not fully supply a lingua franca, but are more or less targeting interaction designers. The descriptions,
structure and level of detail must be adapted to fit actual design projects. This can only be done through iteration-
based, practical use. In addition, whether or not the patterns can hold their promise of facilitating communication
must be evaluated.

4 REFERENCES
Ahlberg, C. & Shneiderman, B. (1994) Visual information seeking: tight coupling of dynamic query filters with

starfield displays, Human Factors in Computing Systems Proceedings of CHI’94, Boston, MA, 365-371.
Alexander, C. (1979) The Timeless Way of Building. Oxford University Press, New York, NY.
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiskdahl-King, I. & Angel, S. (1977) A Pattern Lan-

guage: Towns, Buildings, Construction. Oxford University Press, New York, NY.
Bayle, E., Bellamy R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B., Lehder, D., Marmolin, H.,

Moore, B., Potts, C., Skousen, G., & Thomas, J. (1998) Putting it all together: towards a pattern language for in-
teraction design, SGICHI Bulletin, 30(1), 17-23.

Carr, D. (1999) Guidelines for designing information visualization applications, Proceedings of ECUE'99, Stock-
holm, Sweden.

Cooper, A. (1999). The Inmates are Running the Asylum. SAMS, Indianapolis, IN, ISBN 0-62-31649-8.
Erickson, T. (1998) Interaction Pattern Languages: A Lingua Franca for Interaction Design?, UPA 98 Conference,

Washington, DC.
Gamma, E., Helm, R., Johnson, R., & Vlissides, R. (1995) Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, MA, ISBN 0-201-63361-2.
Loureiro, K. & Plummer, D. (1999). AD Patterns: Beyond Objects and Components. Research Note # COM-08-

0111, Gartner Group.
Mahemoff, M, & Johnston, L. (1998) Principles for a usability-oriented pattern language, OZCHI '98 Proceedings,

Adelaide, Australia, 132-139.
North, C., & Shneiderman, B. (2000) Snap-together visualization: a user interface for coordinating visualizations via

relational schemata, Proceedings of Advanced Visual Interfaces 2000, Palermo, Italy, 128-135.
Shneiderman, B (1996). The eyes have it: a task by data type taxonomy for information visualizations, Proceedings

of 1996 IEEE Visual Languages, Boulder, CO, 336-343.
Tidwell, J. (1999). Common Ground: A Pattern Language for Human-Computer Interface Design.

http://www.mit.edu/~jtidwell/interaction_patterns.html

