
Page 1 of 1

Presentation Dynamism in XML
Functional Programming meets SMIL Animation

Patrick Schmitz
Ludicrum Enterprises

San Francisco, CA, USA
cogit@ludicrum.org

Simon Thompson
University of Kent

Canterbury, Kent, UK
S.J.Thompson@ukc.ac.uk

Peter King
University of Manitoba
Winnipeg, MB, Canada

prking@cs.UManitoba.ca

1. INTRODUCTION
Web authors are turning more and more to W3C language
standards as powerful yet simple to use authoring tools. These
languages are declarative, providing a domain-level description of
both content and presentation. When authors need capabilities not
provided in the language, they are forced to work in an imperative
scripting or programming language, such as ECMAScript or Java.
Since most content authors are not programmers, this is often
awkward.

Modern presentation generation systems, such as [JvO], rely on
the structure and semantics of declarative languages, and often
cannot easily integrate imperative content extensions. Similarly,
the use of script or code is problematic in data-driven content
models based upon XML and associated tools.

In this paper we will motivate and describe a set of XML
language extensions that will enhance these language standards.
The specific extensions are inspired by constructions from
functional programming languages, and include:

• attribute values defined as dynamically evaluated
expressions,

• custom (author defined) events based on predicates,

• parameterized templates for document content.

The paper outlines these proposed extensions and discusses how
they may be integrated into existing languages and
implementations. The full paper elaborates the motivation for the
declarative approach, and gives fuller descriptions of the
extensions and their implementation. It also presents a set of use
cases for our extensions and illustrates their effect in examples
based on SMIL animation, XHTML and SVG graphics. The full
paper is at http://www.cs.ukc.ac.uk/~sjt/PDXML/PDXML.pdf

2. EXPRESSIONS
The proposed expression language forms the basis for dynamic
attribute values and for event predicates. Rather than reinventing
the wheel in defining the expression language, we have chosen
syntax and definitions similar to those used in scripting languages
which will be familiar to many Web authors. At the same time, we
have imposed a number of constraints for authoring simplicity and
runtime safety.

The expression language is typed; there are three types, numeric,
string and Boolean and if an operator is applied to an operand of
an incorrect type, then the value undefined is returned. Moreover
it is strongly typed: all types can be computed and verified prior
to presentation. Furthermore, there are no coercions (automatic
type conversions) between types in the model.

Sets of unary and binary, arithmetic, relational and Boolean
operators are included. There is a fixed repertoire of numeric
functions to supplement the basic arithmetic operators. Further, a
C-style ternary conditional operator, denoted “?:”, has been
provided. Each domain will have a set of properties and functions
that expose Object Model values in a manner convenient for use
in expressions. For example in SMIL Timing integrations,
properties such as the current simple time or a Boolean isActive
would likely be provided. In many applications a simplified
expression of mouse position may be provided.

Neither the language nor these domain specific functions and
properties are intended to be definitive or closed; language
designers may modify them as appropriate. However, authors are
not permitted to define functions for themselves; this restriction
simplifies the authoring model, and provides a measure of safety
and efficiency for the implementation.

Calculation. We use expressions as animation attributes by
allowing the values that describe animation functions to be
expressed as calculated expressions. This approach provides
more expressive power to authors and greatly increases the range
of animation use-cases that can be expressed. The approach also
allows dynamic documents to be adaptive, in that animation
function values may be defined in terms of other computed
document properties or may change in response to user actions.

Expressions may be used as any of the attributes used to describe
the animation function values including from, to, by, and
values, as well as path for <animateMotion>. The expressions
are called out to the parser with a prefix (‘calc’) and enclosing
parentheses, similar to CSS functional notations.

Example To 'zoom’ a box from the current size up to 80% of the
page width:
<animate attributeName="width" dur="5s"
 to="calc(body.width*0.8)" .../>

One expression may depend on others; we keep track of these
dependencies in a dependency graph. Expressions are computed
using a stack discipline. However, values may, directly or
indirectly, change with time. In our model, values are recalculated
when (and only when) component sub expressions change. Re-
calculation may not always be desired; whilst the flight of an
arrow is not affected by its target moving, a guided missile will
change course. Our model allows the choice between such
possibilities.

3. EVENTS AND PREDICATES
In many animation use-cases, one needs to take action in response
to a certain condition. Object models typically provide a set of
events to indicate a range of interaction conditions (e.g., mouse
events) as well as document conditions (e.g., media download and

Page 2 of 2

mutation events). We define an XML syntax that leverages our
expression support to model author-declared events. Events are
generated from Boolean expressions (predicates); when a
predicate evaluates to true an event is raised on a target element
(following the CSS model).

Example An ‘enterView’ event in an XHTML integration that
indicates when an image appears in the current user agent window
(e.g., when a user scrolls a figure into view):
<event target=”img1” type=”enterView”
 predicate=”img1.clientTop <=
 (body.scrollTop + body.clientHeight)” />

The target attribute indicates the element on which to raise the
event (as an ID-REF); type declares the event type for binding
references; predicate is an expression as defined in section 3.

Some common use-case scenarios for event predicates include
collision events, limit-conditions (when a property goes above or
below a certain threshold) and state modeling (relating the values
of a set of properties).

4. TEMPLATES & PARAMETERIZATION

SVG provides a mechanism for creating elements which may be
used as templates, including symbol elements and graphic
elements. Moreover, SVG provides a means for instantiating such
elements, the <use> element, which indicates that the graphical
contents of some other named element is to be included and/or
drawn in place of the <use> reference. However, the <use>
element in SVG has some severe constraints.

• The <use> element does not enable one to change attribute
values when re-instantiating a definition.

• Because of the shadow DOM model in SVG 1.0, there is
neither an Information Set representation of the instance
nodes, nor DOM element nodes. Thus, one cannot target
animations to nodes within an instance tree.

• The SVG model precludes registering event handlers on
nodes within the template instance, which makes it difficult
to define interaction and timing on instance nodes.

• The identifiers appearing across the various instantiated
copies of the element are identical, which limits the utility of
ID values and references.

By way of contrast, within the domain of programming languages
and design tools the notion of instantiating and creating variants
of such a template is commonplace. Support is generally provided
by mechanisms such as object creation and parameterization, and
identifier scopes. We propose a simple mechanism for the
specification of formal parameters within <template> elements,
and the provision of actual parameter values within <instance>
elements. Within the template element:

• each (formal) parameter is specified using a <param>
element and its name attribute;

• a default value may optionally be assigned to the parameter
using the value attribute;

• a formal parameter may be referenced anywhere within the
template content that defines it; the reference is designated
by prefixing the parameter name with the ‘$’ character.

In order to make it possible to refer to each instantiated copy
independently, a mechanism is required to associate a local

identifier space with each instance. Support for local id-spaces
also means that the use of each instance may be exposed as a true
DOM copy, rather than as a shadow copy (as used by SVG), and
enables the children to be selected by style sheets, referenced by
script and so on.

We have investigated two possible approaches to the provision of
such separate identifier spaces. The first is a general solution
using structured ID references analogous to that used by a
compiler when instantiating objects in a scope-based object-
oriented language. In the longer term, the DOM and XML Info
Set models will need to address the issues associated with
compound documents and fragment transclusion, and may well
incorporate a model supporting such local ID-spaces. This
approach, however, would require major changes to existing
XML parsers and to the DOM model; we therefore propose a
second solution, which provides a mechanism for separate name
spaces within the existing XML framework. Our proposal
translates local IDs and references: the language interpreter will
change all local (within the template) ID definitions and local ID
references (i.e. ID-REFs to local IDs), inserting the value of the
<instance> ID and a ‘.’ as a prefix. It should be observed that
since dot ‘.’ is a legal ID char, the code created by this scheme
will conform to current XML syntax and will function in the
desired manner, mimicking the structured ID solution.

Implementation experience. We have developed a prototype
implementation for the features described in the paper, building
on the support for XHTML+SMIL in Microsoft Internet Explorer
6. Details of this are given in the full paper.

5. FUTURE WORK AND CONCLUSIONS
Our experience with the prototype implementation has provided
valuable insights, and further issues in three particular directions.
We intend to widen our experience with the authoring
implications of our extensions. We intend to consider further
integration with W3C language standards. We wish to develop
more basic XML extensions to accommodate the scoped ID
model.

The extensions presented in this paper are based upon
programming language constructs that have proved their utility in
multimedia authoring. We have demonstrated how they can be
added to W3C languages while remaining entirely within the style
and character of XML and still be processed by existing XML
parsers. We have experimented with our extended version of
SMIL Animation by writing a number of examples by hand, and
in each case the extensions have made the coding of the example
easier to achieve and simpler to understand than using, say, script
or other notation external to SMIL.

We concentrated on integration with SMIL Animation, using
XHTML+SMIL and SVG. As we explored the model we came to
see the utility of these tools for a broader range of applications,
including expressions for CSS/XSL style properties, custom event
declaration to complement the binding facilities in XMLEvents,
and the general utility of parameterized templates in XML.

6. REFERENCES

 [JvO] Jacco van Ossenbruggen, et al., "Towards Second and
Third Generation Web-Based Multimedia", WWW10, 2001.

