Vector Programming Using Structural Recursion
An Introduction to Vectors for Beginners

Marco T. Morazan
Seton Hall University

morazanm@shu.edu

Vector programming is an important topic in many Introdantto Computer Science courses. De-
spite the importance of vectors, learning vector programgni$ a source of frustration to many

students. Even though the size of a vector is a natural nyrtiisee have been no efforts to define
a useful recursive data definition to help beginners deségov processing functions. This article

defines the concept of a vector interval and describes howpioigits recursive structure to design

vector processing functions. The described methodologyiges a context beginners can use to
reason about proper vector indexing instead of leaving thenift with this responsibility.

1 Introduction

It may very well be true that every college-trained compuyergrammer remembers long nights de-
bugging programs that manipulate vectors. Perhaps, mauere of this article recall hours of work
trying to determine why an index into a vector was out of rarigesome programming languages, this
is equivalent to figuring out why a program caused a core dulhfhese same readers ponder about
this long enough, they may recall that many of those longtfating nights occurred when they were
first exposed to vectors and beginning to learn how to progr8arprisingly, the same holds true for
many undergraduates today. Frankly, it is a bit shocking littie we have advanced as a community in
teaching vector programming to beginners.

Vector programming (a.k.a. array programming), of courseextremely important in Computer
Science. Vectors, given that they are random access, abow afficiently implement algorithms for
applications in a myriad of fields. Vectors, for examplepallus to efficiently implement various data
structures such as binary tregs [6], stacks [7], and prapesses/[15]. They also allow us to reduce the
complexity of algorithms such as, for example, finding a path directed grapH [4] and matrix mul-
tiplication [2]. Vectors are also useful in the reductionneémory allocation by, for example, allowing
us to sort, say, files or numbers in place [9]. Given the imgu¢e and versatility of vectors it is in our
interest as a community to make an introduction to vectogiaimming for beginners as frustrationless
as possible. This can be achieved by providing beginnetsanstructured model they can use to reason
about processing vectors.

The crux of the problem with much of the developed introdoctoaterial to vector programming is
that it provides a structureless definition of a vector. Somagerial goes a step farther and presents an
ADT to for vectors. Some of thegeD Ts describe a single operation: indexing. Itis, thus, ngbissing
that many beginners feel as being left adrift to figure thiogson their own. This is highly undesirable
for at least two reasons. The first is that students get &testrenough to quit Computer Science as a
major. This is an especially important issue in universjtigke in the USA, where beginning students
spend a semester or two shopping around for a major. Thedeéstmat students that persevere develop
bad programming habits associated with the belief thatovemtogramming is a strict exercise in trial
and error instead of an exercise in design.

To appear in EPTCS.

2 Vector Programming Using Structural Recursion

This article describes the work developed to introduceesitglto vector programming at Seton Hall
University (SHU). At the heart of the approach is providingdents with data definitions that help them
design vector processing functions to solve problems. Adehgth of a vector can be of arbitrary size,
these must be recursive data definitions. Such data defigitian be directly exploited using structural
recursion to develop programs. The model presented to tldersts is that of aector interval that may
only contain valid indices into a vector. As the reader shatover, this model is also useful when
designing functions based on generative and accumulaowgsion. The article is organized as follows.
Sectior 2 discusses related work. Secfiibn 3 discussesaheapnming background of the students with
whom this approach is used. Sectidn 4 introduces and defieexoncept of an interval. In addition, it
provides examples of how to design functions using the miffedata definitions for an interval. Section
shows how students are introduced to vector programmirgdelgloping data definitions for a vector
interval. Sectionl6 discusses three extended vector proginag examples using the described approach.
Finally, Sectiori [presents concluding remarks and doastfor future work.

2 Related Work

Many textbooks introduce vectors as lacking a recursivegire that can be exploited to solve problems.
Readers are then introduced to how to use vectors usingetsipp code that emphasize that an index
into the vector must be within its bounds. For example, aorastdescribed as a collection of variables
of the same type with each element having an indéx [7] or asite fsequential list of elements of
the same datatype identifying the first element, the sectsment, the third element, and so forth
[6]. Such data definitions are inadequate, because theythedecursive nature of the interval of valid
indices into the vector and focus exclusively on the syntedeclare, create, index, and mutate vectors.
They fail to provide the proper model to help beginners designctions/methods that process a vector
avoiding, for example, illegal indexes into the vector. Beeond data definition may even be considered
misleading by describing a vector as a list that has a weadlsknrecursive structure. Vectors do not have
a decomposable structure like lists. Furthermore, dasgritector elements as the first, the second, the
third, and so forth does not assist in any way the design aovgmocessing functions. We can not
program “and so forth.” Even some modern approaches to nrakggmming popular among the young
address vectors in a very similar manner (eld., [3]). In@mtf the work presented in this article aims
to provide students with a decomposable data definitionkibginners can use to reason about vector
processing. This data definition is that of a vector interValese intervals have a recursive structure that
guides the design of vector processing functions.

The problem of only using legal indices into a vector is ttiadally and summarily left to the student
with no clear indication of how to accomplish this task (g@i4]). Some may convincingly argue that
this is relatively easy when you need to process an entirmrvedowever, the matter is not clear when
you need to process only part a the vector. Consider sortvector using quicksort which requires
partitioning and independently sorting different partsha vector. It is difficult for a beginner to deter-
mine or be confident that she is always correctly indexingvetor. Even worse, it is more difficult to
pin down bugs when indexing errors occur if a model that h#ipsstudent reason about indexes is not
provided to them. In contrast, the work presented in thislarbelps students reason about the indexes
into a vector. A vector interval only spans the valid indegéthe part of the vector being processed. As
such, when the structure of an interval is used to designaifumstudents know that any natural number
in the vector interval is a valid index. If the vector intdrimempty then students know that the vector
should not be indexed. Even when functions are not desigsiad structural recursion, reasoning about

M. T. Morazan 3

vector intervals is helpful.

Some efforts have gone beyond syntax. The texthidok to Design Programs (HtDP), for exam-
ple, describes a vector as a well-defined mathematical ofadata with some basic constructors and
observers[[4].HtDP further states that we can think of vectors as functions omall<finite range of
natural numbers. This begins to provide some context falovgrrocessing, but surprisingly falls short
of identifying the recursive structure of this range of matunumbers as it does so well for other types of
data. It is unlikely that future editions éftDP are to develop this given that the second edition has elim-
inated its introduction to vector programming [5]. In casf, the work presented in this article tackles
the recursive nature of this finite range of natural numbedsdescribes it as an interval. Furthermore,
the fact that this range is finite is carried to its logical dosion to obtain two data definitions for a
vector interval. One data definition leads to a templateithased to design functions to process vectors
from right to left (i.e., from the largest index down to theviest index in the vector interval) and the
other is used to design functions that process vectors fefinta right (i.e., from the lowest index to the
largest index in the vector interval).

3 Student Background

At SHU, the introductory Computer Science courses span émtesters and focus on problem solving
using a computer [10, 11]. The languages of instruction lagesticcessively richer subsetsRafcket
known as the student languages which are tightly-coupled MiDP [4, 5]. No prior experience with
programming is assumed. Before introducing students towgrogramming, the course familiarizes
students with primitive data (e.g., numbers, strings, éaas, symbols, and images), primitive functions,
and library functions to manipulate images (i.e., the imagehpack). During this introduction, students
are taught about variables, defining their own functionsl e importance of writing contracts and
purpose statements. The next step of the course introdtudsngs to data analysis and programming
with compound data of finite size (i.e., structures). At tb@nt, students are introduced to the first
design recipe. Students develop experience in develo@taydefinitions, examples for data definitions,
function templates, and tests for all the functions theyevi\ great deal of emphasis is placed on all of
these steps as part of the problem-solving design procesklirig) on this experience, students develop
expertise on processing compound data of arbitrary size asitists, natural numbers, and trees. In this
part of the course, students learn to design functions ingtural recursion. After structural recursion,
students are introduced to functional abstraction and$keotihigher-order functions such amdp and
filter. The first course ends with a module on distributed progrargrii2].

In the second course students are exposed to generativsioeglaccumulative recursion, and mu-
tation [13]. The course starts with generative recursioith& end of this module, students get their first
exposure to vector programming. Students are taught thevsyreeded for vectors and are introduced
to the design of vector processing functions using the ri@hten intervals and vector intervals outlined
in this article. After this, the course exposes studentsto@ulative recursion and iteration. The course
ends with two modules on mutation that include their secoqmbgure to vector programming. In this
second exposure, students design vector mutators usitgy vetervals.

These topics covered follow much of the structureHoDP [4]. There are two 75-minute lectures
every week and the typical classroom has between 20 to 2BrgtudIn addition to the lectures, the
instructor is available to students during office hours (@kwveek) and there are 20-30 hours of tutoring
each week which the students may voluntarily attend. Tiugitg hours are conducted by undergraduate
students handpicked and trained by the author. These tittous on making sure students develop

4 Vector Programming Using Structural Recursion

answers for each step of the design recipe (from writing rectg to running tests). Students must
attempt to follow the steps of the design recipe prior toratiteg tutoring. Based on a student’s work,
the tutors provide guidance but do not solve problems. S$isdare still responsible for successfully
completing all steps of the design recipe. In addition, rastitend lectures to assist students when they
get stuck with, for example, syntax errors. This type of taeaching with undergraduate tutors has
proven to be extremely well-received by students and to beffantive means to enhance the learning
experience.

4 Intervals

Before introducing students to vectors, they are re-intced to the concept of an interval. The term
re-introduced is used in the same manner as students beingga@uced to natural numbers earlier in
the course. That is, students in general are familiar witbast one of the following “definitions” for the
set of natural numbers:

N = {0,1,23,...} N = {1,23,...}.
Both of these definitions are inadequate, because they ditesotibe how to construct a natural number.
Furthermore, students are left to figure out the meaning .of Knowing how to construct a natural
number is important, because it empowers students withribeledge needed to process such numbers
by exploiting their structure. Therefore, a more usefubdifinition for the set of natural numbers is
(e.g., adopted iMtDP):

A natural number (natnum) is either:
1. 0
2. (addl n), where n is a natural number.

Such a definition exposes the structure of natural numbeaisisansed to define a template to write
functions that process a natural number:

f-on-natnum: natnum — ...
Purpose: ...
(define (f-on-natnum n)
(cond [(=n 0) ...]
[else n...(f-on-natnum (subl n))]1)).

The body of this template, in essence, states that the ¢omalitdistinguishes between the varieties of
natural numbers. For each variety an expression is needmsuafrtpute the result. When a natural number,
n, is a constructed natural number (i.e., the second varibg/expression can manipulate the value of
n and can recursively procegsubl n), the natural number used to constructThis template is then
specialized by students every time they need to solve agmrothiat requires processing a natural number.
Specializing, in this context, means filling in the blanke (ithe different..).

Students bring to the classroom an understanding aboutvafgeanalogous to their initial under-
standing of natural numbers. That is, they define an intersal

[i..jJ], where i < |

Once again, such a definition is inadequate. It does not extpesstructure of an interval that is helpful to
solve problems that require processing an interval. Furtbee, the fact that an interval can be empty is
well-hidden by such a definition. Given that students areaaly familiar with recursive data definitions,

it is not much of an intellectual leap to re-define an interMidl'V, as:

M. T. Morazan 5

For a given integer n, an INTV is two integers, low and high, such that
either it is:

1. empty (i.e., low > high)

2. [low..high], where high = n+1 and low < high

The natural way to represent intervals is with a structuraroobject that has two fields. Choosing
a two-integer representation is a concession to currectipes in existing programming textbooks. To
the best knowledge of the author, there are no programmiaolgsathat capture in a structure or an object
the lowest and highest indexes of an interval. A judgemelhtea to be made between representing an
interval as two integers or as a structure/object. Givehltkginning students will read programming
books that explicitly use two indices to process a vecta,tio-integer representation was ultimately
chosen. It does have the advantage that it makes the mdtmiadomewhat familiar to students that
arrive in the classroom with vector programming experience

ThelINTV data definition makes the structure of an interval expli§itudents know that given that
there is variety in the data definition a conditional is nektbedistinguish among the different varieties.
Furthermore, students can observe that when the intervabti€mptyhigh is a whole number con-
structed using. This means thdtow..(subl high)] is part of the structure dfow..high]. Put differently,
[low..(subl high)] is used to construdtow..high]. For example, the intervdtl..1] is constructed as
follows:

[-1..1]

[[-1..0]..1]
[[-1..-1]..0..1]

= [[-1..-2]..-1..0..1]
[empty..-1..0..1]

Now it becomes clear that when the interval is not empty theaevaf high as well as the result of recur-
sively processing the subintervigw..(subl high)] can be used. This naturally leads to the following
function template to process an interval:

; £-on-INTV: int int — ...
; Purpose: For the given INTV, ...
(define (f-on-INTV low high)
(cond [(empty-INTV? low high) ...]
[else high...(f-on-INT low (subl high))]))

This template requires a function to detect that an intaésvampty. For the chosen representation using
two integers, this function is easily developed by students

; empty-INTV?: int int — boolean
; Purpose: For the given INTV, determine if it is empty
(define (empty-INTV? low high) (> low high))

The template can now be used to solve problems that procesdeawal. For instance, consider
computing the summation of all the integers in an intervalid&nts know to start with the template for
anINTV and to develop an answer for each variety of the data stantitigthe non-recursive case(s).
Students quickly observe that when the interval is emptystiramation is 0. When the interval is not
empty, they observe thaigh must be added to the result of recursively proces§ing..(subl high)].
Observe how reasoning about the structure of an intervekld@e programmer to a solution. Putting
these ideas together leads to the following specializaifdhe template:

6 Vector Programming Using Structural Recursion

; sum—INTV: int int — int
; Purpose: For the given INTV, sum its elements
(define (sum-interval low high)
(cond [(empty-INTV? low high) 0]
[else (+ high (sum-INTV low (subl high)))]1))

After working out some exercises, students realize thatahmplate suggests that intervals must be
processed fromigh to low (or right to left). However, many students also realize thatay be equally
correct to process an interval frolow to high (or left to right). This requires the development of the
following data definition for an interval:

For a given integer n, an INTV2 is two integers, low and high, such that
it is either:

1. empty (i.e., low > high)

2. [low..high], where low = n-1 and low < high

In this data definitionlow is constructed by subtracting 1 from some integerhis leads to the following
function template:

; £-on-INTV2: int int — ...
; Purpose: ...
(define (f-on-INTV2 low high)
(cond [(empty-INTV2? low high) ...]
[else low...(f-on-INTV2 (addl low) high)]))

It is important to highlight to students that the above teatgls not an instance of generative recursion.
Many students sesld1 and associate it with generative recursion and mistakemythey must develop
a termination argument for function written using this tezte.

Once armed with this knowledge, students can now solve @nabbrocessing the interval from left
to right. For instance, summing all the integers in an irdecan also be solved as follows:

; sum—INTV2: int int — int
; Purpose: Sum all the integers in the given interval
(define (sum-INTV2 low high)
(cond [(empty-INTV2? low high) 0]
[else (+ low (sum-INTV2 (addl low) high))1))

Both functions to sum the elements of an interval, have ayddlaperation (i.e+4). These functions
are rewritten using an accumulator to eliminate the delaygetration when students are exposed to
accumulative recursion.

5 Vector Processing

Armed with an understanding of how to process intervalgjesits are ready to be introduced to vectors.
After introducing students to what a vector is, why it is dalsie to use them, and some basic vector-
syntax, students are explained that it is common to processtayuous subset of a vector. The emphasis
here is oncommon given that arrays are random access and can be processedyrdifiarent ways.
Nonetheless, the reader is reminded that the goal is to exgiodents for the first time to vectors and, as
such, intervals are useful to reason about and design pnsgi@process a contiguous subset of a vector.
For example, for a given vectdt, we may want to process the entire vector (from indices (@bl
(vector-length V)) or we may want to process only part of the vector (from indieés b). Clearly,

M. T. Morazan 7

; f-on-vector: (vector X) — ...
; Purpose: ...
(define (f-on-vector V)
(local [; f-on-VINTV: int int — ...
; Purpose: For the given VINTV, ...
(define (f-on-VINTV low high)
(cond [(empty-VINT? low high) ...]
[else (vector-ref V high)
...(f-on-VINTV low (subl high))1))

; £-on-VINTV2: int int — ...
; Purpose: For the given VINTV2, ...
(define (f-on-VINTV2 low high)
(cond [(empty-VINTV2? low high) ...]
[else (vector-ref V low)
...(f-on-VINTV2 (addl low) high)1))]
-))

Figure 1: The Template for Functions on Vectors.

processing a contiguous subset of a vector requires plingess interval. Once again, this is not a huge
intellectual leap for students. Care must be taken, howbeeeause we must avoid attempting to access
a vector with an illegal index that is either negative or ¢gedhan or equal to the length of the vector.
This requires developing a data definition foreator interval. A vector interval is an interval that places
restrictions on what valudsw andhigh may take. In general, a valid index into a vectdy,is between

0 and(subl (vector-length V)). Thus, we can define a vector interval as follows:

Given a vector of length N and a natural number n, a vector interval,
VINTV, is two integers, low >= 0 and -1 <= high <= N-1, such that it
is either:

1. empty (i.e., low > high)

2. [low..high], where high=n+1 and low < high

Observe that this data definition restrict¥ BNTV to only contain valid indices into the vector when it
is not empty. These indices are natural numbers. Furth@rebdshat the structure of a vector interval is
exactly the same as the structure of an interval. There ifexelice when processingMNTV. We are
interested in processing vector elements instead of at@ements. This means that in the body of a
function to process ®INTV a vector must be referenced. As with intervals, a data deimihat leads

to processing a vector interval from left to right is also eleped.

The above observations allow for the in-class developmémhe function template to process a
vector displayed in Figurel 1. The contract states that angtion that processes a vector must take as
input at least a vector of any typX {s a type variable). The body of the function isoaal-expression
that may be used to define one or more local functions andsatedents are told that problem analysis
will reveal the type of expression that is needed in the bddh@local-expression. If a single value is
needed from the given vector, then the expression will betlvaigporocesses a vector interval. Otherwise,
the expression will be one that uses different values obthirom processing the same vector. The local
definition section contains two templates: one for eachctioe that a vector interval can be processed

8 Vector Programming Using Structural Recursion

; avg-vector: (vectorof number) — number
; Purpose: To compute the average of the given vector
; Assumption: The vector is not empty.
(define (avg-vector V)
(local [; sum-elems: int int — natnum
; Purpose: For the given interval, sum the
vector elements
(define (sum-elems low high)
(cond [(empty-interval? low high) 0]
[else (+ (vector-ref V high)
(sum-elems low (subl high)))]1))]
(/ (sum-elems O (subl (vector-length V)))
(vector-length V))))

Figure 2: A Function to Compute the Average of a Vector of Nersb

in. At least one of the templates is to be used to process wetdments. Observe that in each of the
local templates, vector elements are processed (wsiitgr-ref) instead of interval elements.

To make the use of the function template to process a vecharete, consider computing the average
of a vector of numbers. Problem analysis reveals that thiswveannot be empty given that division by 0
is undefined. It also reveals that it does not matter in whigdcton theVINTV is processed as addition
is a commutative operation. Now, the template for functionsa vector from Figurgl1 is specialized.
The contract indicates that the input is a vector of numbBéyrsnd that the function returns a number.
The body of thdocal-expression must divide the sum of the vector elements bietiggh of the vector.
This means that we must write a function to compute the sunecfov elements. Given our problem
analysis, either of the templates to process a vector itean be used. Without loss of generality, we
can choose to process from right to left (i.e., the templat&/fNTV). This means that when the vector
interval is empty the answer is 0 and that when it is not empyaad(vector-ref V high) to the result
of recusively processing the rest of th@&NT (i.e., [low..high-1]). The resulting function is displayed
in Figure[2. Observe that by using the template based ontstaliaecursion it is impossible to have
indexing errors.

6 Extended Examples

This section presents three extended examples of how tgrdésnctions that process vectors. The
first, the dot product of two vectors|[L, 16], is an example @fvito process multiple vector intervals
simultaneously in step. The second, the merging of two doreetors [[9], is an example of how to
process multiple vector intervals that are not processateim This example also shows that the design
of vector mutators can benefit from exploiting the structfreector intervals. The third, quicksott [4, 8],
sorts a vector in place. This is an example of how reasoningtakector intervals assists in the design
of functions that uses generative recursion and mutation.

M. T. Morazan 9

; dot-product: (vector number) (vectorof number) — number
; Purpose: To compute the dot product of the two given vectors
(define (dot-product V1 V2)
(local [; sum-products: int int — number
; Purpose: For the given VINTV, compute the dot product of V1 and V2
(define (sum-products low high)
(cond [(empty-interval? low high) 0]
[else (+ (* (vector-ref V1 low) (vector-ref V2 low))
(sum-products (addl low) high))1))]
(sum-products 0 (subl (vector-length V1)))))

Figure 3: Function to Compute the Dot Product of Two Vectors.

6.1 The Dot Product of Two Vectors of Numbers

Given two vectors of number¥,1 andV2, the dot product is defined as:
Vi - V2 = Zﬁﬂ V1[i]#V2[i], where N is the length of the vectors minus 1.
In-classroom problem analysis reveals:
» Both vectors must have the same length.
» Both vectors must be entirely processed simultaneoustyeip.
» Vector elements can be processed either right to left @ vérsa.

Given these insights, students conclude that the functoonbe designed around processing a single
vector interval, say fo1, and then specialize the template for functions on vecwmdetelop their
code. The input is two vectors of numbers and the output isvében This is reflected in the contract in
Figure[3. The body of thiscal-expression calls a functioaum-products, to process the single interval
that spans all the elements of both vectors (i.e., from @bl (vector-length V1))). Observe that the
interval only contains valid indices into the vector.

The function,sum-products, is designed using either template for vector interval pssing given
the third insight above. Figuté 3 uses the template thatgss®es the interval from left to right. The code
is developed by steps, as before, by formulating answersdoh variety of vector interval. Students
have no trouble seeing that the answer is 0 when the intenaahpty. When the interval is not empty,
students are explained that they must do something withwtbeslements, in this case, at the low end of
each vector interval. This is what it means to process botlovg simultaneously in step. This action,
of course, is to multiply them. To formulate the final ansvileis product must be added to the result of
recursively processing the rest of the vector interval.

The reader can observe that no indexing errors can arisésiexample. The key to success is for
students to properly define the inittdINTV2 to be processed. In this case, this task is fairly straight-
forward given that both vectors must be processed in théiregyn Also observe that there is no guess
work involved in how to process the rest of the elements ime&ctor. The solution to that concern is
baked into the template for functions on a vector.

6.2 Merge Two Sorted Vectors

Consider the problem of merging two vectors that are sortewn-decreasing order into a single vector
that is sorted in non-decreasing order. In-classroom prolanalysis yields the following insights:

10 Vector Programming Using Structural Recursion

; merge: (vector number) (vectorof number) — (vectorof number)
; Purpose: To merge the two given sorted vectors in non-decreasing order
; Assumption: The given vectors are sorted in non-decreasing order
(define (merge V1 V2)
(local [; res: (vectorof number)
; Purpose: To store the merged elements so far
(define res (build-vector (+ (vector-length V1)
(vector-length V2))
(lambda (i) (void))))

; combine: int int int int int int — (vectorof number)
; Purpose: For the given VINTVs, merge V1 and V2 into res
(define (combine lowvl highvl lowv2 highv2 lowres highres)
o)
(combine 0 (subl (vector-length V1))
0 (subl (vector-length V2))
0 (subl (vector-length res)))))

Figure 4: Basic Outline for a Function to Merge Two Sortedtvex

» A vector to hold all the elements of the given vectors musabecated. Given that this vector
must be mutated every time an element is added, it must béecavstgable.

» Three different intervals must be processed simultarigoose for each of the input vectors and
one for the result vector. These intervals are not proceisssep.

» Each vector must be processed in its entirety.

Figure[4 displays the basic outline for a function to merge $arted vectors obtained from beginning to
specialize the template for a function on a vector. The emhtthe purpose statement, and the assumption
indicate that two sorted vectors of numbers are expectedmg and a sorted vector is expected as
output. The body of thical-expression calls an auxiliary functiotgmbine, to process the three vector
intervals. Three intervals are needed as input, becaugeatieenot processed in step. Observe that
all three initial vector intervals span all the valid indsceespectively, for each vector. Thus, by using
structural recursion indexing errors cannot occur. Lgcdltle state variablegs, is defined to store the
result. Its invariant states that it is a vector of numberkis Vector is initialized to contain onlyoid
values to indicate that nothing in the vector has been lizigd.

The task left is to develop the body @smbine. Given that three intervals are not processed in step,
we need to determine the different conditions that may atigéng processing to augment thend-
expression that appears in the template to process a vetsoval. After some class discussion, the
conclusion is reached that at each step an element of ones dohplut vectors is placed in the result
vector. Furthermore, the input vectors and the result verdo be processed from left to right or vice
versa. Without loss of generality, we proceed with procgsshe intervals from left to right. This is
an implementation choice and it is equally correct to predhe intervals from right to left. These new
insights and our implementation choice, in conjunctionhviiite previous insights, lead us to five cases
that must be addressed:

M. T. Morazan 11

(cond [(and (empty-VINTV2? lowvl highvl)
(empty-VINTV2? lowv2 highv2))
res]
[(empty-VINTV2? lowvl highv1)
(begin
(vector-set! res lowres (vector-ref V2 lowv2))
(combine lowvl highvl
(addl lowv2) highv2
(addl lowres) highres))]
[(empty-VINTV2? lowv2 highv2)
(begin
(vector-set! res lowres (vector-ref V1 lowvl))
(combine (addl lowvl) highvl
lowv2 highv2
(addl lowres) highres))]
[(< (vector-ref V1 lowvl) (vector-ref V2 lowv2))
(begin
(vector-set! res lowres (vector-ref V1 lowvl))
(combine (addl lowvl) highvl
lowv2 highv2
(addl lowres) highres))]
[else
(begin
(vector-set! res lowres (vector-ref V2 lowv2))
(combine lowvl highvl
(addl lowv2) highv2
(addl lowres) highres))]))]

Figure 5: The Conditional for the functiarombine from Figure[4.

The intervals for both input vectors are empty.

The interval for the first input vector is empty.

The interval for the second input vector is empty.

The low element of the first input vector is less than thedtement of the second input vector.

g~ o

The low element of the second input vector is less than valetp the low element of the first
input vector.

Observe that the non-recursive case is listed first and neuitebfirst to be solved. For this case, there
are no more elements to process in either vector intervathf@iinput vectors and the result vector is
returned. For the second case, the vector interval for teevictor is empty and the process continues
by placing the remaining elements left in the second vecit®rval into the result vector. The recursive
call is made with the rest of the vector intervals for both $keond input vector and the result vector.
The third case is the same as the second case, but it is ther uatetrval for the second vector that is
empty. The recursive call is made with the rest of the vecttarvals for both the first input vector and

12 Vector Programming Using Structural Recursion

; gs—in-place!: (vectorof number) — (void)
; Purpose: To sort the array in non-decreasing order.
; Effect: The elements of the array are rearranged in place.
(define (gs-in-place! V)
(local [; partition!: int int natnum — number
; Purpose: For the given VINTV, partition and place the pivot in
; its final position.
; Effect: Mutate V so that all elements before the pivot are
; <= pivot and all elements after the pivot are > pivot.
(deflne (partition! low high pp)
.
; gs—aux!: int int — (void)
; Purpose: For the given VINTV, sort V in non-decreasing order.
; Effect: The elements in the given interval are rearranged
in place.
(deflne (gs-aux! low high)
(cond [(empty-interval? high low) (void)]
[else
(local [(define pp (partition! low high low))]
(begin
(gs-aux! low (subl pp))
(gs-aux! (addl pp) high)))1))1))
(gs-aux! 0 (subl (vector-length V)))))

Figure 6: Basic Outline for Quicksort in Place.

the result vector. The fourth and fifth cases place the sstddle element of the input vectors into the
result vector. The recursive call is always made with thé oéshe interval for the result and the rest
of the interval for the input vector that had an element placethe result. The resulting conditional is
displayed in Figurgls.

The important lesson to derive from this example is that wimemne than one interval is processed
then every recursive call must be made with the rest of thervats that process either the low or the
high interval element. Observe that if this design prireiphsed on structural recursion is followed and
the initial intervals are correctly set, an index out of bdsierror cannot arise.

6.3 Quicksort In Place

Quicksort is an algorithm based on generative recursionrtces array in place summarized as follows:
« |If the vector interval is empty, stop.

« If the vector interval is not empty

— Pick a pivot. For our purposes, we will say tloev element is the pivot.

— Patrtition the vector by putting the elements less than oaktguhe pivot at the beginning of
the vector interval and the larger elements at the end. M isiplaced at the largest index,
pp, of the smaller elements.

M. T. Morazan 13

(define (partition! low high pp)
(local
[(define (swap i j) ...)
(define (small-index low high pivot) ...)
(define (large-index low high pivot) ...)

; separate!: int int number — natnum
; Purpose: For the given VINTV, separate smaller and larger elements
; Effect: In V move elements <= pivot before elements > pivot.
(define (separate! low high pp)
(local [(define s-index (small-index low high (vector-ref V pp)))
(define 1-index (large-index low high (vector-ref V pp)))]
(cond [(<= s-index l-index) s-index]
[else
(begin (swap s-index l-index)
(separate! 1l-index s-index pp))]1)))
(begin
(local [(define pp (separate! low high low))]
(begin (swap low pp) pp)))))

Figure 7: Basic Outline fopartition! from Figurel®.

— Recursively sort the vector intervalgow..pp-1] and[pp+1..high].

The basic outline for the quicksort function is displayedFrigure[6. For the readers familiar wititDP,

you will recognize the basic outline. Here its presentaktias been adapted to use the concept of a vector
interval. The function to quicksort a vector in place takesrgput a vector of numbers and retusrsd

as this function is only called for its effect (i.e., the ntiga of the given vector). The only task that
needs to be performed is the sorting of the entire vector.refboee, the body of théocal-expression
only needs to call an auxiliary functioms-in-place!, to process the correct vector interval..(subl
(vector-length))]. This auxiliary function, as required, stops if the intérigaempty. If the interval is
not empty, it partitions the interval and then recursiveldyts the required subintervals. Observe that the
recursive calls are not made with part of the structure usembhstruct the given interval (i.e., this is
generative recursion). Instead, to new instances of thielgmoare created to be solved (i.e., the divide
and conquer). This auxiliary function is not designed ughngytemplate based on structural recursion.
Instead, it is designed using the generative recursionlegsmmHtDP [4]. Nonetheless, the concept of a
vector interval is enlightening as it explicitly has the grammer think about the varieties of an interval
as reflected in the body @f-aux!.

The functiongs-aux! needs to compute the position of the pivot in the sorted vectorder to create
the two new vector intervals to process. Determining thig different task and an auxiliary function,
partition!, is needed to partition the vector. It takes as input a venterval (i.e.,low andhigh) and the
index of the element chosen as the pivot (il@y, as per our design choice). Figlide 7 displays the basic
outline for the mutatopartition!. For the given vector interval, this function first reorgass the vector
elements putting the elements that are less than or equa oot at the beginning of the interval and
the other elements at the end of the interval to compute thitio of the pivot in the sorted interval. It
then swaps the pivot into the computed position and retimapitvot position. Observe that this function

14

Vector Programming Using Structural Recursion

; swap: natnum natnum — (void)
; Purpose: To swap V[i] and VI[j]
; Effect: Modify V[i] to contain the value of V[j] and vice versa
(define (swap i j)
(local [(define temp (vector-ref V i))]
(begin (vector-set! V i (vector-ref V j))
(vector-set! V j temp))))

; small-index: int int number — natnum
; Purpose: For the given VINTV, find largest index: V[k] <= pivot
(define (small-index low high pivot)
(cond [(empty-interval? low high) low]
[else
(cond [(<= (vector-ref V high) pivot) high]
[else (small-index low (subl high) pivot)])]))

; larger-index: int int number — natnum
; Purpose: For the given VINTV, find the smallest index: V[k] > pivot
; if it exists else return high
(define (larger-index low high pivot)

(cond [(empty-interval? low high) high]

[else
(cond [(> (vector-ref V low) pivot) low]
[else (larger-index (addl low) high pivot)1)1))

Figure 8: Auxiliary functions fopartition! from Figure Y.

does not process the vector interval and, therefore, isesmgded using the template for functions on a
a vector interval based on structural recursion.

The auxiliary functionseparate! does process an interval. This function, however, does xmbi

the structure of a vector interval and, therefore, is aldaesigned using the template for functions on a
vector interval. Nonetheless, reasoning about vectoniakg once again, proves fruitful in development
using generative recursion. An important observationaséparate! is performing a task for the vector
interval given as input tpartition! and as such always operates within this vector interval.flihetion
separate! must find, within its given vector interval, the largest irdbat contains a value less than or
equal to the pivot and the smallest index the that containal@evgreater than the pivot (if it exists).
These tasks are left to auxiliary functiossall-index andlarge-index, respectively. Once these indices
are found, we must determine if the new vector interval defime these indices is empty or not. If it
is empty, the function returns the index of the small elembatause it is the index that separates the
small and the large elements in the vector interval givem@stitopartition!. If it is not empty, the large
and small elements are swapped and the process of sepamatitimues with this smaller vector interval
defined by the two computed indices.

The remaining auxiliary functions are displayed in FigureB®th small-index andlarge-index are

developed using one of the templates for functions on a véaterval. Each exploits the structure of
a vector interval to find the correct index. Fsnall-index, the code is developed using the template

M. T. Morazan 15

that processes the vector interval from right to left. WHasgivenVINTV is empty it returns the low
element of the vector interval indicating that the only nemless than or equal to the pivot is the pivot.
Otherwise, it checks if the vector element indexed by higless than or equal to the pivot. If so, it
returns high as it must be the largest index of an elementigitrenVINTV that is less than or equal to
the pivot. Otherwise, it recursively process the rest ofitherval. Forlarge-index, the code is developed
using the template that processes the vector interval fedind right. When the giveNINTV2 is empty

it returns the high element of the vector interval indicgtthat there are no numbers greater than the
pivot in the interval. Otherwise, it checks if the vectorrelnt indexed byow is greater than the pivot.

If so, it returnslow as it must be the smallest index of an element in the gWwiiI'V2 that is greater
than the pivot. Otherwise, amall-index, it recursively processes the rest of the interval.

The important lesson to take away from this example is tregoring about the structure of vector
intervals is helpful when function design requires genegatecursion and/or mutation. As seen in the
discussion above, some functions can exploit the structuaesector interval to develop a solution while
others are developed by reasoning about the differenttiesief vector intervals.

7 Concluding Remarks

This article presents a design-oriented methodology tp beginners develop vector processing func-
tions. It is based on the concept of a vector interval thathagursive structure. This recursive structure
is exploited to develop a function template that is spexgaliby students to solve problems. An im-
portant issue that is addressed by this methodology is thgepriindexing of vectors. The concept of a
vector interval is helpful in avoiding (and resolving) aftbounds indexing errors. Several examples
are presented to illustrate the use of the design methogahogyactice.

Future work includes formulating multidimensional arrapgessing examples that further demon-
strate the usefulness of reasoning about vector intergatiesign functions. The work is also being
extended to demonstrate how to use vector intervals to mealsout algorithms that do not process all
the elements of a vector within a given interval (e.g., fiord used by heap sort). Finally, the work is
being extended to a course that focuses on object-oriemsdrd

8 Acknowledgements

Students traditionally believe that the learning processglfrom the professor to the students. In my
case, nothing can be further from the truth. The work preskintthis article is inspired by the difficulties
faced and by the questions addressed to me by my beginnidgritu The author thanks them for
providing me with valuable lessons regarding how to teactinduction to vector programming. In
particular, | thank Josephine Des Rosiers for her many Hehbates with me about designing programs.

References

[1] Sara Baase (1988Lomputer Algorithms, second edition. Addison-Wesley Publishing, Reading, MSA.
[2] Richard L. Burden & J. Douglas Faires (198Bumerical Analysis, third edition. Prindle, Weber, & Schmidt.
[3] Code.org (2017)Lesson 13: Introduction to Arrays.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew F&tShriram Krishnamurthi (2001)How to Design
Programs. An Introduction to Programming and Computing. MIT Press, Cambridge, MA, USA.

16

[5]

[6]
[7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

Vector Programming Using Structural Recursion

Matthias Felleisen, Robert Bruce Findler, Matthew F&itShriram Krishnamurthi (2015)How to Design
Programs. Http://www.ccs.neu.edu/home/matthias/HtDP2e/.

William Ford & William Topp (1996):Data Structureswith C++, first edition. Prentice Hall.

Michael T. Goodrich & Roberto Tamassia (200Data Structures and Algorithmsin Java, second edition.
John Wiley & Sons.

C. A. R. Hoare (1962)Quicksort. The Computer Journ&(1), pp. 10-16.

Donald E. Knuth (1998):The Art of Computer Programming, Volume 3: Sorting and Searching, second
edition. Addison Wesley Longman Publishing Co., Inc., Redd/City, CA, USA.

Marco T. Morazan (2011)Functional Video Games in the CS1 Classroom. In Rex Page, Zoltan Horvath
& Viktoria ZsoOk, editors: Trends in Functional Programming: 11th International Sgsipm, TFP 2010,
Norman, OK, USA, May 17-19, 2010. Revised Selected Pahecsure Notes in Computer Science, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 166—-183, d0i:1007/978-3-642-22941-1_11. Available at
http://dx.doi.org/10.1007/978-3-642-22941-1_11,

Marco T. Morazan (2012)unctional Video Gamesin CSL 1. In Ricardo Pefia & Rex Page, editoilgends
in Functional Programming: 12th International SymposidmaP 2011, Madrid, Spain, May 16-18, 2011,
Revised Selected Papek®cture Notes in Computer Scienc&93, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 146-162, dab.1007/978-3-642-32037-8_10. Available athttp://dx.doi.org/10.
1007/978-3-642-32037-8_10,

Marco T. Morazan (2014)kFunctional Video Gamesin CSL I11. In Jay McCarthy, editorTrends in Func-
tional Programming: 14th International Symposium, TFP3@rovo, UT, USA, May 14-16, 2013, Re-
vised Selected Papelsecture Notes in Computer Scier@822, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 149-167, ddio . 1007/978-3-642-45340-3_10. Available athttp://dx.doi.org/10.1007/
978-3-642-45340-3_10.

Marco T. Morazan (2015)Generative and Accumul ative Recursion Made Fun for Beginners. Comput. Lang.
Syst. Struct44(PB), pp. 181-197, ddi0.1016/j.¢1.2015.08.001. Available athttp://dx.doi.org/
10.1016/j.¢c1.2015.08.001.

Robert Sedgewick & Kevin Wayne (2007ntroduction to Programming in Java: An Interdisciplinary Ap-
proach, 1st edition. Addison-Wesley Publishing Company, USA.

[15] Abraham Silberschatz, Peter Baer Galvin & Greg Gagfé @2 Operating System Conceptswit Java, eighth

[16]

edition. John Wiley & Sons.

Stewart Venit & Wayne Bishop (1985Elementary Linear Algebra, second edition. Prindle, Weber, and
Schmidt.

http://dx.doi.org/10.1007/978-3-642-22941-1_11
http://dx.doi.org/10.1007/978-3-642-22941-1_11
http://dx.doi.org/10.1007/978-3-642-32037-8_10
http://dx.doi.org/10.1007/978-3-642-32037-8_10
http://dx.doi.org/10.1007/978-3-642-32037-8_10
http://dx.doi.org/10.1007/978-3-642-45340-3_10
http://dx.doi.org/10.1007/978-3-642-45340-3_10
http://dx.doi.org/10.1007/978-3-642-45340-3_10
http://dx.doi.org/10.1016/j.cl.2015.08.001
http://dx.doi.org/10.1016/j.cl.2015.08.001
http://dx.doi.org/10.1016/j.cl.2015.08.001

	Introduction
	Related Work
	Student Background
	Intervals
	Vector Processing
	Extended Examples
	The Dot Product of Two Vectors of Numbers
	Merge Two Sorted Vectors
	Quicksort In Place

	Concluding Remarks
	Acknowledgements

