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Recent years have seen a large increase in the interest in developing a Computer Science curriculum
for K-8 students. However, there have been significant barriers to creating and deploying a Computer
Science curriculum in many areas, including teacher time and the prioritization of other 21st-century
skills. At McMaster University, we have developed both general computer literacy activities and
specific programming activities. Each activity also supports existing curricular goals, making them
easy for teachers to include in their planning. In this paper, we focus on programming in the func-
tional language Elm and the graphics library GraphicSVG. Elm is in the ML family, with a lean
syntax and easy inclusion of Domain Specific Languages. This allows children to start experiment-
ing with GraphicSVG as a language for describing shape, and pick up the core Elm language as they
grow in sophistication. Teachers see children making connections between computer graphics and
mathematics within the first hour. Graphics are defined declaratively, and support aggregation and
transformation, i.e., Algebra. Variables are not needed initially, but are introduced as a time-saving
feature, which is immediately accepted. Since variables are declarative, they match students’ expec-
tations. Advanced students are also exposed to State, and the syntax required to implement touches
and clicks closely follows the theoretical concepts, making it easy to understand how it works. For
each of these concepts, the exposition is a condensation of the presentations we make to students, and
can be used as lesson plans, to duplicate the success we have had, teaching 5200 children in 2016.

Finally, we describe ongoing work on a touch-based Elm/GraphicSVG editor for iPads, which
features (1) type highlighting (as opposed to mere syntax highlighting), (2) preservation of correct
syntax and typing across transformations, (3) context information (e.g. displaying parameter names
for GraphicSVG functions), and (4) immediate feedback (e.g. restarting animations after every pro-
gram change).

1 Introduction

There is a lot of interest in developing a Computer Science curriculum for K-8 [15], with curricula being
defined by some education authorities, e.g. year-by-year goals in the UK [1]. At McMaster University,
we have developed a number of outreach activities in collaboration with local teachers and their students,
and have been motivated by our successes and failures to develop a learning environment where children
can develop programming skills initially through exploration and then through discovery. As we will
describe, this is an update to the approach first advocated by Papert and coworkers at MIT [14].

After trial and error, we have found a Domain Specific Language for two-dimensional drawing em-
bedded in the functional language Elm to be by far the most successful. Matching the semantics (and
vocabulary) of drawing with stencils allows children to begin exploring with very little stumbling over
new concepts. Children can start right away modifying a list of shapes, so initial learning is restricted to a
short list of functions with small numbers of obvious arguments and syntax for lists and forward function
application—pipelining—to better expose the combinatorial nature of shape construction and composi-
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2 Elm and Algebraic Thinking

tion. Almost all language features can be introduced in a planned way after children are confident in
their ability to handle programming.

Younger children (less than 10 years old) do still stumble over syntax, probably because they are
just discovering grammar in English, so they cannot build on that knowledge. For these students we will
describe ongoing work to create an error-free editor just for them.

In all cases, using a language in the ML family is important because

• pure functions match the child’s inherent idea of tools, like stencils, pens and paint brushes,

• it is easy to create a domain-specific language,

• there is minimal syntax to learn.

1.1 Adoption

Teachers are busy, and the curriculum is already full enough. While progress in software technologies are
viewed as positive by most computer scientists, many developed regions are already suffering from high
unemployment attributed to automation, and the coming changes are predicted to displace many more
[8]. In this context, teachers and schools in our area are trying to develop creativity and teamwork (21st-
century skills), which further squeezes time for pre-Computer Science or Computational Thinking. And
while adding new skills, the fundamental importance of reading cannot be neglected. In this context,
what we need is a method of introducing Computer Science that provides at least as much progress
toward existing curricular goals as the instruction it will displace.

Fortunately, we have earned the trust of teachers on this point:

This morning’s coding session was fantastic! Love that I see math curriculum connections
with integers and placing co-ordinates on a grid!

So, the connection with coordinates meets teachers’ needs to cover curriculum, and their students are so
excited by their ability to independently explore the material, that (at least anecdotally) their engagement
spills over into other subject areas.

My students were still talking about [the workshop] last week over the last few days so it
certainly had an impact on their learning and engagement!

So, although we see the acquisition of algebraic thinking as the bigger and more important target, the
visible gains in enthusiasm for geometry easily justifies the time taken, while we figure out how to
measure the impact on algebra.

1.2 Algebraic Thinking

Why do we characterize our approach as “algebraic thinking”, and not “computational thinking” or
“algebraic reasoning” or “algebraic program construction”? The term “computational thinking” was in-
troduced by Wing [20] to draw attention to the need for increased enrolment in CS at all levels. There are
now many outreach programs aimed at K-12, including well-funded non-profit organizations, however
there are also some pointed questions being asked. In particular, what is the difference between “com-
putational thinking” of 2010 and “programming” of 1980, and the answer seems to be not very much.
This is despite work by scholars of literacy: “code’s discreteness also enables one to build complex and
chained procedures with the confidence that the computer will interpret them as precisely as one writes
them [...] For these reasons, computational literacy is not simply a literacy practice—a subset of textual
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literacy. It is instead a (potential) literacy on its own, with a complex relationship to textual literacy. ”
[18]

Recently, Guzdial [9] surveyed the literature on teaching computer science, focussing on K-12. He
is also critical of the simple definition of “computation thinking”, and he discusses at length Soloway’s
Rainfall problem which highlights the consistent failure of conventional approaches to teach even under-
graduates the basics of programming. In contrast, Fisler found that students using functional languages
“made fewer errors than in prior Rainfall studies and used a diverse set of high-level composition struc-
tures” [7]. So there is some evidence that a functional approach is superior for beginning undergraduate
and high-school learners. Such an approach could be called “functional thinking”.

We prefer to call our approach “algebraic thinking”, going back to the original definition of algebra
as “taking apart and putting together”. By focusing on shapes, children learn about recursive (tree) data
structures by building increasingly complex pictures. By decomposing shape construction into Stencils,
Shapes and Shape Transformers, we expose the combinatorial structure of shapes. Children’s “inner
scientist” loves experimenting with the possibilities, and rapidly assimilates the patterns.

Patterning is used in a more restrictive sense in K-8, but it is a recognized part of pre-algebra [12]. We
have found a growing awareness of the importance of algebra among teachers, in parallel with research
finding that high schools needing to offer fewer (remedial) pre-algebra math courses have lower drop out
rates [13].

While Soloway’s Rainfall problem would seem artificial to our target age group, we have developed
our own metric of success: “is the language and activity compatible with socially constructive learning?”
Socially constructive learning is thought to be better for acquiring higher-level skills, but it can only work
if children are engaged enough to stay on task (or, even better, invent their own tasks). When we used
Python, we needed to interleave girls and boys in the lab as a way to prevent friends from distracting
each other from their programming task. However, after switching to Elm, we can encourage children to
consult each other. Now, if we one team asks for help to make their shape blink, we will soon see half
the class following suit in their animations.

1.3 Why Elm?

Elm (http://elm-lang.org) was imagined as a vehicle for delivering best practices in program language
design to web front-end developers [6]. It is deliberately simple, for example, dropping support for
Functional Reactive Programming in version 0.17 [2]. It looks like other ML-derived languages, but it
does not have user-defined type classes, although it has built-in classes such as number, comparable and
show. It has a foreign-function mechanism designed with safety first. When it was initially developed, it
was the natural language for Haskell programmers needing to create a JavaScript app, and was a radical
simplification of the complexity of JavaScript, HTML and CSS. Today, such developers should also
look at PureScript (http://www.purescript.org), TypeScript (https://www.typescriptlang.org/), or Flow
(https://flow.org/).

As a teaching language, Elm offers simplicity in both syntax and semantics, and because it compiles
to JavaScript, it is accessible in schools without installing software. It works on every platform with a
web browser, and it is easy to build collaboration and distance-learning tools around it.

1.4 The Elm Architecture

In Elm 0.17, Functional Reactive Programming features were removed in favour of The Elm Architecture
(TEA) ([2]) with subscriptions. It has three parts, which in our case are typed as
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• a model data type for state, with an initial value,

• view : model -> Collage (Msg msgs), and

• update : msgs -> model -> model.

The model is a data type which contains information about the current state of the program. For
example, the model might contain information about the current time and what slide you’re on in the
case of a presentation.

The view function visually representing the state stored in the model, usually through HTML, or,
in the case of GraphicSVG, through SVG. Elm’s functional paradigm eliminates many pitfalls found in
traditional web development, as it guarantees that the same state always produces the same view.

The update function takes both the model and a data type (known as the “Message”) as a parameter.
The update function implements all transition functions from one state of the program to the next. Some
messages, such as time updates, are requested from the Elm runtime, while special transformers that can
be applied to any Shape tell the run-time to generate specific messages based on user interaction. Elm’s
runtime redraws automatically based on need.

1.5 GraphicSVG

Our Graphics library for teaching, GraphicSVG, is based on the original Elm Graphics module which
targeted HTML canvas elements, and it is partially backwards compatible. GraphicSVG’s principal types
(Stencil, Shape and Collage) model real-world concepts: Stencil describes a recipe for creating a
shape; for example, a circle with a certain radius, a rectangle with a width and height or text with a
certain font and size:

circle, square, triangle: Float -> Stencil

rect, oval: Float -> Float -> Stencil

roundedRect: Float -> Float -> Float -> Stencil

text: String -> Stencil

But, like a real-life stencil, a visible shape is not created until the user fills it in or traces its edge:

filled: Color -> Stencil -> Shape a

outlined: LineType -> Stencil -> Shape a

Thus, a concrete analogy explains why shapes cannot show up on the screen unless they are filled or
outlined. This architecture limits the number of parameters each function takes, and the types match
students intuition closely enough that we do not have to talk about them. They never use constructors
for these types directly, using exposed functions instead, some of which simplify the underlying type
construction. Fortunately, Elm’s type errors (e.g. found a Stencil where a Shape was expected) also
match their intuitive understanding of these types, and need little explanation, and, so far, students who
choose to attempt more complicated user interaction are able to build a workable understanding of Elm
types from there. (See the last section to learn how we plan to use types as a teaching tool in the future.)

1.5.1 Design Motivation: Instructional Scaffolding

One aspect of Elm’s original Graphics library that we found successful in classrooms was its support for
instructional scaffolding. [4] The instructor shows students how to draw basic shapes on the centre of the
collage. The next inquiry most students have is a logical progression from the current state: “How can we
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Figure 1: ShapeCreator: As a consequence of GraphicSVG’s design, we were able to expose the combi-
natorial nature of shape construction in an interactive tool for API discovery.

move the shape from the centre of the collage?” Like with filled, we use forward function application
(|>)1 to apply transformations to Shapes, thereby visually laying out the combinatorial nature of shape
construction.

These functions have type (parameters) -> Shape -> Shape:

move: (Float, Float) -> Shape a -> Shape a

scale: Float -> Shape a -> Shape a

rotate: Float -> Shape a -> Shape a

There are several advantages of this approach. First and foremost, it allows a very fast startup. By
separating transformations from the shape itself, within a minute or two, the instructor can create a shape
on screen simply by defining the bare minimum amount of information; for example, a radius and a
colour is all that is needed for a circle, which follows the students’ expectations about how to represent
shapes. It is also easier to remember parameter order than for similar functions in other languages which
either have multiple parameters, confounding size and position, or use stateful drawing models.

For many students, this is their first exposure to a “real” programming language—or any program-
ming language—and as such, seeing text produce a shape onscreen is very exciting, and encourages them
to ask questions which can lead the rest of the presentation.

1.5.2 GraphicSVG Apps

GraphicSVG contains three types of “apps” graded by complexity.
1Elm provides two function application operators, <| is like Haskell’s $ and |> flips the argument order.
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The first and most basic one, graphicsApp, allows the static drawing of graphics on the screen. It
can be easily understood as requiring only the “view” portion of The Elm Architecture’s model-view-
update architecture, hiding the ideas of model and update from the student.

An intermediate app, notificationsApp allows the user to add interaction to their graphics by
adding notify transformers which cause messages to be sent to the student’s update function when, for
example, a shape is clicked:

notifyTap: msg -> Shape a -> Shape a

notifyEnter: msg -> Shape a -> Shape a

notifyLeave: msg -> Shape a -> Shape a

See § 2.2 for an example using notificationsApp to add interaction to a GraphicSVG application.
Finally, gameApp provides the functionality of notificationsApp, but also has a parameter for a

special kind of Tick message type, which, on each frame, will send their update function the time in
seconds since the app was started as well as information about keyboard presses. Given that gameApp has
only thus far been used for sporadic half-day workshops, few students have thus far taken advantage of
the advanced features provided by notificationsApp and gameApp, other than support for animation.
However, gameApp has been used internally to develop game templates used for day-long Hackathons
where students compete in teams to create educational games, which have been very well received.

1.6 Additional Related Work

As a rule, tools meant for experts are not suitable for learners. This is certainly true of integrated de-
velopment environments with lots of key-press-saving state. Many practitioners who see functional
programming as the reserve of elite programmers have asked us why we use it for beginners. In this
case, functional programming’s fundamental advantages actually play out in the favour of beginners.
Pure functions are much easier for beginners to reason about. Declarative “variables” match preexisting
expectations from algebra, and will not cause confusion for students who have yet to learn algebra. They
are readily accepted as being shortcuts to avoid typing the same thing over and over. And finally, the
surfacing of structure in functional programs is of benefit to designers at all experience levels. Hughes’
observations apply equally to beginners [10], although they need to be incorporated into the instructional
design, creating a new shared experience for these students, because it cannot be described relative to
previous practices which have no meaning to beginners.

Our separation of Stencils from Shapes and use of transformation functions parallels the approach
taken by Walck in creating a similar platform for exploration of somewhat more advanced material [19].

2 Educational Psychology

Social constructivism is the theory of learning which focusses on peer interactions, especially the sharing
of information and construction of shared explanations and procedures. As previously mentioned, it is
closely associated with Papert, but although far from novel, it is underexploited. We have relied on it
in our other outreach activities, which as inspired our attempts to use it more for Elm programming.
We describe the two most important activities: when teaching binary numbers, we encourage children
to help each other out in using our iPad app Image 2 Bits (link), in which students encode black and
white images with binary numbers. The students each create an image on their iPad; the iPads share the
encoding of that image with other students, and the students then decode each other’s images. Once they

https://itunes.apple.com/app/image-2-bits/id967807383
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are done decoding the image, students have the option to send a “like” to the student who created the
image. Similarly, when teaching a (simplified version of) Computed Aided Tomography (CAT scans), we
rely on group reinforcement, motivated by a game. Students arrange themselves in a grid to represent the
body part being imaged. They act out the x-rays passing through the body and partly being absorbed by
bone and muscle tissue. Each student represents either a piece of muscle or bone. The x-rays pass directly
through the muscle tissue, but get partly blocked by the bone tissue. In order to correctly calculate where
the bone and muscle tissues are, each student in the group must pay attention and correctly report how
much light comes through. Then the students work together to solve where the bone and muscle tissue
are. Where the numbers allow, we have two or more groups work in parallel, competing to reconstruct
their image first. That games have rules is no surprise, and they immediately realize that everyone must
fully understand their role, or the whole effort will collapse. Furthermore, they actively think about the
algorithm they are applying in an effort to find “shortcuts”.

One of the advantages of focussing on graphics so early, is that it allows every student or small group
of students to create their own image. Working in pairs works best for most students, and since each
team has their own project, interactions between teams is positive and focussed on sharing techniques.
We encourage students to think about it in this way, and we present more advanced topics as tips they
may find useful in accelerating their development, or incorporating interesting new features. None of
our students know trigonometry, so we give them an example using sine to make an object move back
and forth, usually after one group has already asked about it. They have no trouble incorporating time as
a variable any place a number can be used. Once they start repeating elements, we introduce variables,
and once they ask about user interaction, we introduce state.

2.1 Variables and Functions: a tool for code reuse

Graphics can be used as an effective way for students to learn the fundamental concepts behind math-
ematical functions. After a brief introduction of the “input-process-ouput” model, we asked a class of
Grade 7/8 students to come up with real-world examples of processes which can be described using this
model. They shared a wide variety of ideas: printers (inputs: blank paper, ink, information, energy; pro-
cess: place ink on to paper in the correct pattern; output: printed paper), schoolwork (inputs: constraints,
objectives, rubrics; process: completing the work according to necessary steps; output: completed as-
signment/presentation) and, somewhat comically, paperwork (inputs: forms to fill out; process: collect
and write down information; output: completed paperwork), among others. The mentor stressed that
almost any real-world process can be generalized using this idea.

Directly following the discussion, we used the example of the flower in (Figure 2). The mentor
demonstrated how defining a separate variable with a GraphicSVG group,

group: List (Shape a) -> Shape a ,

can be used to easily create copies of a graphic on the collage plane. However, this time we presented a
new motivation: how can we create copies of the flower which are different colours? Once again, students
suggested the obvious “copy and paste” approach, with flowerRed, flowerGreen, flowerBlue, etc.
variables being created and then referenced in their collage. The volunteer instructor then emphasized the
point that similar code should be reused, instead of duplicated. The ultimate motivation then becomes
that learning how functions apply to Elm would benefit their more rapid and straightforward creation
of new artwork and animations. Thus, the concept of functions was presented as a “tip” rather than a
traditional lesson. The instructor then demonstrated how to add an input to the flower function, a term
with which they were familiar due to the aforementioned discussion:
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a)

b)

c)

d)

Figure 2: Introducing variables and functions as progressively more powerful ways of reusing code.
Initially in a) there is one flower, and without instruction, children will copy and paste the shapes to
produce multiple flowers, but in b) they are shown that the “flower” can be given a name flower to
make the purpose of the shapes clear, and so that in c) it can be used multiple times. Finally in d) it can
be transformed into a function to create less boring flowers.
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flower colour = group [...]

upon receiving a compiler error on the projection screen, students were then able to successfully deter-
mine that the colour would need to be added after the name of the shape in the myShapes collage:

myShapes = group [

flower green

|> move(-50,0)

, flower blue

|> move(50,0)

]

Upon compiling the program, the students then found that the flowers had not yet changed colour.
After some discussion, they were able to determine that the colour variable must be used in lieu of a
specific colour:

[oval 50 30 |> filled colour]

After this guided example, students were able to independently come up with a strategy when asked:
what if we want to be able to set an arbitrary colour for the centre of the flower? After a subtle hint of
adding a “1” to the colour input, becoming colour1, students were able to leverage their knowledge
from creating a single-input function and solve the same kinds of problems that came up in the single-
input example, which allowed them to describe to the mentor how to implement a function with two
variables using Elm (Figure 2 d)). Thus, students were able to map the “input-process-output” concept
to three different realms: an abstract concept, describing real-world processes, and, finally, implementing
the idea algebraically by leveraging graphics programming with GraphicSVG. Many students made the
connection to their math classes where they had begun to talk about mathematical functions and lines but
were motivated by being able to use the concept to improve their Elm graphics. Future work would in-
clude devising methods to determine quantitatively if the students who learned functions in terms of Elm
programming have a more concrete idea of the concept than students who learned it only mathematically.

2.2 Interaction

Although the Elm Architecture depends on separating state, updates and views, we do not explain state
until we are ready to introduce interaction. Although we use different types of interaction in our learning
tools, we only teach touch or click interactions. Any object can act as a button by simply adding the
notifyTap transformer in the same way that they add spatial transformation. So, unlike with most lan-
guages, syntax is a very low barrier, and the essential barrier is understanding state and transformations.
To make it memorable, we introduce state by putting up a simple state diagram, see Figure 3, and acting
it out until the whole class understands the game. Children are very attuned to games, and understand the
need to learn the rules, so by making a State Diagram into a game, they control for their own learning.

Once they have understood states and transitions, we can show them how to translate the state dia-
gram into Elm by turning each state into a constructor for a state data type, and each transition function
into a function. We have only taught interaction to self-selected groups of children, so we have been able
to jump from the translation of one diagram to the identification of other state diagrams they encounter
in real life, and then state as it exists in games. After that, we show them a simple example like Figure 4,
and point out that the time they have been using in their animations is also as state which was updated
for them in code they were ignoring from the game template. There are only four steps to adding support
for interaction:
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Moo Oink

Quack

2 arms

2 arms

2 arms

1 arm 1 arm

1 arm

start

Quiet2 arms

1 arm

Figure 3: Without explanation, students are given a state diagram similar to this one, and an instructor
waving arms (or clapping, flashing lights, etc.). It doesn’t take long for them to understand what state is.

1. adding messages to a user-defined message type,

2. adding a notification transformer with the appropriate message to any “buttons”,

3. adding to the update function, possibly calling simple state transformation functions, and

4. adding initial values for any new state components.

Of course they can make arbitrarily complex use of state in their existing views.

Figure 4: When students are familiar with animations using model.time, it is relatively painless to add
user interaction by (1) adding messages to the Msg type, (2) adding a notify transformer to any shape, (3)
adding a case to the update function, and (4) adding initial values to any new state components.

2.3 Distance Education

Also in the theme of providing them tips, we have created an online mentoring system. Each student
signs in and pick a “game slot” to work in. Some slots have challenges with specific goals, like adding
a new ice cream flavour to a vending machine, but most students opt to create pictures or animations in
one of the free-form slots, or one of one of the slots containing a template game. Each slot has a chat,
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accessible only by that student in that slot. See Figure 5. Mentors have access to a view of all active
discussions, Figure 6, which indicate which discussions have unanswered questions.

The discussions are presented as “help lines” where students can ask any questions about their code
(working or broken), and mentors can send back answers or even links to differences between the stu-
dent’s code and code modified by the mentor. The mentor’s modifications are to a private copy, not the
student’s code, or the code of another mentor.

This system is new, but students are already using it to ask questions after school hours, as well as
to get answers faster during lab time when the on-site instructors are busy helping another student. We
anticipate using it to support teachers who have received training, but who would not attempt to teach
programming without such backup support. We have two teachers who plan to pilot this usage.

Figure 5: Students are given unique identifiers and can send questions to mentors, which will give
mentors access to the student’s code. The mentor can reply with suggestions or fixes, and even attach
working code that the student can manually incorporate into their version.

3 Discussion and Future Work

Although our workshops initially targeted grades 7 and 8 (ages 12-14), with experience across age ranges,
our instructors started expressing a preference for teaching younger children, despite the obvious techni-
cal issues (before children learn punctuation in English, they have trouble paying attention to syntax in
Elm), which make it harder to advance to the concepts like functions and state. Younger children seemed
more open to discovery, and unperturbed by making mistakes. In her PhD thesis, [16], analyzing four
early approaches to integrating computers into schools, Solomon provides a possible explanation. She
describes the evolution of the four approaches as growing organically from differing assumptions about
educational psychology. The most revolutionary, the Logo school, draws on Piaget (as interpreted by
Papert) who tells them that children are natural scientists, discovering the rules of their world by bump-
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Figure 6: Mentors have access to a sortable list of questions posed by students as part of our new distance
learning approach.

ing up against it, and later by observing an interacting with older children and adults. But at some point,
organic experience of mathematics fails to motivate the learning of arithmetic, and learning objectives
must be imposed, which unfortunately turns off the instinct to make numbers their own. Papert wanted to
extend this intrinsic phase of learning by providing an environment for mathematical exploration through
programming. This vision extended to creating physical simulations with alternative laws of physics, and
seeing which laws matched experience. Unfortunately, the range of Papert’s vision has not been taken
up by current practitioners. Perhaps this is because the “Computational Thinking” school sees teaching
sequence and selection of actions as the end goal. Perhaps Papert’s dislike for contemporary empirical
methods in education research, [21], did not win over decision makers.

So, if a half century on we are to take up the banner and advocate for the child as scientist, why
should we be more successful?
Measurement Whereas Logo took children out of school mathematics into Turtle geometry, this made

measurement harder. Specific knowledge of coordinate geometry will be easy to measure, and we
hope that transfer to algebra will also be measurable.

Better Hardware Whereas Logo started in all caps, because that was what contemporary terminals
supported, we have touch interfaces and more processing power than a 1970s’ supercomputer.

Better Languages Logo was designed when structured programming was just beginning to be under-
stood. We know a lot more now, especially about types.

While others projects are taking advantage of power to wrap their interfaces in child-friendly graphics,
we hope to get a lot farther using programming languages best practices.

3.1 Touch Editing

We have done workshops where some students have written Elm programs on iPads and productivity is
obviously lower. All of the limitations of tablets are highlighted, and none of the advantages. Given the
prevalence of iPads in younger grades—with some schools phasing out desktop and laptop computers
entirely—we knew we had to do better. There are many examples to guide us: successful non-textual
editors (Scratch, Hopscotch, Lightbot, etc.); early experiments in user-directed program transforming
editors: “by precluding the creation of syntactically incorrect files, the Synthesizer lets the user focus
on the intellectually challenging aspects of programming” [17]; and “autocompletion” in contemporary
IDEs.
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In rethinking the division of labour between programmer and computer, it seems obvious that there
is no advantage in providing hints to the programmer which are later found by the compiler to cause type
errors. To avoid type errors, instead of editing text, our users do surgery on typed Abstract Syntax Trees
(ASTs), via touch-based interaction with the textual representation of the AST. Interesting points about
our implementation:

• Syntax highlighting helps readability and guides the user to create syntactically correct programs.
Our programs are always correct and typed, so we can use colour for type, with a unique colour
for every type. Holes are typed, and have default values so partially complete programs can be
visualized. Figure 7.

• Program transformations are supplied by the “editor”. This is the hard part. While strong typing
restricts substitutions of values and fully applied functions to reasonable numbers (when compared
to the tens and hundreds of autocompletions offered by conventional editors), beginners need more
structure so they can learn in layers. We are working out the presentation by trial and error as we
support increasingly complicated transformations. Figure 8.

This editor is still in development, but we have tested it with a split Grade 2/3 class (ages 7 and 8)
and within half an hour they were productively creating graphics with moving shapes. Some Grade 7/8
students were able to effectively use variables within an hour.

Figure 7: The prototype app consists of three resizable panes: (1) is a list of definitions in the user’s
code, the visibility of which can be toggled on or off. In the main editor pane, (2), code is highlighted
according to type. Tapping different elements brings up context-specific panes that allow the insertion of
syntactically correct code (shown in Figure 8). The top-right pane (3) is the output generate by the user’s
code. Finally, the buttons at (4) allow the student to toggle helpful tools such as the Cartesian grid and a
bezier curve helper.

3.2 MacVenture

In MacVenture [3], students create their own gamebook with nodes (places) and edges (ways). This
game arose out of a desire to make graph structures interesting to children. Each place has a textual
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Figure 8: Context- and Type-Aware Transformations: After tapping on an element, a popup gives the
user options to modify the value. The signature of the function using the element and position of the
selected argument is shown at the top (1). The user can type in a constant in (2), or make a new definition
out of the selected value (3). This is the only time that the user types the variable name, so there are no
concerns about misspelled variables. There is then the option to remove the current element (for example,
an element from a list, or a transformer application), or replace the value with a hole (4). Calculations
incorporating the current value follow (5), as well as the definitions which already are in the context and
match types (6). In this example, there is only model.time, which is an record element of the model

argument, but there could also be user-defined variables (3). Finally, there are conditional options (7).
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description, including textual keys, and ways can be annotated with matching locks. Currently, students
also choose images for each place, but this frequently causes network problems, and makes sharing (as
demanded by students and teachers) impractical. Incorporating touch editing for Elm graphics to replace
the images will solve these problems.

3.3 Spatial Awareness

Another possible explanation for the relative success of our approach is the reported connection between
spatial awareness and programming achievement. Cooper et al [5] found a strong correlation between
spatial awareness and programming achievement in high school students as measured by an AP CS
exam. Even while taking time out of programming instruction, spatial awareness training increased
programming performance. Spatial awareness and two-dimensional drawing are not exactly the same
skills, but this is an interesting connection which should be investigated.

We thank the Dean of Engineering, NSERC PromoScience, and Google igniteCS for funding, our
many teacher partners for their advice and support over the years, and the many little scientists whose
boundless enthusiasm is so infectious.
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