
Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 1 ©2011 Association for Computing Machinery

Interview with Mark Guzdial, Georgia Institute of Technology:

Computing as Creation
Interviewed by Peter Denning for Ubiquity

Interview conducted May 2010

Editor’s Introduction

Mark Guzdial is a Professor in the School of Interactive Computing at Georgia Institute of
Technology (Georgia Tech). His research focuses on the intersection of computing and
education, from the role of computing in facilitating education to how we educate about
computing. In this interview with him, he discusses how we teach computing and to whom,
especially his contention that a contextualized approach is a powerful tool to teach everyone
about computing.

Peter Denning
Editor

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 2 ©2011 Association for Computing Machinery

Interview with Mark Guzdial:

Computing as Creation
Interviewed by Peter Denning for Ubiquity

Interview conducted May 2010

Ubiquity: You’re well known for your efforts to make computing education available to
everyone. How did you come to be interested in this?

Mark Guzdial: In my senior year of high school (1980), I taught a community education course,
“Bits, Bytes, and Basic,” for adults who wanted to learn what these newfangled devices like the
Apple II and TRS-80 were all about. The course was successful, and the community education
program asked me to expand the offerings. I taught all through undergraduate, and in my
senior year of undergraduate, I was teaching more credit hours (including a course in 6502
assembly language at a local community college) than I was taking. I grew up in computing
thinking about how to teach it. At a Bell Labs internship in Summer 1982, I discovered Adele
Goldberg and Alan Kay's paper “Personal Dynamic Media.” That vision of the computer as a
learning and learnable tool made me want to go to graduate school, which I eventually did at
the University of Michigan to earn a joint PhD in Education and Computer Science.

Ubiquity: There is a lot of talk about computing for students interested in science, math,
engineering, and technology (abbreviated SMET). That’s an ambitious goal all by itself. Why do
you want to expand to all knowledge workers?

MG: In 1961, Alan Perlis first made the argument that everyone in academia should learn to
program. He argued that computer science is the study of process, and that process is
important to everyone. The business students who study logistics are amazed when I tell them
in my class that computer scientists know how to compare and evaluate processes. Perlis went
on to say that the automated execution of process changes everything, and he gave an example
of how economics became an experimental science at Carnegie Tech when they could start to
run simulations. Perlis' argument still stands today. All knowledge workers care about process,
and all knowledge working domains are transformed by automated execution of process. One
of my PhD students, Brian Dorn, is studying graphics designers (who typically took art classes in

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 3 ©2011 Association for Computing Machinery

college, and no CS) who teach themselves how to program in order to use Photoshop more
efficiently. Computing is for everyone.

Ubiquity: In 2003, you introduced a new introductory course at Georgia Tech. You called it
media computation. How did the students respond the first time you did it?

MG: In 2003, the course was an easy sell. We were replacing a course that more than 50% of
Liberal Arts, Architecture, and Management students were failing each semester. A course
designed to be relevant to them (focusing on media manipulation), using a language (Python)
that they found approachable, led to a lot of excitement and much higher success rates. More
important is that two years later, with other people teaching the course, when students didn't
remember “the bad old days,” students still found the course creative, relevant, and engaging.

Ubiquity: How did the other faculty respond to this course? I understand there was a lot of
resistance to using it as an alternative to the introductory course.

MG: Georgia Tech has had a requirement for all undergraduates to take an introductory
computing course, and from 1999-2003, there was only one course that met that requirement.
By 2003, our faculty saw that the status quo wasn't working. The idea of creating an alternative
course for Engineers (using MATLAB) was a no-brainer. The idea of creating a CS1 just for the
Liberal Arts, Architecture, and Management majors was a harder sell, but Kurt Eiselt and Jim
Foley supported the effort and helped make it happen.

Ubiquity: What are some of the things you teach in media computation?

MG: We teach the same basic content of any introductory computing course, but where the
data being manipulated are pixels of pictures and samples of sounds. For example, every CS1
has students write programs that iterate across an array, to compute an average or a
maximum. We do the same thing, but we're iterative over the pixels of a picture to create a
grayscale or negative image. Every CS1 concatenates arrays. We do, too, but the arrays contain
sound samples, so that the concatenation is digital splicing. Every CS1 has students do
something with only a part of an array. We do, too, by removing red from only those pixels in
the eye without messing with the red in the person's clothes. We can motivate problems
somewhat differently. We talk about how digital video special effects are created, by showing
scenes of movies and then implementing those effects.

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 4 ©2011 Association for Computing Machinery

Where we end up is slightly different. We write programs to map from sounds to images (to
create sound visualizations), and then back again, so that we can talk about information as
being something different than the medium in which that information is represented. The
general notion of “information” is something we rarely get to in CS1's, but it's a natural
discussion in a media computation class.

In our Media Computation data structures class, we cover linked lists, trees, stacks, and queues,
but all in a media context. In every data structures class, students learn to clone a node a dozen
times to make a linked list, and how to weave new nodes into the existing list. And when those
nodes contain numbers or strings, this is a really boring assignment. When those nodes contain
MIDI notes, it becomes an exercise in music composition. Similarly, the first tree that we
introduce is a scene graph, which is a standard computer animation data structure. It's the
same content, but with different data which leads to greater motivation and engagement

Ubiquity: From your description, it looks like you like to bring out the scientific principles
underlying media computation. A good example is sampling. We know from communication
theory that if you take samples from a continuous waveform at twice the highest frequency in
the waveform, you can completely recover and regenerate the continuous signal from the
sampled data. The finite data sample contains all the information about the infinite continuous
wave! Sampling would be a principle that is not covered in traditional introductions to
computing.

MG: In general, we’re not changing the learning goals or objectives of introductory computing,
as much as we're changing the context. We deal with arrays and control structures and objects,
but use digital media as our data. Our media computation course shifts from the context of
programming to individual creativity in digital media. That context calls on us to explore
scientific principles appropriate to it.

Because of the context of media, we can explore scientific principles that, as you say, are not
traditionally covered in introductions to computing. For example, the same principle of
“sampling” explains how we shrink an image (by purposefully and regularly under-sampling an
image) and scale up an image (by oversampling). Now, we extend from this principle back to
“algorithm.” We can under-sample the samples of a sound in order shift it higher in frequency,
and we can over-sample the samples of a sound to shift it lower in frequency. We are now
using the same process on different data for the same effect. We also end up teaching a bunch
of psychophysics. How many bits per sample do you need to record voice? It turns out that 1 bit

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 5 ©2011 Association for Computing Machinery

is enough for intelligible speech, which leads us to ask questions of how our brains process
speech such that we can understand from so little data.

Ubiquity: That’s interesting. You generate deep involvement by the students by asking them in
their projects to apply the principles to create new expressions. But doesn’t this create artists
rather than scientists?

MG: I’m not teaching art. We encourage creative exploration, and we particularly reward new
expression that requires invention in the computing, for example, a new image or sound effect.
Our computer engineering faculty call my course “Baby DSP” (Digital Signal Processing) because
we’re touching on their themes, too. My students are going to have a wide variety of careers,
because I get the non-CS majors. I’m happy to hear that they have used the Media Computation
course to inform careers in art, engineering, computing or science. My goal is to teach
computer science. That’s my focus and what I’m grading on.

Ubiquity: Let me push on that some more. You keep emphasizing “expression”. Simply letting
people say who they are may help motivate them. But how is this computer science?

MG: Computing is a powerful medium for self-expression. Expression is a powerful motivator. I
am using that power and motivation to teach computer science.

Ubiquity: Let’s talk about distance education. What is your approach to this? How do you
maintain student engagement?

MG: There is an enormous need for computing education at a distance. For example, there's an
effort in our community called “CS10K” whose goal is to have 10,000 high school computer
science teachers to teach the new advanced placement course by 2015. Today, we only have
2,000 AP CS teachers. How are we going to ramp up 8,000 more teachers in five years? We
can’t do all that with face-to-face courses. We need distance education to meet these needs.

Distance education is an unsolved problem. Much of what we do in distance education is what
is sometimes called a “remote classroom,” i.e., to reproduce the classroom setting but with a
voice-video link between the student and teacher. Studies of this mode show a failure rate
about twice that of regular classrooms. The teachers say it’s extremely hard to maintain
student engagement and, if they aren’t engaged, they drop out.

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 6 ©2011 Association for Computing Machinery

Ubiquity: In his book, On the Internet, Hubert Dreyfus expresses grave doubts that distance
education would be able to raise someone past a level of competence in a domain. Now
competence is a pretty good objective—after all, you strive for that in the normal
undergraduate curriculum. But for graduate and continuing education you might want to reach
higher, to proficiency or expert. Can distance education take us there?

MG: I don't know. I can see the argument for why it would not work. But Dreyfus seems to
believe that good coaching and varied experiences are essential to the higher levels of
competence.

I think that there is an important role for distance education for experts. Caroline Simard at
Anita Borg Institute did a study of female mid-level managers in IT companies. These women
have more family commitments than their male counterparts, and yet need to keep up their
technical skills. Distance education on the latest, say, Web technologies or functional languages
for multi-core architectures could serve this audience well, so that the women could update
their skills within their limited time availability. These women already have competencies,
maybe even expertise in some technologies. They simply want to update, which can be done at
a distance.

I want to be careful here. The construction of immersive virtual worlds is beyond my area of
expertise. I don’t know the literature on the use of immersive virtual worlds for education. I
would agree that players of MMOGs (massively multiplayer online games) are learning
something, but can they transfer game learning into the real world? Does what they learn in
the game match what we as a society want them to learn? I am open to good answers, but I
suspect a lot of careful design work will have to happen before these environments are ready
for general education.

Ubiquity: There has been a lot of talk the past couple of years about “computational thinking”
and its place in general education. What does computational thinking mean to you? How would
you integrate it into your curricula?

MG: It’s odd, so many people like the idea of computational thinking, but there is no general
agreement on a definition. I don’t have a good definition for computational thinking. I do see
that it's a powerful idea. I believe that our Media Computation courses touch on computational
thinking ideas, in fact, more broadly than traditional programming-focused introductory
courses normally do. We address issues of representation, and information, and even issues of

Ubiquity, ACM’s publication on the future of computing
 January 2011

http://ubiquity.acm.org 7 ©2011 Association for Computing Machinery

data scale-up (e.g., a 12 megapixel picture is a lot of pixels to process, and a 3-minute stereo
CD-quality sound is 15 megabytes) more than most CS1's address.

Ubiquity: There has also been a lot of talk about teaching to the fundamental principles of
computing, looking past current technologies, which can be faddish, and finding the unchanging
aspects. Do you think students are interested in learning about fundamental principles? Or do
they prefer the technologies?

MG: Students are definitely interested in fundamental principles, but we have to motivate
those principles first. In our first Media Computation course, students start asking us, “How
come my program is always slower than Photoshop for doing the same things?” Our answer
involves talking about optimization, and interpretation versus compilation, and about machine
versus higher-level languages. These are pretty deep, fundamental ideas that come about
naturally in a Media Computation context, and students really do engage in that part of the
course. The point of the context is to explain to the students why they should care about those
principles.

