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Purely Functional . . .



Persistence by Non-Destruction

I A persistent implementation of a data structure is
non-destructive. Operations such as insertion or deletion do
not alter the original. They derive a new version from it.

I Parts of the structure affected by an operation are copied; but
unchanged parts are shared.

I So multiple threads of computation can work independently
on the same initial data structure.

I Or a failing path of computation can be abandoned without
any need to reverse changes it has made.

I In imperative languages based on destructive assignment,
programming a persistent data structure is a delicate task.

I In a purely functional language we have persistence for free!
But the challenge is to make it efficient.



. . . Queues.



Breadth-First Search: a Motivating Application

breadthFirst :: (a -> [a]) -> a -> [a]

breadthFirst b r = bf [r]

where

bf [] = []

bf (x:xs) = x : bf (xs ++ b x)

eg. breadthFirst (\n -> [(n*2)+1,(n+1)*2]) 0

 [0,1,2,3,4,5,6,7,...

I breadthFirst takes as arguments the specification of a tree
by a branching function b and a root r. Its result is the list of
items in the tree in breadth-first order.

I Auxiliary bf uses its list argument as a queue. Adding items
to the queue by concatenation is expensive. For a large tree,
(++) is applied many times and to long first arguments xs.

I The cons-nil list provides O(1) access to the front, but only
O(n) access to the rear. It makes a good stack, but a poor
queue.



A Type-Class Specification for Queues

class QueueSpec q where

empty :: q a

snoc :: q a -> a -> q a

head :: q a -> a

tail :: q a -> q a

queue :: [a] -> q a

queue = foldl snoc empty

items :: q a -> [a]

isEmpty :: q a -> Bool

isEmpty = null . items

I For any datatype constructor q used to implement a queue,
we shall provide an instance QueueSpec q.

I The name snoc is cons in reverse — a traditional joke.
I The queue function translates whole lists of items into queues.

It is not essential, but nice to have. Note the simple default.
I Conversely, the items function translates the other way. So

isEmpty also has a simple default.



One List?



Lists as a Reference Implementation

data ListQ a = LQ [a]

instance QueueSpec ListQ where

empty = LQ []

snoc (LQ xs) x = LQ (xs ++ [x])

head (LQ xs) = Prelude.head xs

tail (LQ xs) = LQ (Prelude.tail xs)

queue = LQ

items (LQ xs) = xs

I The QueueSpec class declaration only specifies methods by
their types.

I A simple instance for list types serves to specify the expected
behaviour of the QueueSpec methods.

I It also provides a benchmark against which more efficient
alternatives can be measured.

I The glaring inefficiency is an O(n) snoc.
I A default isEmpty is fine, but we improve on a default queue!



Two Lists.



Batched Queues (1)

data BatchedQ a = BQ [a] [a]

-- one possibility for items 1-6 queued in order

BQ [1,2,3] [6,5,4]

I A seminal idea, prompting numerous variations, is to split
queued items into two lists: the front items f and the rear
items in reverse r.

I The motivation is to make the end of the queue immediately
accessible: for snoc, we can use (:) on the rear list.

I But the split into front and rear sections raises two issues:

1. What rule determines how the queue is divided into front and
rear sections?

2. When and how should items transfer from one section to the
other?



Batched Queues (2)

bq :: [a] -> [a] -> BatchedQ a

bq [] r = BQ (reverse r) []

bq f r = BQ f r

instance QueueSpec BatchedQ where

empty = BQ [] []

snoc (BQ f r) x = bq f (x:r)

head (BQ (x:_) _) = x

tail (BQ (_:f) r) = bq f r

queue xs = BQ xs []

items (BQ f r) = f ++ reverse r

I A smart constructor bq keeps an invariant rule for a batched
queue BQ f r that null f ==> null r.

I The motivation is to ensure O(1) access to the head.
I When a snoc or tail operation threatens to break this rule,

bq reverses the whole batch of rear items to form a new front.
I Instead of an O(n) operation for every snoc, there are only

occasional O(n) batch reversals.



Amortized Complexity versus Worst-Case Complexity

I Still, in the worst-case, tail is O(n). So have we really made
any progress?

I Amortized complexity is concerned with the overall cost of a
sequence of operations rather than the division of costs
among them.

I If a sequence of n operations op1 . . . opn has worst-case
complexity O(n), then the amortized complexity of each opi is
O(1) even though the worst-case opi may be more costly.

I We can often obtain simpler and faster implementations by
aiming for low amortized complexity than for low worst-case
complexity of individual operations.

I For the BatchedQ implementation, both snoc and tail have
amortised complexity O(1).



The Nemesis of Batched Queues: Multi-Threading

I More precisely, the BatchedQ implementation achieves O(1)
amortised complexity for single-threaded queue computations
using the basic operations empty, snoc, head and tail.

I Consider q :: BatchedQ of the form BQ [i] r, with a
one-element front list. If the next operation applied to q is
tail, it involves the O(n) reversal of r.

I Suppose q is used in a multi-threaded way — ie. in an
expression referring to q more than once, where each q is
needed.

I In each thread, if the next operation on q is tail, an O(n)
cost is incurred.

I For multi-threaded computations we cannot claim O(1)
amortised complexity for the BatchedQ operations.



Three Lists!



Incremental Rotating Queues (1)

data RotatingQ a = RQ [a] [a] [a]

instance QueueSpec RotatingQ where

empty = RQ [] [] []

snoc (RQ f r s) x = rq f (x:r) s

head (RQ (x:_) _ _) = x

tail (RQ (_:f) r s) = rq f r s

queue xs = RQ xs [] xs

items (RQ f r _) = f ++ reverse r

I Our goal is to perform reversals incrementally. We aim to
split the task over several operations, each making only a
small constant contribution.

I We introduce another list, s. It will always be some shared
suffix of f . Specifically, our invariant for RQ f r s is:
length f >= length r && s == drop (length r) f.

I The suffix s is used by smart constructor rq when the
difference length f - length r decreases by one.



Incremental Rotating Queues (2)

rq :: [a] -> [a] -> [a] -> RotatingQ a

rq f r (x:s) = RQ f r s

rq f r [] = RQ f’ [] f’

where f’ = rotate f r []

rotate :: [a] -> [a] -> [a] -> [a]

rotate [] [y] a = y : a

rotate (x:f) (y:r) a = x : rotate f r (y:a)

I If the suffix is non-empty, rq simply discards its head to
restore the invariant.

I If the suffix is empty, rq starts an incremental reversal.
We know length r == length f + 1.

I On this condition rotate f r a gives f ++ reverse r ++ a.
So if a == [] it gives f ++ reverse r as required.

I Crucially, rotate is lazy. It takes only a single step to produce
each successive element.
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