
Submitted to:
TFPIE 2017

c© JC Saenz, M Stannett
This work is licensed under the
Creative Commons Attribution License.

Overcoming Non Distributivity:
A Case Study in Functional Programming

Juan Carlos Saenz-Carrasco ∗

Mike Stannett
The University of Sheffield, Department of Computer Science,

Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom
jcsaenzcarrasco1@sheffield.ac.uk m.stannett@sheffield.ac.uk

Among hard problems in Computer Science are those that are easy to write but hard to run, especially
when the data structures that represent them are persistent. In this paper we present two different
problems, in the fashion of case studies, which share a common algebraic problem: ‘multiplication’
is not distributive over ‘addition’ (for example, bi-criteria and knapsack problems). Our proposed
solution comprises two simple non-strict pure functions within a standard search algorithm, and
we show that this is enough to overcome the lack of distributivity in these situations. Also, we
provide benchmarking between the strict and non-strict versions. We believe that this simple solution
provides a useful exercise for students of functional programming, since it fruitfully combines several
different aspects of the paradigm—persistent data structures, polymorphic data types, and different
evaluations are all involved.

1 Introduction

One of the aims of functional programming (FP) is to write down the simplest and clearest specification
to solve a problem without regard to how efficient the result might be. In the vast repertoire of hard
problems in Computer Science, there are some (reasonably tractable) problems that can be stated in
simple and clear terms, but standard solutions of the sort that might be generated by a Haskell compiler
can potentially take an undesirable amount of time to run.

In this paper we describe a case study—suitable for discussion in graduate level programming
classes—showing how this situation can arise in the context of algebraic situations in which key alge-
braic properties fail (in our case, failure of multiplication to distribute over addition), and how a change
of approach can render them more easily soluble. This case study focuses on the bottleneck shortest path
(BSP) problem. We analyse the problem, demonstrate the failure of distributivity, and illustrate how our
approach can be applied.

The remainder of this paper is as follows. Sect. 2 outlines some key mathematical definitions and
their Haskell implementations. The problem we area addressing is introduced through an example in
Sect. 3, which is solved by the proposal in Sect. 4. The core of the paper is in Sect. 5 where implemen-
tations are given for solving BSP. We conclude by benchmarking various test cases in Sect. 6.

2 Fundamental definitions

For the purposes of this overview we limit BSP to the context of weighted directed acyclic graphs,
although it can also be considered for other types of graph [2]. We write N for the set of natural numbers

∗Research supported by the Consejo Nacional de Ciencia y Tecnologı́a, CONACYT (the Mexican National Council for
Science and Technology) under grant 411550, scholar 580617 and CVU 214885

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Overcoming Non-Distributivity in Functional Programming

� �
type Graph = Table [Vertex]
-- Adjacency list representation of a graph, mapping each vertex to its list of successors.

type Table a = Array Vertex a

-- Table indexed by a contiguous set of vertices.

type Vertex = Int

-- Abstract representation of vertices.� �
Figure 1: Representation of graphs in Data .Graph. (From [4].)

(including zero), and R+ for the set of positive real numbers.

Definition 1. A weighted directed graph is a pair G = (V,E) comprising a finite non-empty set V of
vertices and a finite non-empty set E ⊆V ×V of edges, together with a weight function w : E → R+. A
path is a non-empty graph P = (V,E) of the form

V = {x0,x1, . . . ,xk} E = {(x0,x1),(x1,x2), . . . ,(xk−1,xk)},

where the xi are all distinct. The vertices x0 and xk are linked by P and are called its ends. Note that k is
allowed to be zero, in which case E is empty and we have a singleton path. �

In the basic Haskell representation (Fig. 1) each vertex is assigned an integer value; this allows
vertices to be used as array indices. The graph itself is represented as an array which captures, for each
index (i.e. vertex), which vertices can be reached from it directly. Since a path is fully determined by the
order in which its vertices are arranged, we represent paths in Haskell by declaring type Path = [Vertex].

For the purposes of this case study, we define BSP as a bi-criteria problem. The first (and leading)
criterion is to determine the graph’s maximum capacity (or widest path); the second is to determine its
shortest path (as a tie breaker for the first criterion).

Definition 2 (The Bottleneck Shortest Path Problem (BSP)). Given a graph G = (V,E) and source and
target vertices s 6= t in V , we need to determine the shortest maximum capacity path from s to t, together
with its capacity and length. Capacity and distance are given by label functions c : E→C and d : E→D,
where C and D are value sets representing capacities and distances, respectively. For practical purposes
we typically take C= D= N. �

2.1 Optimality Criteria

By optimality criteria we mean requirements involving minimality and maximality targets. For example,
Dijkstra’s and Floyd-Roy-Warshall’s pathfinding algorithms seek to minimise path length.

Writing ↓ for the minimization operator over a set of values, we can formalise this idea by saying
that the shortest path solution (i.e. length, distance, time or cost) between two nodes is given by applying
↓ to a set of path lengths—where these lengths are obtained by adding together the values (i.e. labels)
attached to each edge in the path.

More generally, we need to identify how edge-weights will be “added” in order to calculate the
overall cost of traversing a path. Having done so, we can then apply minimization and/or maximization
(↑) operators to an approprioate set of “path costs” to find those paths which satisfy the constraint(s) in
question.



JC Saenz, M Stannett 3

In this document we focus specifically on distance and capacity constraints, so we assume that edge
weights are given as capacity/distance pairs. For example, given source and target vertices s and t in a

graph G = (E,v), and a path p≡ s
(c1,d1)−−−−→ . . .

(cn,dn)−−−−→ t,

1. the distance associated with p is given by ∑di, and the shortest path is given by applying ↓ to
the st of all such sums. Thus, solving the shortest-path problem involving applying the (+) and ↓
operations.

2. the capacity associated with a path is the smallest capacity of its edges. Thus, finding the ca-
pacity of a path involves computation of ↓ ci. Finding the path with maximum capacity involves
application of ↑ to the set of all such path capacities.

3. solving BSP therefore requires computations involving ↑, ↓ and (+) (as well as the projection
operators from (ci,di) to ci and di, respectively).

3 The non-distributivity problem: an example

Suppose the problem is to find, from vertex 1 to vertex 4 from Figure 2 the maximum capacity among
all shortest paths, i.e. the BSP. Assume further that labels over the edges are natural numbers having the
type (Capacity,Distance) where type Capacity = Int and type Distance = Int.

1 2

3

4
(1,1)

(1,
1)

(2,3)

(1,1)

Figure 2: Graph with lack of distributivity for BSP

In this particular case, there are two paths from vertex 1 to vertex 4 but only one is the optimal. Let
us call the path p1 the sequence of vertices {1,2,3,4}, and p2 the sequence {1,2,4}. Assume further
that p the optimal path between p1 and p2. Since both paths have the same maximum capacity (i.e. 1),
is the minimal distance that breaks the tie. So, being p1 the optimal with Costp1 = (1,3).

Now, in terms of our pathfinding algebra for BSP, we have that

Costp = (1,1) join
〈 〈

(1,1)join(1,1)
〉
choose (2,3)

〉
= (1,1) (↓,+)

〈 〈
(1,1) (↓,+) (1,1)

〉
(↑,↓) (2,3)

〉
= (1,1) (↓,+)

〈
(1,2) (↑,↓) (2,3)

〉
= (1,1) (↓,+) (2,3)

= (1,4)

and this is clearly not equal to Costp1 = (1,3).
This shows that join (the multiplication operator for BSP) does not distribute over choose (the ad-

dition operator for BSP). The reasons and analysis of why this is happening is beyond the scope of this
paper; the interested reader is refered to [1].



4 Overcoming Non-Distributivity in Functional Programming

4 The solution: a simple data structure to overcome the problem

As we observed from the example in Section 3, some information is left behind in the calculation of the
operations multiplication and addition. Specifically, the pair (1,2), in the inner bracket where choose

is located, holds the values for the optimal solution. Since the cost of the path can be computed from a
considerably large number of pairs (following the size of the graph), we do not know where the optimal
pairs are located. Our goal is then to preserve all the necessary pairs that guarantee the optimal solution.
That is, a list or pairs preserving the pathfinding algebras.

Let us start defining which pairs should be stored in the list for BSP. This leads to the following
criteria applicable to both operations join and choose:

• The elements in the list (pairs of type (Capacity , Distance )) should be sorted descending (due the
maximum operator) by Capacity

• In case of a tie in the Capacity , we break such tie by the second criterion, in this case the minimum
operator

• Pairs with equal values Capacity and Distance are stored once.

More formally, given a tuple of pairs (Capacity ,Distance ), denoted as (c,d), we store the result by
any of the operators of BSP as [(ci,di),(c j,d j)], where ci > c j ∧ di > d j. Detailed criteria is given in
Sect. 5 where the lexicographical order is taken into account for breaking ties.

Let us put the above into work for the example in Fig. 2, for which we have

Costp1 = (1,3)

and

Costp = (1,1) join
〈 〈

(1,1)join(1,1)
〉
choose (2,3)

〉
= (1,1) join

〈
[(1,2)] choose (2,3)

〉
= (1,1) join [(2,3),(1,2)]

= [(1,3)]

We can notice also that our functions join and choose should be initially fed with singletons in
order to preserve associativity. Therefore the type signatures are:� �
type BSP = [(Capacity ,Distance) ]
join : : BSP → BSP → BSP

choose : : BSP → BSP → BSP� �
5 Case study: the BSP problem, breaking ties

In this section we describe the algebra and operators for computing the BSP, followed by the implemen-
tation in Haskell for such operators. Finally, we show why distributivity is preserved.



JC Saenz, M Stannett 5

5.1 Algebra for BSP

We have briefly explained the kind of graph we rely on, although the types or carrier sets can vary. For
practical purpose we limit our carrier set to be N, which in Haskell can be materialise as Int provided
we avoid the negative numbers.

It is important to highlight that the list of pairs should be in order, so the optimal result so far is
simply the head of the list. We can also notice that the potential pairs are comprised by those capacities
and distances having lower values than their predecessors in the list, a relation satisfying

p1 � p2 � . . . pn

where � is defined pairwise as

(c1,d1)� (c2,d2) = c1 > c2∧d1 > d2

Furthermore, to include commutativity in the definition, we can denote it as

(c1,d1)� (c2,d2) = (c1 > c2∧d1 > d2)∨ (c1 < c2∧d1 < d2)

Now, let us formalize our algebra and operators in order to offer a solution to overcome non distribu-
tivity in the BSP.

Recalling the criteria in BSP, the relation RBSP is defined as follows:

(c1,d1) RBSP (c2,d2)≡ c1 > c2∨ (c1 = c2∧d1 ≤ d2) (1)

In other words, we are looking for the pair having the maximum capacity and the minimum length or
distance. The product operator, ⊗ is then,

(c1,d1)⊗ (c2,d2) = (c1 ↓ c2,d1 +d2) (2)

The addition operator, ⊕ is defined as:

(c1,d1)⊕ (c2,d2) = (c1 ↑ c2,d) (3)

where (the lexicographic ordering)

d =


d1 if c1 > c2

d1 ↓ d2 if c1 = c2

d2 otherwise

Also, we are assuming that ⊗ has precedence over ⊕.

5.2 Implementation of chBSP, the addition operator

We start by defining the cases (or constraints) for the applicability of the chBSP operator:

c1 Given two lists of pairs, of type (Capacity,Distance), chBSP will store all pairs satisfying 3. Three
cases arise. Given the pairs (c_1 ,d_1) and (c_2 ,d_2) :

1. c1 = c2 , (c1.1)
2. c1 > c2 , (c1.2)



6 Overcoming Non-Distributivity in Functional Programming

3. c2 > c1 , (c1.3)

Initially, comparing the heads of the lists (or singletons) is quite simple. When the pairs are part of
the tails of the lists, more comparisons are needed, as carrying the length along in order to preserve
distributivity.

c2 For any finite-length input lists (i.e. cds1 and cds2 ), function chBSP terminates.

c3 The length of the resulting list after computing chBSP , should be at most the sum of the lengths of
the input lists.� �
length chBS ≤ length cds1 + length cds2� �

Let us now define the function chBSP in Haskell� �
chBSP : : [ (Capacity , Distance) ] → [ (Capacity , Distance) ] → [ (Capacity , Distance) ]
chBSP [ ] cds2 = cds2

chBSP cds1 [ ] = cds1

chBSP cdcds1@( (c1 , d1) : cds1) cdcds2@( (c2 , d2) : cds2)
| c1 == c2 = (c1 , min d1 d2) : chAux (min d1 d2) cds1 cds2

| c1 > c2 = (c1 , d1 ) : chAux d1 cds1 cdcds2

| otherwise = (c2 , d2) : chAux d2 cdcds1 cds2

where

chAux : : Distance → [ (Capacity ,Distance) ] → [ (Capacity ,Distance) ] → [ (Capacity ,Distance) ]
chAux _ [ ] [ ] = [ ]
chAux d [ ] ( (c2 , d2) : cds2) = chAux’ d c2 d2 [ ] cds2

chAux d ( (c1 , d1) : cds1) [ ] = chAux’ d c1 d1 cds1 [ ]
chAux d cdcds1@( (c1 , d1) : cds1) cdcds2@( (c2 , d2) : cds2)
| c1 == c2 = chAux’ d c1 (min d1 d2) cds1 cds2

| c1 > c2 = chAux’ d c1 d1 cls1 cdcds2

| otherwise = chAux’ d c2 d2 cdcds1 cds2

chAux’ : : Distance → Capacity → Distance → [ (Capacity , Distance) ]
→ [ (Capacity , Distance) ] → [ (Capacity , Distance) ]

chAux’ d c’ d’ cds1 cds2

| d > d’ = (c’ , d’ ) : chAux d’ cds1 cds2

| otherwise = chAux d cds1 cds2� �
5.3 Implementation of jnBSP, the product operator

Similar to chBSP , there are some requirements for jnBSP to be fulfilled. Since there is no ‘tie’ breaker
in our equation as in the addition operation, we can then apply the operation in two comparisons rather
than three, but looking after the preservation of distributivity. We avoid any repeated pair to be stored
along one traversal in order to minimise the length of the resulting list.

c1 Given two lists of pairs, of type (Capacity,Distance), jnBSP will store all pairs satisfying distribu-
tivity, in the context of an multiplication computation. Two cases arise. Given the pairs (c1,d1)
and (c2,d2) :

1. c1 ≤ c2 , (c1.1)
2. c1 > c2 , (c1.2)

Same as chBSP , we initially compare the heads of the lists (or singletons). When the pairs are part
of the tails of the lists, more comparisons are needed.



JC Saenz, M Stannett 7

c2 For any finite-length input lists (i.e. cds1 and cds2), function jnBSP terminates.

c3 The length of the resulting list after computing jnBPS , should be at most the sum of the lengths of
the input lists.� �
length jnBPS ≤ length cds1 + length cds2� �

Haskell implementation for jnBPS is intentionally omitted due limited space for submission

5.4 jnBSP does distribute over chBSP

Let us consider the following ordering to show that jnBSP does actually distribute over chBSP:

c1 < c2 < c3 and d1 < d2 < d3 in the pairs (c1,d1),(c2,d2),(c3,d3)

Then, applying the operators we have:

[(c1,d1)] jnBSP
(
[(c2,d2)] chBSP [(c3,d3)]

)
= { applying chBSP, and because c3 > c2∧d2 < d3 }
[(c1,d1)] jnBSP [(c3,d3),(c2,d2)]

= { applying jnBSP and since d1 +d2 < d1 +d3 }
[(c1,d1 +d2)]

Now, on the right-hand side(
[(c1,d1)] jnBSP [(c2,d2)]

)
chBSP

(
[(c1,d1)] jnBSP [(c3,d3)]

)
= { applying jnBSP’s }
[(c1,d1 +d2)]chBSP[(c1,d1 +d3)]

= { applying chBSP and d1 +d2 < d1 +d3 }
[(c1,d1 +d2)]

5.5 Algorithm for BSP

As we stated before, our approach relies on a directed acyclic graph, so the maximum number of edges
is v(v−1)

2 , where v is the number of vertices.
The trivial step is the one having two vertices and therefore only one edge. Assume the capacities set

is C= N and distances set is D= N∪{∞}

s t
(cst ,dst)

and its adjacency matrix

s t
s (0,∞) (cst ,dst)

t (0,∞) (0,∞)



8 Overcoming Non-Distributivity in Functional Programming

where (0,∞) is the zero and (∞,0) is the one (or unit) elements of C×D, meaning there is no path
between two vertices.

Another way to view the current solution for bigger graphs, is through recursion. So, having the
following graph

s x t

(cst ,dst)

(csx,dsx) (cxt ,dxt)

we can start our computations from the target vertex t backwards, and storing partial solutions. Let
us say that solx, reading as solution at x, refers to

x t
[(cxt ,dxt)]

And therefore

s t

jnBSP [(cst ,dst)] [(∞,0)]

jnBSP [(csx,dsx)] solx

Let us depict a final example of a fully connected graph to describe the complete situation for the
single source approach.

1 2 3 4 5

(c15,d15)

(c14,d14)

(c13,d13)

(c12,d12)

(c25,d25)

(c24,d24)

(c23,d23)

(c35,d35)

(c34,d34) (c45,d45)

Figure 3: Reusing previous computations

The proposal solution for computing BSP problem from vertex 1 to vertex 5 is:



JC Saenz, M Stannett 9

double arrow single arrow (sol2) dashed arrow (sol3)
chBSP chBSP chBSP

jnBSP (c15,d15) sol5 jnBSP (c25,d25) sol5 jnBSP (c35,d35) sol5
jnBSP (c14,d14) sol4 jnBSP (c24,d24) sol4 jnBSP (c34,d34) sol4
jnBSP (c13,d13) sol3 jnBSP (c23,d23) sol3
jnBSP (c12,d12) sol2

where sol4, dotted arrow, is the pair (c45,d45) and sol5, not arrow at all, is the pair (∞,0), the unit
element.

The above table shows that jnBSP is performed as expected whereas each function chBSP computes
a list of joins, we will call it chooses in the following code.

Finally, we can store the results from each soli in (descending) order to avoid repeated computations.
We will do so in an unidimensional array, where i in soli represents the vertex i.

Let us call our single-source approach function to solve BSP problem as solutionSS.� �
solutionSS : : Int → Int → Int → [ (Capacity ,Distance) ]
solutionSS v e seed = sol ! 1
where

sol = array (1 ,v) ( [ (v ,oneNonPath) ] ++
[(i ,chooses (randomweights ! ! (i−1))) | i ← [v−1,v−2..1] ] )

randomgraph = elems $ randomGraphFilled v e seed

randomlist = zip (randomList 20 seed) (randomList 50 (seed+1))
randomweights = mixListsPairs randomgraph randomlist

chooses : : [ (Int ,Int ,Int) ] → [ (Capacity ,Distance) ]
chooses [ ] = zeroNonPath

chooses (x :xs) = nch (njn [ (snd3 x , trd3 x) ] (sol ! (fst3 x) ) ) ( chooses xs )� �
This code practically follow the definition in the above graphs and tables, where sol is an array

holding partial solutions starting from solt (oneNonPath or [(∞,0)], the unit of multiplication). The
computation starts with the target vertex and then we compute further solutions backwards. Function
chooses computes chBSP’s as far as its input list has pairs of random values, otherwise it returns [(0,∞)]
which is the unit of addition.

This function, solutionSS , always terminates since v is a finite number of vertices and the internal list
[v−1,v−2 . . . ,1] bounds its size. Function randomweights returns a triple with the index i representing
the current vertex and random values for a Capacity and a Distance . If, after a random graph is generated,
there is not transitivity (path connection) from the start vertex s to the target vertex t, then the zero or
[(∞,0)] is returned as solution by solutionSS .

6 Test cases and benchmarking

Throughout this document we have defined functions in order to solve specific problems in the pathfind-
ing context. Those functions are implemented as purely functional and lazy-evaluated. Another way to
compute such functions with the same results is through eager evaluation.

Secondly important for this section is the treatment of path tracking, which turns to be the most
noticeable difference in performance between the above evaluations. So far, jnBSP and chBSP functions
cover only the computation of the cost of BSP.

This section comprises different implementation approaches. For each case we will give the perfor-
mance, that is, times, memory allocation, and the percentage of garbage collection used, bearing in mind



10 Overcoming Non-Distributivity in Functional Programming

that we tried every execution on a processor 2.2 GHz Intel Core i7. Each measurement is the mean of
three runs, recording the time taken. Profiling was used only to determine the performance of different
functions on each program. Then a separate run was done without profiling, so that the overheads of
profiling do not have a bearing on the results.

6.1 Eager vs lazy evaluation

One important issue about functional programming languages, specifically for those pure functional, is
the lazy evaluation. This mechanism allows an expression to be evaluated only when it is needed. So far
the functions jnBSP and chBSP are lazy, that is, they are not evaluated in advance to verify whether or
not a ⊥ is present. However, the difference in time and space consumption is minimum for the cost (not
the path) between evaluations eager and lazy, since their operators are, by nature, strict, as we shown
above. In order to turn choose and join strict, we appeal to the library Control.DeepSeq, which manages
the function deepseq, instead of applying the function seq provided in the native library Prelude, since
the former traverses data structures deeply.

We have defined our solution by a pair as data structure for the cost. So, we have� �
mkStrictPair x y =

let xy = (x , y)
in deepseq xy xy� �

6.2 Path tracking

There is a general type signature for both BSP and knapsack problems,� �
solution : : ( (x ,y) ,Path)� �
where (x,y) represents either the cost (Capacity,Distance). At the end, both problems have the following
structure� �
solution : : ( (Int ,Int) , [Int] )� �

Since the path is a list (of integers), the operator ++ or append is called in order to build the complete
path along the graph traversal. Such operator performs slower in eager evaluation respect to the lazy one,
mainly because the lazy evaluation does not force append to carry out until the very end, computing less
lists to be appended.

Now, to turn the path tracking strict, we have� �
mkStrictTriple x y z =

let xyz = (x , y , z)
in deepseq xyz xyz� �

where z is defined of type� �
type Path = [Int]� �

The following are the corresponding data tables and graphics of the single-source approach.



JC Saenz, M Stannett 11



12 Overcoming Non-Distributivity in Functional Programming

6.3 All pairs approach

We have solved the BSP problem, with a dynamic programming approach, but only for cases where
graphs are acyclic. For the rest types of graphs, we appeal to Floyd-Roy-Warshall algorithm (FRW).
This algorithm assumes that the operations over a square matrix, modelling the graph, are associative
and that the multiplication distributes over addition. We can now, by the application of chBSP and
jnBSP, hold this property.

In this section we will describe and adapt FRW into an algorithm that solves the BSP problem in
the setting of a functional programming, calling this function f rw. We will define two versions for this
purpose, a purely functional and a stateful one (monadic version). Details on implementations of FRW
are not the aim of this thesis but those regarding our functions chBSP and jnBSP are. Same as in single
source implementation, we will show the benchmarking for the performance on both versions of all pairs
approach.

We also saw that the closure operator is part of the Warshall-Floyd-Kleene algorithm. For the pur-
poses of BSP problem, we have that, for all x ∈ S, where S is the carrier set of the this problem,

x∗ = 0 ↑ x ↑ (x ↓ x) ↑ . . . ↑ x∗ = x,

for the MC counterpart where elements and operators are (↑,↓,0,∞). On the other hand, we have that

x∗ = ∞ ↓ x ↓ (x+ x) ↓ . . . ↓ x∗ = x,

for the SP counterpart where elements and operators are (↓,+,∞,0).



JC Saenz, M Stannett 13

6.4 Pure functional version

We start with a general perspective; the function f rw takes a graph (in its matrix representation) and
returns a graph (matrix as well) with the solutions.� �
frw : : GraphFRW → GraphFRW

frw g = foldr induct g (range (limitsG g) )� �
where GraphFRW is type synonym of:� �

type Pair = [(Capacity ,Length) ]
type GraphFRW = Array Edge Pair� �

From the vast variety of ways to write a solution to FRW, we picked up the function foldr. Since foldr,
from the Prelude library, traverse a data structure given an initial value and computing each element of
that data structure with given a function, we just substitute the types of foldr by

1. induct as the function to be applied to every element of the data structure

2. g a graph, in this case our original adjacency matrix.

3. a list of vertices, obtained from range (limitsG g) .

The induct function will compute the k-th matrix, or k-th path. That is, for every element in the list
of vertices in range (limitsG g) , a new matrix is created through mapG , which is called from induct k g .� �
induct : : Vertex → GraphFRW → GraphFRW

induct k g = mapG (const .update) g

where

update : : Edge → Pair

update (x ,y) = chBSP (g! (x ,y) ) (jnBSP (g! (x ,k) ) (g! (k ,y) ) )� �� �
mapG : : Ix a ⇒ (a → b → c) → Array a b → Array a c

mapG f a = array (bounds a) [ (i , f i (a!i) ) | i ← indices a ]� �
6.5 Monadic version

This is perhaps a more straightforward implementation from the original FRW algorithm. Given n ver-
tices and a graph xs, function frw computes FRW through the function runST. It returns, similar to the
pure functional frw, a graph with the solutions (i.e. all pairs). The graph here is also another way to refer
to a square matrix, which in this case is mutable.

Code omitted due limited space for submission
where function compute is the core of our interest since it performs the the addition and multiplication

operations in order to solve BSP problem.� �
compute : : MyA s → MyA s → Int → Int → Int → ST s ( )
compute xa xb k i j =

do

ij ← readArray xa (i ,j)
ik ← readArray xa (i ,k)
kj ← readArray xa (k ,j)
writeArray xb (i ,j) (chBSP ij (jnBSP ik kj) )� �



14 Overcoming Non-Distributivity in Functional Programming

The following chart and tables are calculated with non path-tracking and computing the just the
index (1,v) of the square matrix in order to avoid the display of the whole matrix. Due the huge amount
of memory taken by the random generation of pairs (labels on the graphs), we profiled specifically the
functions frwF, frwFS, frwM, and frwMS for pure functional and monadic implementations of the FRW
algorithm. Then we include the random graph by reading it from a text file.

Here is a sample of profiling the single source approach:

COST CENTRE MODULE % time % alloc.
randomList Graphs 51.7 51.7
listST.constST Graphs 18.5 10.8
mapST Graphs 14.0 17.3
applyST Graphs 5.8 6.1
randomPerm.swapArray Graphs 5.1 3.0
randomPerm Graphs 3.9 10.8
solutionSS Main 1.0 0.3

Table 1: Profiling sspt, single source with path-tracking



JC Saenz, M Stannett 15

Figure 4: Pure functional and monadic implementations for the all-pairs approach

The main difference between monadic and pure- f unctional is that the former updates the informa-
tion over the same data structure (i.e. array) where the latter generates a new one each time is needed.
This gives the advantage to the monadic version not only in the speed side, but in the number of prob-
lems it can handle over the same computer. See in figure 4, that the pure-functional version was able to
compute up to 400 vertices whereas the monadic counterpart did it up to the double, and in much less
time.



16 Overcoming Non-Distributivity in Functional Programming

7 Acknowledgements

JCS would like to thank Henrik Nilsson for his invaluable insights during the early stages of this work.

References
[1] Roland Backhouse (2006): Regular algebra applied to language problems. The Journal of Logic and Algebraic

Programming 66(2), pp. 71–111.
[2] Refael Hassin, Jérôme Monnot & Danny Segev (2010): The complexity of bottleneck labeled graph problems.

Algorithmica 58(2), pp. 245–262.
[3] David J. King & John Launchbury (1995): Structuring Depth-first Search Algorithms in Haskell.

In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’95, ACM, New York, NY, USA, pp. 344–354, doi:10.1145/199448.199530.
Available at http://www.researchgate.net/publication/2252048_Structuring_Depth-First_

Search_Algorithms_in_Haskell.
[4] Hackage Listing (Accessed 17 May 2017): Data.Graph. Available at http://hackage.haskell.org/

package/fgl-5.5.3.1/docs/Data-Graph.html. Based on [3].

http://dx.doi.org/10.1145/199448.199530
http://www.researchgate.net/publication/2252048_Structuring_Depth-First_Search_Algorithms_in_Haskell
http://www.researchgate.net/publication/2252048_Structuring_Depth-First_Search_Algorithms_in_Haskell
http://hackage.haskell.org/package/fgl-5.5.3.1/docs/Data-Graph.html
http://hackage.haskell.org/package/fgl-5.5.3.1/docs/Data-Graph.html

	Introduction
	Fundamental definitions
	Optimality Criteria

	The non-distributivity problem: an example
	The solution: a simple data structure to overcome the problem
	Case study: the BSP problem, breaking ties
	Algebra for BSP
	Implementation of chBSP, the addition operator
	Implementation of jnBSP, the product operator
	jnBSP does distribute over chBSP
	Algorithm for BSP

	Test cases and benchmarking
	Eager vs lazy evaluation
	Path tracking
	All pairs approach
	Pure functional version
	Monadic version

	Acknowledgements

