
4. Proof

Simon J. Thompson1

4.1 Introduction

In this chapter we examine ways in which functional programs can be proved
correct. For a number of reasons this is easier for functional than for imper-
ative programs. In the simplest cases functional programs are equations, so
the language documents itself, as it were. Beyond this we often have a higher-
level expression of properties, by means of equations between functions rather
than values. We can also express properties which cannot simply be discussed
for imperative programs, using notations for lists and other algebraic data
types, for instance.

Apart from the general observation that proofs carry over directly to
implicitly parallel functional systems, what is the particular relevance of proof
to parallel functional programming? Two particular points are emphasised in
this chapter.

• Lazy evaluation gives infinite and partial data structures, which can be
viewed as describing the data flowing around deterministic networks of
processes (see Section 3.5). Section 4.8.3 gives a proof that a process net-
work produces the list of factorials; the bisimulation method used here
forms a link with verification techniques for process algebras, which give
a declarative treatment of parallelism and non-determinism and which are
surveyed in Section 4.8.4.

• There is an important thread in the development of functional program-
ming, going back at least to Backus’ FP [27], which argues that it is best to
eschew explicit recursion and to program using a fixed set of higher-order,
polymorphic combinators, which are related to programming skeletons (see
Section 3.5). The properties of these combinators can be seen as logical
laws in an algebra of programming [51]. These laws can also be seen to
have intensional content, with a transformation from left- to right-hand
side representing a change in the cost of an operation, or in the parallelism
implicit there (see Chapter 8 for more details of cost modelling). This topic
is examined further in Section 4.9.3.

The equational model, explored in Section 4.2, gives the spirit of func-
tional program verification, but it needs to be modified and strengthened in
various ways in order to apply to a full functional language. The pattern of
the chapter will be to give a succession of refinements of the logic as further
features are added to the language. These we look at now.
1 Computing Laboratory, University of Kent at Canterbury, UK.

88 4. Proof

The defining forms of languages are more complex than simple equa-
tions. Section 4.3 looks at conditional definitions (using “guards”), pattern
matching and local definitions (in let and where clauses) each of which adds
complications, not least when the features interact.

Reasoning cannot be completely equational. We need to be able to reason
by cases, and in general to be able to prove properties of functions defined
by recursion. Structural induction is the mechanism: it is discussed in Sec-
tion 4.4, and illustrated by a correctness proof for a miniature compiler in
Section 4.5.

With general recursion, examined in Section 4.6 and which is a feature
of all languages in the current mainstream, comes the possibility of non-
termination of evaluation. In a non-strict language general recursion has the
more profound effect of introducing infinite and partial lists and other data
structures.

In both strict and non-strict languages this possibility means in turn
that in interpreting the meaning of programs we are forced to introduce
extra values at each type. This plainly affects the way in which the logic is
expressed, and its relation to familiar properties of, say, the integers. The
background to this is explored in Section 4.7.

Section 4.8 gives an overview of the two principal approaches to giving
meanings to programs – denotational semantics and operational semantics –
and their implications for program verification. A proof of correctness for a
function defined by general recursion exemplifies the denotational approach,
whilst operational semantics underpins a proof that a lazy process network
generates the list of factorials. This last proof forms a link with the process
algebra approach to parallelism, which is also discussed in this section.

Because of the complications which non-termination brings, there has
been recent interest in terminating languages and these are introduced in
Section 4.9. Of particular relevance here is the transformational approach of
Backus, Bird and others.

A fully-fledged language will allow users to interact with the environment
in various ways, but at its simplest by reading input and writing output. This
is supported in a variety of ways, including the side-effecting functions of
Standard ML (SML) and the monads of Haskell 98. SML also allows mutable
references and exceptions. In this chapter we cover only the pure parts of
languages, but refer readers to [221] for a perspicacious discussion of program
verification for various forms of input/output including monadic I/O. Recent
work on modelling SML-style references can be found in [465].

This chapter does not try to address all the work on verification of parallel
imperative programs: Sections 8.9 and 8.10 of the exhaustive survey [140]
more than do justice to this topic, and put it in the context of imperative
program verification in general. On the other hand, links with process algebra
are examined in Section 4.8.4.

4.2 The Basis of Functional Programming: Equations 89

4.2 The Basis of Functional Programming: Equations

In this section we examine the basis of functional programming and show
how the definitions of a simple functional program can be interpreted as
logical equations. An examination of how this approach can be modified and
extended to work in general forms the main part of the chapter.

A functional program consists of a collection of definitions of functions
and other values. An example program using the notation of the Haskell
language [448] is

test :: Integer
test = 42

id :: a -> a
id x = x

plusOne :: Integer -> Integer
plusOne n = (n+1)

minusOne :: Integer -> Integer
minusOne n = (n-1)

Execution of a program consists of evaluating an expression which uses the
functions and other objects defined in the program (together with the built
in operations of the language). Evaluation works by the replacement of sub-
expressions by their values, and is complete when a value is produced. For
instance, evaluation of

plusOne (minusOne test)

will proceed thus:

plusOne (minusOne test)
=> (minusOne test) + 1
=> (test - 1) + 1
=> (42 - 1) + 1
=> 41 + 1
=> 42

where it can be seen that at each stage of the evaluation one of the defining
equations is used to rewrite a sub-expression which matches the left-hand
side of a definition, like

minusOne test

to the corresponding right-hand side,

test - 1

90 4. Proof

The model of evaluation for a real language such as Haskell or ML is some-
what more complex; this will be reflected by the discussion in subsequent
sections.

In each step of an evaluation such as this equals are replaced by equals, and
this points to the basis of a logical approach to reading functional programs.
The use of the equals sign in function definitions is indeed suggestive, and
we can read the definitions as logical statements of the properties of the
defined functions, thus:

id x ≡ x (id.1)

for all x of type t, and so on. Note that we have used the symbol “≡” here for
logical equality to distinguish it from both the “definitional” equality used
to define objects in the language, =, and the “calculational” Boolean equality
operation of the language, ==.

Logical equations like these can be manipulated using the rules of logic
in the standard way, so that we can deduce, for instance, that

id (id y)
≡ {by substituting id y for x in (id.1)}

id y
≡ {by substituting y for x in (id.1)}

y

In linear proofs we shall use the format above, in which the justification for
each equality step of the proof is included in braces {· · ·}.

So, we see a model for verification of functional programs which uses
the defining equations as logical equations, and the logical laws for equality:
reflexivity, symmetry, transitivity and substitution:

P(a) a ≡ b
P(b)

(Subst)

to make deductions. Note that in giving the substitution rule we have used
the convention that P(a) means an expression P in which a occurs; the ap-
pearance of P(b) below the line means that the occurrences of a in P in have
been replaced by b. An alternative notation which we use later in the chapter
is P[b/a] which is used to denote “b substituted for a in P”.

The logical versions of the definitions given here contain free variables,
namely the variables of the definitions. In the remainder of the chapter we will
also use a closed form given by taking the universal quantification over these
variables. (id.1) will then take the form (∀x::a)(id x ≡ x) for example.

4.3 Pattern Matching, Cases and Local Definitions

The purely equational definition style of Section 4.2 can be made to accom-
modate case switches, local definitions and pattern matching by means of the

4.3 Pattern Matching, Cases and Local Definitions 91

appropriate higher-order combinators. Indeed, this is one way of interpreting
the work of Bird and others, discussed further in Section 4.9.3. However, for
reasons of readability and conciseness, most languages offer syntactic support
for these facilities, and with this additional syntax comes the task of giving
it a logical explanation.

This section gives an overview of how pattern matching, cases and local
definitions are rendered logically; a more detailed examination can be found
in [551], which addresses the question for Miranda. Note that here we are
still considering a small (terminating) language, rather than a full language.

4.3.1 Pattern Matching

Pattern matching serves to distinguish cases, as in

isEmptyList :: [a] -> [a]
isEmptyList [] = True
isEmptyList _ = False

(where “_” is a wildcard pattern, matching anything), and also to allow access
to the components of a compound object

tail :: [a] -> [a]
tail [] = []
tail (x:xs) = xs

In the example of tail, where the patterns do not overlap (are exclusive) and
cover all eventualities (are exhaustive), the definitions can be read as logical
equations.

In the general case, we need to take account of the sequential interpre-
tation which is usually applied to them. Looking at isEmptyList, the second
equation in which the “_” will match any value will only be applied should
the first clause not apply. We therefore need to give a description of the com-
plement of a pattern, here [], over which the remaining equations hold. The
complement of [] will be the non-empty list, (x:xs), and so we can rewrite
the definition of the function to give its logical form thus:

isEmptyList [] ≡ True
isEmptyList (x:xs) ≡ False

As another example, consider the pattern (x:y:ys). This will match lists
with two or more elements, and its complement is given by the two patterns
[] and [_]. The full details of the way in which pattern matching definitions
can be translated are to be found in [551].

4.3.2 Cases

Definitions can have alternatives depending on the (Boolean) values of
guards, in a Haskell style,

92 4. Proof

f args
| g1 = e1
| g2 = e2
...

| otherwise = e

If the (actual values of the) parameters args satisfy g1 then the result of f
args is e1; should g1 be False then if g2 is True, e2 is the result, and so
on. In logical form we then have

(g1 ≡ True ⇒ f args ≡ e1) ∧
((g1 ≡ False ∧ g2 ≡ True) ⇒ f args ≡ e2) ∧ ...

which renders the definition as the conjunction of a set of conditional equa-
tions.

4.3.3 Local Definitions

A local definition, introduced either by a let or a where introduces a name
whose scope is restricted. An example is given by the schematic

f :: a1 -> a2
f x = e

where
g :: a3 -> a4
g y = e’

The function g is in scope in the expression e as well as the where clause. It
is also important to realise that its definition will, in general, depend upon
the parameter x. It is translated thus

(∀x::a1)(∃g::a3 -> a4)((∀y::a3)(g y ≡ e’) ∧ f x ≡ e)

in which the locally defined value(s) are existentially quantified, and the uni-
versal quantification over the argument values for f and g are shown explicitly.

4.3.4 Further Issues

The features discussed in this section can, when they appear in real program-
ming languages such as Haskell, have complex interactions. For instance, it
is not necessary to have an otherwise case in a guarded equation, so that it
is possible for none of the guards to hold for a particular set of arguments. In
this situation, the next guarded equation (and therefore pattern match) has
to be examined, and this is particularly difficult to explain when the guards
also refer to local definitions – an example is presented in [551].

The translation given here goes beyond the equational, giving axioms
which involve arbitrarily deep alternations of quantifiers. In practice these

4.4 Structural Induction and Recursion 93

quantifiers will be stripped off, allowing conditional equational reasoning take
place; the effect of the quantifications is to ensure that the scoping rules
of the language are obeyed, while the conditions reflect the guards in the
definitions of the language. Pattern matching is supported by the substitution
mechanism of the logic.

4.4 Structural Induction and Recursion

In this section we consider how to strengthen our language to accommodate
recursively defined functions and types while retaining the property that all
computations will terminate.

At the heart of modern functional programming languages are built-in
types of lists and a facility to define “algebraic” data types built by the ap-
plication of constructors. If we wish to build a simple-minded representation
of integer arithmetic expressions — as part of a calculator or a compiler, say
— we might write, using Haskell notation

data IntExp = Literal Int |
Binary Op IntExp IntExp

data Op = Add | Sub | Mul

which describes a type whose members take two forms, built by the two
constructors of the type, Literal and Binary.

• The first is Literal n, where n is an Int (integer).
• The second form is Binary op ex1 ex2 where ex1 and ex2 are themselves
IntExps and op is one of Add, Sub or Mul (representing three binary arith-
metic operators).

An example of the type, representing the arithmetic expression (4+3)-5, is

Binary Sub (Binary Add (Literal 4) (Literal 3)) (Literal 5)

To define a function over Op it is sufficient to give its value at the three
possible inputs, so that

opValue :: Op -> (Int -> Int -> Int)

opValue Add = (+)
opValue Sub = (-)
opValue Mul = (*)

serves to interpret the arithmetic operators. In a similar way, if we wish to
prove that some logical property holds for all operators it is sufficient to prove
that the property holds for the three values of the type.

Now, the type IntExp is rather more complicated, since it is recursively
defined, and has an infinite number of members. However, we know that the

94 4. Proof

only ways that elements are constructed are by means of a finite number of
applications of the constructors of the type. This means that an arbitrary
element of the type will take one of the forms

Literal n
Binary op ex1 ex2

where ex1 and ex2 are themselves elements of IntExp.
Because every element is built up in this way, we can deduce how to define

functions over IntExp and to prove that properties hold of all elements of
IntExp. To define a function we use structural recursion, as exemplified
by a function to evaluate an arithmetic expression:

eval :: IntExp -> Int

eval (Literal int) = int (eval.1)
eval (Binary op ex1 ex2)

= opValue op (eval ex1) (eval ex2) (eval.2)

Here we see the pattern of definition in which we

• give the result at Literal int outright; and
• give the result at Binary op ex1 ex2 using the results already defined for
ex1 and ex2 (as well as other components of the data value, here op).

It can be seen that a finite number of recursive calls will result in calls to the
Literal case, so that functions defined in this way will be total.

In an analogous way, we can use structural induction to prove a property
for all IntExps. This principle is stated now.

Structural induction. To prove P(e) for all e in IntExp we need
to show that
• Base case. The property P(Literal int) holds for all int.
• Induction case. The property P(Binary op ex1 ex2) holds on

the assumption that P(ex1) and P(ex2) hold.

Given any IntExp t we can see that a finite number of applications of the
induction case will lead us back to the base case, and thus establish that P(t)
holds.

In the next section we give examples of various functions defined by struc-
tural recursion together with verification using structural induction over the
IntExp type.

4.5 Case Study: a Compiler Correctness Proof

In this section we give a proof of correctness of a tiny compiler for arithmetic
expressions using structural induction over the type of expressions, given by

4.5 Case Study: a Compiler Correctness Proof 95

the algebraic data type IntExp. In developing the proof we explore some of
the pragmatics of finding proofs.

It is instructive to compare this program and proof developed in a func-
tional context with a similar problem programmed in a modern imperative
language such as C++, Java or Modula 3. The advantage of the approach
here is that modern functional languages contain explicit representations of
recursive data types, and so a proof of a program property can refer explicitly
to the forms of data values. In contrast, a stack in an imperative language
will either be represented by a dynamic data structure, built using pointers,
or by an array, with the attendant problems of working with a concrete rep-
resentation of a stack rather than an appropriately abstract view. In either
case it is not so easy to see how a proof could be written, indeed the most
appropriate model might be to develop the imperative program by refinement
from the verified functional program presented here.

4.5.1 The Compiler and Stack Machine

The program is given in Figure 4.1, in two halves. In the first half we reiterate
the definitions of the IntExp type and its evaluation function eval, which is
defined by structural recursion over IntExp.

In the second half of the figure we give a model of a stack machine which
is used to evaluate the expressions. The machine operates over a stack of
integers, hence the definition

type Stack = [Int]

The instructions for the machine are given by the type Code, which has
two operations, namely to push an element (PushLit) onto the stack and to
perform an evaluation of an operation (DoBinary) using the top elements of
the stack as arguments.

An expression is converted into a Program, that is a list of Code, by
compile. The compile function compiles a literal in the obvious way, and for
an operator expression, the compiled code consists of the compiled code for
the two expressions, concatenated by the list operator ++, with the appropri-
ate binary operator invocation appended.

The operation of the machine itself is described by

run :: Program -> Stack -> Stack

and from that definition it can be seen that if the stack fails to have at least
two elements on operator evaluation, execution will be halted and the stack
cleared.

4.5.2 Formulating the Goal

The intended effect of the compiler is to produce code (for e) which when
run puts the value of e on the stack. In formal terms,

96 4. Proof

run (compile e) [] ≡ [eval e] (compGoal.1)

Now, we could look for a proof of this by structural induction over e, but
this will fail. We can explain this failure from two different points of view.

Looking first at the problem itself, we can see that in fact the compiler
and machine have a rather more general property: no matter what the initial
configuration of the stack, the result of the run should be to place the value
of the expression on the top of the stack:

run (compile e) stack ≡ (eval e : stack)

This is still not general enough, since it talks about complete computations
– what if the code is followed by more program? The effect should be to
evaluate e and place its result on the stack prior to executing the remaining
program. We thus reach the final formulation of the goal

run (compile e ++ program) stack
≡ run program (eval e : stack) (compGoal.2)

An alternative view of the difficulty comes from looking at the failed proof
attempt: the induction hypothesis turns out not to be powerful enough to
give what is required. This happens in the case of a binary operation, when
we try to prove (compGoal.1)where e is, for example, Binary Add ex1 ex2.
In this case we need to prove that

run (compile ex1 ++ compile ex2 ++ [DoBinary Add]) ≡ [eval e]

so that we will need a hypothesis about compile ex1 in context

run (compile ex1 ++ ...)

rather than in isolation.
This leads us to formulate the generalisation (compGoal.2) — this is

examined in the next section and again it is shown there how a failed proof
attempt leads to an suitable formalisation of the induction hypothesis.

A guide to the form of hypothesis is often given by the form taken by the
definitions of the functions under scrutiny; we will discuss this point after
giving the full proof in next section.

4.5.3 The Proof

Our goal is to prove (compGoal.2) for all values of e, program and stack.
As a first attempt we might try to prove (compGoal.2) by induction over
e, for arbitrary program and stack, but again this will fail. This happens
because the induction hypothesis will be used at different values of stack
and program, so that the goal for the inductive proof is to show by structural
induction on e that

(∀program,stack)(run (compile e ++ program) stack
≡ run program (eval e : stack)) (goal)

4.6 General Recursion 97

holds for all e.
The proof is given in Figure 4.2 and follows the principle of structural

induction for IntExp presented in Section 4.4 above. In the first part we
prove the base case:

run (compile (Literal int) ++ program) stack
≡ run program (eval (Literal int) : stack) (base)

for arbitrary program,stack, thus giving the base case of (goal). The proof
proceeds by separately rewriting the left- and right-hand sides of (base) to
the same value.

In the second part we show

run (compile (Binary op ex1 ex2) ++ program) stack
≡ run program (eval (Binary op ex1 ex2) : stack) (ind)

for arbitrary program,stack using the induction hypotheses for ex1:

(∀program,stack)(run (compile ex1 ++ program) stack
≡ run program (eval ex1 : stack)) (hyp)

and ex2. It is instructive to observe that in the proof the induction hypothesis
for ex1, (hyp), is used with the expression

compile ex2 ++ [DoBinary op] ++ program

substituted for program, and that for ex2 is used in a similar way. Again
the proof proceeds by separately rewriting the left- and right-hand sides of
(ind).

The third part of Figure 4.2 shows how our original goal, (compGoal.1)
is a consequence of the more general result (compGoal.2).

How might we be led to the goal (goal) by the form of the program
itself? If we examine the definition of run we can see that in the recursive
calls (run.2) and (run.3) the stack parameter is modified. This indicates
that the stack cannot be expected to be a parameter of the proof, and so
that the general formulation of the induction hypothesis will have to include
all possible values of the stack parameter.

4.6 General Recursion

In the preceding sections we saw how structural recursion and induction can
be used to define and verify programs over algebraic data types. Functions
defined in this way are manifestly total, but there remains the question of
whether these limited forms of recursion and induction are adequate in prac-
tice. An example going beyond structural recursion over IntExp is a function
to re-arrange arithmetic expressions so that the additions which they contain
are associated to the left, transforming

98 4. Proof

(4+2)+(3+(7+9)) to (((4+2)+3)+7)+9

The function is defined thus:

lAssoc :: IntExp -> IntExp

lAssoc (Literal n) = Literal n
lAssoc (Binary Sub ex1 ex2)

= Binary Sub (lAssoc ex1) (lAssoc ex2)
lAssoc (Binary Add ex1 (Binary Add ex3 ex4))

= lAssoc (Binary Add (Binary Add ex1 ex3) ex4) (lAssoc.1)
lAssoc (Binary Add ex1 ex2)

= Binary Add (lAssoc ex1) (lAssoc ex2)

(where the Mul case has been omitted). Each clause is structurally recursive,
except for (lAssoc.1), in which the top-level expression ex1+(ex3+ex4) is
transformed to (ex1+ex3)+ex4. Once this transformation has been effected,
it is necessary to re-examine the whole re-arranged expression, and not just
the components of the original. The reader might like to experiment with the
example expression to convince herself of the necessity of making a definition
of this form, rather than a structural recursion.

Now, what is the lesson of examples like this for the design of functional
programming languages and for verification of systems written in them?
There are broadly two schools of thought.

The predominant view is to accept that a language should allow arbitrary
recursion in the definitions of functions (and perhaps other objects). Main-
stream languages such as Haskell, Miranda and Standard ML are all of this
kind. With arbitrary recursion come a number of consequences.

• The semantics of the language becomes more complex, since it must now
contain an account of the possible non-termination of programs.

• Moreover, the evaluation mechanism becomes significant. If all programs
terminate, then the order in which programs are evaluated is not an issue; if
non-termination is possible then strict and lazy evaluation strategies differ,
and thus give strict and non-strict languages different semantics.

• As far as the topic of this chapter is concerned, the complexity of the
semantics is reflected in the logic needed to reason about the language, for
both strict and non-strict languages.

For these reasons there has been recent interest in terminating languages
— Turner’s notion of “strong” functional languages [564] — because such
languages both have a simpler proof theory and have full freedom of choice
for evaluation strategy, which is of course of relevance to the field of parallel
functional programming.

In the remainder of this chapter we will explore the effect of these two al-
ternatives for functional program verification, first looking at the mainstream,
partial, languages.

4.7 Partial Languages 99

4.7 Partial Languages

This section gives an informal overview of the effect of admitting general
recursion into a programming language, and emphasises the consequent split
between strict and non-strict languages. This serves as an introduction to the
overview of the semantic basis of languages with partiality in the section to
come.

4.7.1 Strict Languages

In a strict language such as (the pure subset of) Standard ML arbitrary forms
of recursive definitions are allowed for functions. A definition of the form

undefFun :: a -> a
undefFun x = undefFun x (undefFun.1)

(using Haskell-style syntax) has the effect of forcing there to be an undefined
element at every type. What effect does this have for evaluation and for the
logic? Take the example function

const :: a -> b -> a
const x y = x

and consider its logical translation. Our earlier work suggests that we trans-
late it by

const x y ≡ x (const.1)

but we need to be careful what is substituted for the variables x and y. If we
take x to be 3 and y to be undefFun 4 then it appears that

const 3 (undefFun 4) ≡ 3

This is contrary to the rule for evaluation which states that arguments
need to be evaluated prior being passed to functions, and which means that
(undefFun.1) should be undefined when applied to undefFun 4. The trans-
lation (const.1) can therefore only apply to values (of type Int) rather
than arbitrary expressions of that type as was the case earlier. This can be
made clear by re-expressing (const.1) thus:

(∀v x,y)(const x y ≡ x)

where the subscript in the quantifier “∀v ” serves as a reminder that the
quantifier ranges over all (defined) values rather than all expressions including
those which denote an undefined computation.

4.7.2 Non-Strict languages

In a non-strict language like Haskell the definition of undefFun in (undefFun.1)
also gives rise to an undefined element at each type. This does not however af-
fect the translation of const given in (const.1) above, since in a non-strict

100 4. Proof

language expressions are passed unevaluated to functions. In other words,
the evaluation mechanism can truly be seen to be one of substitution of ex-
pressions for expressions. (For efficiency, this “call by name” strategy will
be implemented by a “call by need” discipline under which the results of
computations are shared.)

Nevertheless, the presence of an undefined expression in each type has its
effect. We accept as a law the assertion that for all integers x

x+1 > x

but this will not be the case if x is an undefined computation. We will there-
fore have to make the distinction between defined values and all expressions
as in Section 4.7.1.

The result of combining lazy evaluation and general recursion are more
profound than for a strict language, since data structures can become partial
or infinite. The effect of

nums = from 1
from n = n : from (n+1)

is to define the infinite list of positive integers, [1,2,3,...]. If nums is passed
to a function, then it is substituted unevaluated, and parts of it are evaluated
when and if they are required:

sft :: [Int] -> Int
stf (x:y:_) = x+y (sft.1)

sft nums
=> sft (from 1)
=> sft (1 : from 2)
=> sft (1 : 2 : from 3)

At this point the pattern match in (sft.1) can be performed, giving the
result 3. Our interpretation therefore needs to include such infinite lists, as
well as “partial” lists such as (2:undefFun 2). Note that under a strict
interpretation all infinite and partial lists are identified with the undefined
list, since they all lead to non-terminating computations.

In order to give a proper account of the behaviour of languages with non-
termination we now look at the ways in which a formal or mathematical
semantics can be given to a programming language.

4.8 Semantic Approaches

This section surveys the two semantic approaches to functional programming
languages with the aim of motivating the logical rules to which the semantics
lead.

4.8 Semantic Approaches 101

4.8.1 Denotational Semantics

Under a denotational semantics, as introduced in the textbook [586], the
objects of a programming language — both terminating and non-terminating
— are modelled by the elements of a domain. A domain is a partially ordered
structure, where the partial order reflects the degree of definedness of the
elements, with the totally undefined object, ⊥, below everything: ⊥ ' x.
Recursion, as in the definition

f = C[f]

can then be explained by first looking at the sequence of approximations, fn,
with

f0 ≡ ⊥

and

fn+1 = C[fn]

A domain also carries a notion of limit for sequences (or indeed more general
“directed sets”), so that the meaning of f, [[f]], is taken to be the limit of this
sequence of approximations:

f ≡
⊔
n fn

Another way of seeing this is that [[f]] is the least fixed point of the operation

λf.C[f]

with a domain having sufficient structure to provide fixed points of (mono-
tone) operators over them.

All the data types of a functional language can be modelled in such a
way, and reasoning over domains is characterised by fixed-point induction,
which captures the fact that a recursively defined function is the limit of a
sequence. Before stating the principle, an auxiliary definition is needed.

A predicate P is called inclusive if it is closed under taking limits, broadly
speaking. Winskel, [586], provides a more detailed characterisation of this,
together with sufficient conditions for a formula to be an inclusive predicate.

Fixed-point induction. If P is an inclusive predicate and if f is
defined as above, then if
• P(⊥) holds, and (FPI.1)
• P(fn) implies P(fn+1); (FPI.2)
then P holds of the limit of the sequence, that is P(f).

As an example we look again at the lAssoc function, defined in Section 4.6
above. We would like to show that rearranging an expression will not change
its value, that is

(∀e)(eval (lAssoc e) ≡ eval e) P0(lAssoc)

102 4. Proof

(where eval is defined in Section 4.4). Equations are inclusive, but unfor-
tunately we cannot prove the inductive goals in this case. Take the case of
(FPI.1); this states that the property should hold when the function lAssoc
is replaced by the totally undefined function, ⊥, and so that we should prove

(∀e)(eval (⊥ e) ≡ eval e)

which, since the ⊥ function is undefined on every argument, is equivalent to

(∀e)(eval ⊥ ≡ eval e)

which is plainly not the case.
We can modify the property to say that if the result is defined then the

equality holds, namely,

(∀e)((lAssoc e ≡ ⊥) \/ eval (lAssoc e) ≡ eval e) P(lAssoc)

It is interesting to see that this is a partial correctness property, predicated
on the termination of the lAssoc function, for which we have to prove a
separate termination result. We discuss termination presently.

To establish this result we have to prove (FPI.1) and (FPI.2) for this
property. A proof of (FPI.1) is straightforward, since P(⊥) states:

(∀e)((⊥ e ≡ ⊥) \/ eval (⊥ e) ≡ eval e)

and ⊥ e ≡ ⊥ holds, as discussed earlier. A proof of (FPI.2) requires that
we show that P(lAssocn) implies P(lAssocn+1) where (omitting the Mul
case),

lAssocn+1 (Literal n) = Literal n (lA.1)
lAssocn+1 (Binary Sub ex1 ex2)

= Binary Sub (lAssocn ex1) (lAssocn ex2) (lA.2)
lAssocn+1 (Binary Add ex1 (Binary Add ex3 ex4))

= lAssocn (Binary Add (Binary Add ex1 ex3) ex4) (lA.3)
lAssocn+1 (Binary Add ex1 ex2)

= Binary Add (lAssocn ex1) (lAssocn ex2) (lA.4)

Now, our goal is to prove that

(∀e)((lAssocn+1 e ≡ ⊥) \/ eval (lAssocn+1 e) ≡ eval e)

on the assumption that

(∀e)((lAssocn e ≡ ⊥) \/ eval (lAssocn e) ≡ eval e)

We look at the cases of the definition in turn. For a literal we have by (lA.1)

lAssocn+1 (Literal n) ≡ Literal n

from which we conclude immediately that

eval (lAssocn+1 (Literal n)) ≡ eval (Literal n)

Now, looking at subtraction, and assuming that the function terminates, we
have

4.8 Semantic Approaches 103

eval (lAssocn+1 (Binary Sub ex1 ex2))
≡ { by (lA.2) }

eval (Binary Sub (lAssocn ex1) (lAssocn ex2))
≡ { by definition of eval }

eval (lAssocn ex1) - eval (lAssocn ex2)
≡ { by termination and the induction hypothesis}

eval ex1 - eval ex2
≡ { by definition of eval }

eval (Binary Sub ex1 ex2)

The tricky case is (lA.3), which is the non-structurally recursive clause.
Now, again assuming termination, we have

eval (lAssocn+1 (Binary Add ex1 (Binary Add ex3 ex4)))
≡ { by (lA.3) }

eval (lAssocn (Binary Add (Binary Add ex1 ex3) ex4))
≡ { by termination and the induction hypothesis}

eval ((Binary Add (Binary Add ex1 ex3) ex4))
≡ { by the associativity of + }

eval (Binary Add ex1 (Binary Add ex3 ex4))

The final case – which corresponds to (lA.4) – follows exactly the proof for
the (lA.2) case, with Add replacing Sub. This establishes the induction step,
and so the result itself.

How do we prove that lAssoc terminates on all arguments? We need
to have some “measure of progress” in the recursive calls. In all calls but
(lAssoc.1) the recursive calls are on structurally smaller expressions, but
in (lAssoc.1) the call is to an expression containing the same number of
operators. What is changed in the recursive call is the arrangement of the
expression, and it is easy to see that on the right hand side of the Add in the
recursive call there are fewer applications of Add than in the same position
on the left hand side:

+ +
/ \ / \

e1 + + e3
/ \ / \

e2 e3 e1 e2

This reduction means that there can only be a finite number of repeated calls
to (lAssoc.1) before one of the structural cases is used. Informally, what we
have done is to give an ordering over the expressions which is well-founded,
that is has no infinite descending chains (like the chain −1 > −2 > . . . >
−n > . . . over the integers). A recursion will terminate precisely when it can
be shown to follow a well-founded ordering.

Further details about denotational semantics can be found in [586, 442].
We also refer back to denotational semantics at the end of Section 4.8.3

104 4. Proof

4.8.2 Operational Semantics

The structured (“SOS”) style of operational semantics pioneered by Plotkin
describes a programming language by means of deduction rules which explain
how expressions are evaluated. This style has been used to describe real
languages, notably Standard ML [396], and arguably it gives a more readable
and concise description of a language than a denotational semantics. The
account given in this section relies on Gordon’s thesis, [221], which serves as
an introduction to the way that these ideas are applied to the description of
functional programming languages.

SOS descriptions give reduction rules (describing “one step” of the com-
putation), as in

((λx.M)N) −→ M [N/x]

or can provide a description of the evaluation of an expression to a value (the
“big step” rules), thus:

L =⇒ (λx.M) M [N/x] =⇒ V

(L N) =⇒ V

These rules are related, with =⇒ representing arbitrarily many steps under
the relation −→. From these rules an equality relation can be generated:
two expressions are equal, L * M , if whatever context C[_] they are placed
in, C[L] =⇒ V if and only if C[M] =⇒ V . Now, the issue becomes one of
finding ways of deducing, for given expressions L and M , that L * M holds.
Abramsky [5] had the insight that this relation resembled the bisimulations
of process calculi. This characterises the equivalence as a greatest fixed point.

Rather than look at the general theory of bisimulations, we will look here
at how it applies to infinite lists. We take an infinite example because in
the finite case the flavour of proof is similar to the denotational style, so
that the proof of correctness for lAssoc would follow similar lines to that in
Section 4.8.1; it is in the infinite case that a distinctive style emerges.

The equality relation over infinite lists, “*”, is the greatest fixed point of
the definition

xs * ys ⇐⇒df there exist z, w, zs, ws so that xs −→ (z:zs),
ys −→ (w:ws), z ≡ w and zs * ws.

where the symbol ⇐⇒df is used to mean “is defined to be”.
Now, the greatest fixed point of a relation can be characterised as the

union of all the post-fixed points of the relation, which in this case are called
bisimulations. The relation S is a bisimulation if

xs S ys =⇒ there exist z, w, zs, ws so that xs −→ (z:zs),
ys −→ (w:ws), z ≡ w and zs ≡S ws.

where ≡S is the smallest congruence generated by the relation S. It is now
the case that

4.8 Semantic Approaches 105

Coinduction for infinite lists.
xs * ys ⇐⇒ there exists a bisimulation S such that xs S ys.

In the next section we give an example of a proof using this coinduction
principle for infinite lists.

4.8.3 An Example of Coinduction

In this section we give proof of the equality of two lists of the factorials of
the natural numbers. The first is a mapping of the factorial function along
the list of natural numbers

facMap :: [Integer]
facMap = map fac [0..]

fac :: Integer -> Integer
fac 0 = 1 (fac.1)
fac (n+1) = (n+1) * fac n (fac.2)

The second, facs 0, gives a recursive definition of the list in question. The
definition uses the function zipWith which runs in lock step along two lists,
applying a function to the elements chosen.

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

so that, for example,

zipWith (*) [1,1,2] [1,2,3] = [1,2,6]

In fact, a more general function is defined, which gives a recursive definition
of the list of factorials from n!,

facs :: Integer -> [Integer]
facs n = fac n : zipWith (*) [(n+1)..] (facs n) (facs.1)

To prove the equality of the two lists facMap and facs 0 we first prove an
auxiliary result, namely that

zipWith (*) [(n+1)..] (facs n) * facs (n+1) (zipFac)

for all natural numbers n. In order to do this we take the relation

S ≡ { (zipWith (*) [(n+1)..] (facs n) , facs (n+1)) | n ∈ Nat }
and show that it is a bisimulation. Expanding first the left hand side of a
typical element we have

zipWith (*) [(n+1)..] (facs n)
=> zipWith (*) (n+1:[(n+2..]) (fac n : (tail (facs n)))
=> (n+1)*(fac n) : zipWith (*) [n+2..]

(zipWith (*) [(n+1)..] (facs n))
=> fac (n+1) : zipWith (*) [n+2..]

(zipWith (*) [(n+1)..] (facs n))

106 4. Proof

On the right hand side we have

facs (n+1)
=> fac (n+1) : zipWith (*) [n+2..] (facs (n+1))

Now observe the two expressions. They have equal heads, and their tails are
related by ≡S since they are applications of the function

zipWith (*) [(n+2)..]

to lists which are related by S, namely

zipWith (*) [(n+1)..] (facs n) * facs (n+1)

This establishes the result (zipFac), and the consequence that

facs n * fac n : facs (n+1)

Now we prove that

facs n * map fac [n..]

by showing that the relation

R ≡ { (facs n , map fac [n..]) | n ∈ Nat }

is a bisimulation. Taking a typical pair, we have,

facs n map fac [n..]
* fac n : facs (n+1) => fac n : map f [(n+1)..]

which establishes that R is a bisimulation and in particular shows that

facs 0 * map fac [0..]

as we sought.
It is interesting to observe that recent work has shown that coinduction

principles can be derived directly in domain theory; see [464] for more details.

4.8.4 Process Algebra

Of the many approaches to describing concurrency and non-determinism,
most extend the imperative model of computation. Distinctive, therefore, are
the process algebras (or process calculi) CSP [277] and CCS [393], which
take a declarative model of concurrent processes. Although they differ in
substantial details, their similarities outweigh their differences, and therefore
the discussion here will concentrate on CCS. The use of CSP is described in
detail in Chapter chap:proc.

Processes (or, rather more accurately, states of processes) are represented
in CCS by expressions, with definitions of the form

A = (a.A + b.(B|C))

4.9 Strong Functional Programming 107

The process A is defined so that, performing the action a, A can evolve to
A, or (+), performing the action b, it can evolve to the parallel composition
B|C. One can see the sequencing operation, “.”, as generalising the lazy “:”
which appears in definitions of infinite lists like

natsFrom n = n : natsFrom (n+1)

The usual form of reasoning about CCS is equational, with equality charac-
terised by a bisimulation relation, generalising the description in Section 4.8.2,
and so one can view the lazy-stream characterisation of processes as embed-
ding this part of functional programming in a general view of deterministic
concurrency.

The set of processes in a CCS expression is fixed; in the π-calculus – which
axiomatises name passing in a CCS style – processes can be created, destroyed
and reconfigured, again in a declarative manner. A general introduction to
the π-calculus and other action calculi is given in [394].

4.9 Strong Functional Programming

We have seen that the potential for non-termination makes program verifi-
cation more complicated. Because of this there is interest in programming
languages which are “strong” in the sense of providing only the means to
define terminating functions.

These languages are also attractive to the implementor, since if all pro-
grams terminate however they are evaluated there is a substantially wider
choice of safe evaluation strategies which can be chosen without there being
a risk of introducing non-termination; this applies in particular to adopting
parallel implementation strategies.

In this section we give a brief overview of various of these research direc-
tions. A general point to examine is the degree to which each approach limits
a programmer’s expressivity.

4.9.1 Elementary Strong Functional Programming

Turner [564] proposes a language with limited recursion and co-recursion as a
terminating functional language which could be used by beginning program-
mers (in contrast to alternatives discussed later in this section). The language
proposed will have compile-time checks for the termination of recursive defi-
nitions, along the lines of [375, 549]. The language also contains co-recursion,
the dual of recursion, over co-data, such as infinite lists (the greatest fixed
point of a particular type equality). An example of co-data is given by the
definition of the infinite list of factorials,

facs = 1 : zipWith (*) [1..] facs

108 4. Proof

This definition is recognisable as a “productive” definition, since the recursive
call to facs on the right hand side is protected within the constructor “:”,
and so there is a guarantee that the top-level structure of the co-datum is
defined. Proof of properties of these corecursive objects is by coinduction, as
discussed above.

Note the duality between these productive definitions over co-data with
primitive recursive definitions over data, as exemplified by the definition of
the function which gives the length of a (finite) list:

length (x:xs) = 1 + length xs

Here the recursive call to length is on a component of the argument, (x:xs),
which is contained in the application of the constructor “:”; thus primitive
recursive definitions require at least one level of structure in their arguments
whilst productive definitions give rise to at least one level of structure in their
results.

The disadvantage of this approach is that it must rely on the compile-time
algorithms which check for termination. It is not clear, for instance, whether
the earlier definition of the lAssoc function is permitted in this system, and
so the expressivity of the programmer is indeed limited by this approach. On
the other hand, it would be possible to implement such a system as a “strong”
subset of an existing language such as Haskell, and to gain the advantage of
remaining in the terminating part of the language whenever possible.

4.9.2 Constructive Type Theories

Turner’s language eschews the more complex dependent types of the con-
structive type theories of Martin-Löf and others [424, 550]. These languages
are simultaneously terminating functional languages and constructive predi-
cate logics, under the Curry/Howard Isomorphism which makes the following
identifications:

Programming Logic
Type Formula

Program Proof
Product/record type & Conjunction

Sum/union type \/ Disjunction
Function type -> Implication

Dependent function type ∀ Universal quantifier
Dependent product type ∃ Existential quantifier

.

in which it is possible in an integrated manner to develop programs and their
proofs of correctness.

From the programming point of view, there is the addition of dependent
types, which can be given by functions which return different types for dif-
ferent argument values: an example is the type of vectors, Vec, where Vec(n)

4.9 Strong Functional Programming 109

is the type of vectors of length n. Predicates are constructed in a similar
way, since a predicate yields different logical propositions – that is types –
for different values.

Predicates (that is dependent types) can be constructed inductively as
a generalisation of algebraic types. We might define the less than predicate
“<” over Nat – the type of natural numbers – by saying that there are two
constructors for the type:

ZeroLess :: (∀n::Nat)(O < S n)
SuccLess :: (∀n::Nat)(∀n::Nat)((m < n) -> (S m < S n))

This approach leads to a powerful style of proof in which inductions are
performed over the form of proof objects, that is the elements of types like
(m < n), rather than over (say) the natural numbers. This style makes proofs
both shorter and more readable, since the cases in the proof reflect directly
the inductive definition of the predicate, rather than being over the inductive
definition of the data type, which in this case is the natural numbers.

A more expressive type system allows programmers to give more accurate
types to common functions, such as function which indexes the elements of
a list.

index :: (∀xs::[a])(∀n::Nat)((n < length xs) -> a)

An application of index has three arguments: a list, xs and a natural number
n — as for the standard index function — and a third argument which is of
type (n < length xs), that is a proof that n is a legitimate index for the list
in question. This extra argument becomes a proof obligation which must
be discharged when the function is applied to elements xs and n.

The expressivity of a constructive type theory is determined by its proof-
theoretic strength, so that a simple type theoretic language (without uni-
verses) would allow the definition of all functions which can be proved to be
total in Peano Arithmetic, for instance. This includes most functions, except
an interpreter for the language itself.

For further discussions of constructive type theories see [424, 550].

4.9.3 Algebra of Programming

The histories of functional programming and program transformation have
been intertwined from their inception. Serious program manipulations are
not feasible in modern imperative languages which allow aliasing, pointer
and reference modifications, type casting and so forth.

More suited are current functional languages which support the definition
of general operations – such as map, filter and fold over lists – as polymorphic
higher-order functions. Indeed, these higher-order operators can be sufficient
to define all functions of interest. This was the insight of Backus in defining
FP, [27], and has been developed by a number of researchers, most notably by
Bird and Meertens, [47], who are responsible for the Bird-Meertens formalism

110 4. Proof

(BMF). Their approach is to build a calculus or algebra of programs built
from a fixed set of combining forms, with laws relating these combinators
expressed at the function level, such as

map (f . g) ≡ map f . map g (mapComp)

These laws are expressed in a logic which extends the definitional equality
of the programming language, and essentially equational reasoning in that
logic allows transformations to be written down in a formal way. On the
other hand, laws such as (mapComp) will themselves be proved by structural
induction; for a proof of this result and many other examples of properties
of list-based functions see [552].

What is the intensional reading of a law like (mapComp)? It shows that
two traversals of a list structure, map f . map g is equivalent to a single
traversal, map (f . g); this clearly has efficiency implications. In a similar
way, the fold of an associative operator into a non-empty list enjoys the
property

foldr1 f (xs ++ ys) ≡ (foldrl f xs) ‘f‘ (foldr f ys)
(foldAssoc)

in the case that xs and ys are themselves non-empty. The intension of
(foldAssoc) is dramatic, with the left hand side representing a single left-to-
right traversal of a list and the right hand showing that this can be computed
by means of two parallel computations over the two halves of the list.

Many of the combining forms of BMF correspond to skeletons (Chap-
ter 13), and so the laws governing these forms will transfer to skeletons.

The most recent development of this work is Bird and de Moor’s [51] in
which they use the constructs of category theory to express their functional
programming language. Their categorical approach means that they are able
to provide general rules for equational program manipulation at a very high
level. For instance, they are able to formulate in a datatype-independent way
a “fusion” law by which a function is absorbed into a primitive-recursively
defined function. A review of [51] which explains this work in more detail can
be found in [467].

4.10 Conclusion

This chapter has given an introduction to the methods used in verifying
functional programs, including references to further work in axiomatising
more complex aspects of the functional paradigm. These methods can in most
cases be transferred to parallel functional programs, since the proofs reflect
the extensional properties of programs which are likely to be independent of
the chosen evaluation strategy.

More specific ties to parallel functional programming are provided by the
process model of lazy streams and its links to general process algebra. A

4.10 Conclusion 111

second link is given by the combinatorial style of FP or the Bird-Meertens
formalism, in which laws expressing equivalences between extensionally equal
programs can be given an intensional meaning as transformations which im-
prove efficiency or increase parallelism.

112 4. Proof

data IntExp = Literal Int |
Binary Op IntExp IntExp

data Op = Add | Sub | Mul

opValue :: Op -> (Int -> Int -> Int)

eval :: IntExp -> Int

eval (Literal int) = int (eval.1)
eval (Binary op ex1 ex2)

= opValue op (eval ex1) (eval ex2) (eval.2)

data Code = PushLit Int |
DoBinary Op

type Program = [Code]

compile :: IntExp -> Program

compile (Literal int)
= [PushLit int] (compile.1)

compile (Binary op ex1 ex2)
= compile ex1 ++ compile ex2 ++ [DoBinary op] (compile.2)

type Stack = [Int]

run :: Program -> Stack -> Stack

run [] stack
= stack (run.1)

run (PushLit int : program) stack
= run program (int : stack) (run.2)

run (DoBinary op : program) (v2:v1:stack)
= run program (opValue op v1 v2 : stack) (run.3)

run _ _ = [] (run.4)

Figure 4.1. A simple interpreter and compiler for expressions

4.10 Conclusion 113

Base case

run (compile (Literal int) ++ program) stack
≡ { by (compile.1) }

run ([PushLit int] ++ program) stack
≡ { by definition of ++ }

run (PushLit int : program) stack
≡ { by (run.2) }

run program (int : stack)

run program (eval (Literal int) : stack)
≡ { by (eval.1) }

run program (int : stack)

Induction case

run (compile (Binary op ex1 ex2) ++ program) stack
≡ { by (compile.2) and associativity of ++ }

run (compile ex1 ++ compile ex2 ++ [DoBinary op] ++ program) stack
≡ { by the induction hypothesis for ex1 and associativity of ++ }

run (compile ex2 ++ [DoBinary op] ++ program) (eval ex1 : stack)
≡ { by the induction hypothesis for ex2 and associativity of ++ }

run ([DoBinary op] ++ program) (eval ex2 : eval ex1 : stack)
≡ { by (run.3) and definition of ++ }

run program (opValue op (eval ex1) (eval ex2) : stack)

run program (eval (Binary op ex1 ex2) : stack)
≡ { by (eval.2) }

run program (opValue op (eval ex1) (eval ex2) : stack)

Correctness theorem

run (compile e) []
≡ { substitute [] for both program and stack in (goal) }

run [] [eval e]
≡ { by (run.1) }

[eval e]

Figure 4.2. Proof of compiler correctness

