Overcoming non Distributivity A Case Study through Functional Programming

Juan C Saenz-Carrasco and Mike Stannett

Introduction

Definitions

The Problem

A Functional Approach

Applications

Conclusion

Agenda

Introduction

In order to solve path finding problems, we should take care about some properties prior the computation of the corresponding algorithm.

Some of such properties are:

- associativity
- distributivity

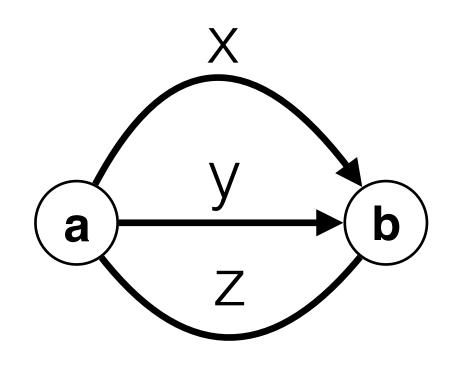
Same goes for the definitions of the operators involved in the (host) algorithm

Definitions: Path Addition

We consider *addition* to the computation of the labels (or weights) of two or more edges or paths:

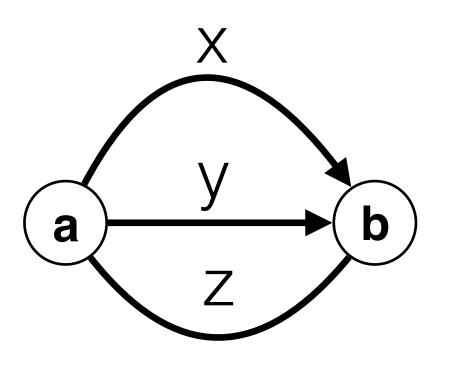
Definitions: Path Addition

We consider *addition* to the computation of the labels (or weights) of two or more edges or paths:



Definitions: Path Addition

We consider *addition* to the computation of the labels (or weights) of two or more edges or paths:



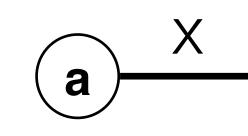
provided the definition for \oplus .

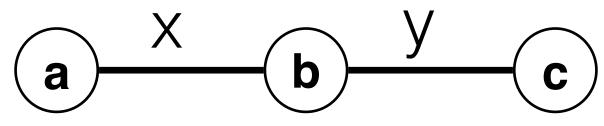
Definitions: Path Addition

The addition of paths from a to b can be denoted as $x \oplus y \oplus z$,

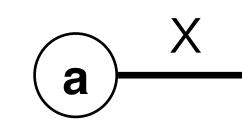
We consider *multiplication* to the computation of the labels (or weights) of two or more consecutive edges or paths:

We consider *multiplication* to the computation of the labels (or weights) of two or more consecutive edges or paths:

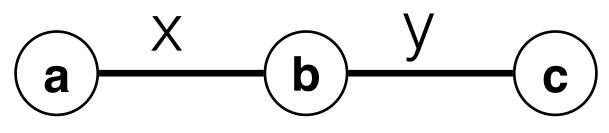




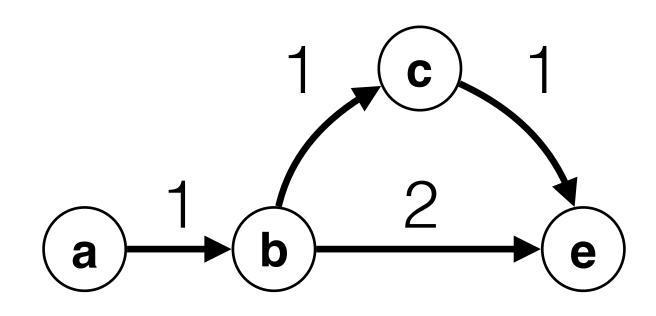
We consider *multiplication* to the computation of the labels (or weights) of two or more consecutive edges or paths:



The multiplication of paths from a to c can be denoted as $x \otimes y$, provided the definition for \otimes .



Example



Now, the maximum capacity from a to e is 1 no matter which path from a to e is selected. That is, we have a *tie*

Let us compute the maximum capacity problem for the following graph, where operators $\otimes_1 = \min(\operatorname{or} \downarrow)$ and $\oplus_1 = \max(\operatorname{or} (\operatorname{or} \downarrow))$

Example (cont'd)

Now, we can incorporate another criterion to break such a tie, let's say that we pick the shortest distance, implying $\bigotimes_2 =$ arithmetic addition (+) and $\bigoplus_2 =$ minimum (\downarrow).

That is, now we have that:

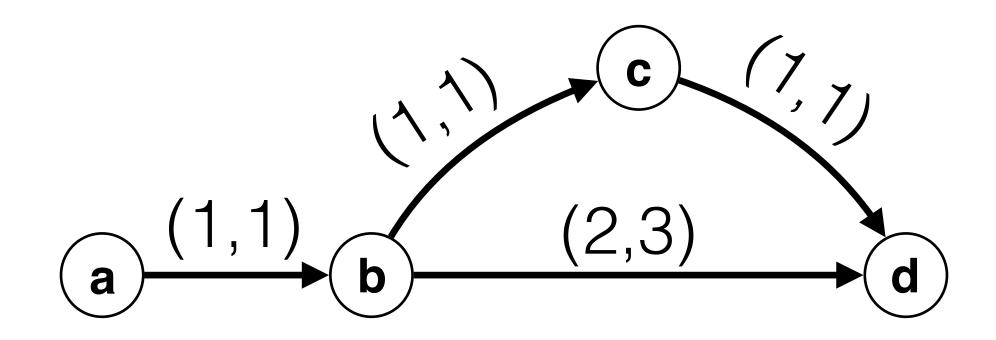
 $\otimes = (\otimes 1, \otimes 2)$ and $\oplus = (\oplus 1, \oplus 2)$

in other words,

 $\otimes = (\downarrow 1, +2) \text{ and } \oplus = (\uparrow 1, \downarrow 2)$

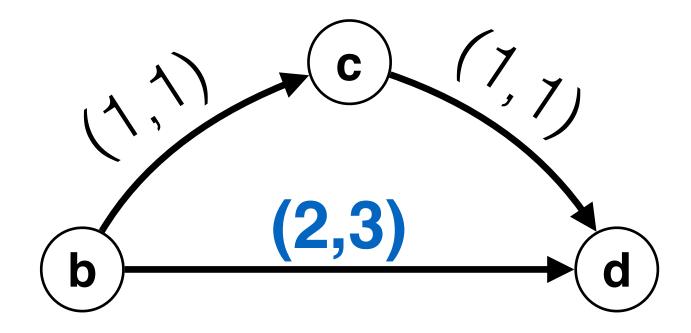
Example (cont'd)

Also, we add the corresponding values for the new criterion as the second element in the pair-labels over the edges. That is, a pair (v_j, v_k) defines v_j as the valid elements for maximum capacity and v_k as the valid elements for shortest distance.

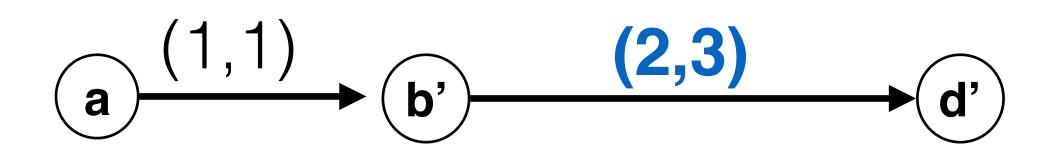


The Problem

solution, that is,



the partial result, being (2,3) as (maximum capacity, shortest



Computing the maximum capacity again, yields to a non optimal

distance) leads to (1,4) instead of (1,3) in the final computation

The Problem (cont'd)

Algebraically, we can represent the above as follows: $(1,1) \otimes [(1,2) \oplus (2,3)] = (1,1) \otimes (1,2) \oplus (1,4)$

- $(1,1) \otimes [(1,1) \otimes (1,1) \oplus (2,3)] = (1,1) \otimes (1,1) \otimes (1,1) \oplus (1,1) \otimes (2,3)$

 - $(1,1) \otimes [(2,3)] = (1,3) \oplus (1,4)$
 - $(1,4) \neq (1,3)$

Fun Approach: List of Pairs

Preserving local optimal **and** "potential" optimal results along the computation in a list, allows to compute the global optimal. The conditions are:

storing the elements (pairs) preserving the following relation:

$$(x_1, y_1) R (x_2, y_2) \rightarrow x_1 > x_2 \land y_1 > y_2 \lor$$

 $(x_2, y_2) R (x_1, y_1) \rightarrow x_2 > x_1 \land y_2 > y_1$

otherwise simply store the greatest x-tuple

List of Pairs applied

let us denoted the list notation with {} $(1,1) \otimes [(1,1) \otimes (1,1) \oplus (2,3)] \rightarrow (1,1) \otimes [\{(1,2)\} \oplus (2,3)]$ $\rightarrow (1,1) \otimes [\{(2,3),(1,2)\}] \rightarrow (1,1) \otimes [\{(2,3),(1,2)\}]$

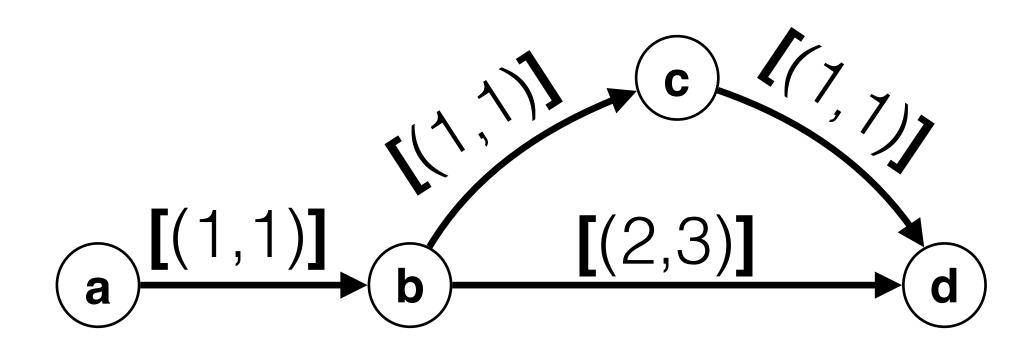
→ **{** (1,3) **}**

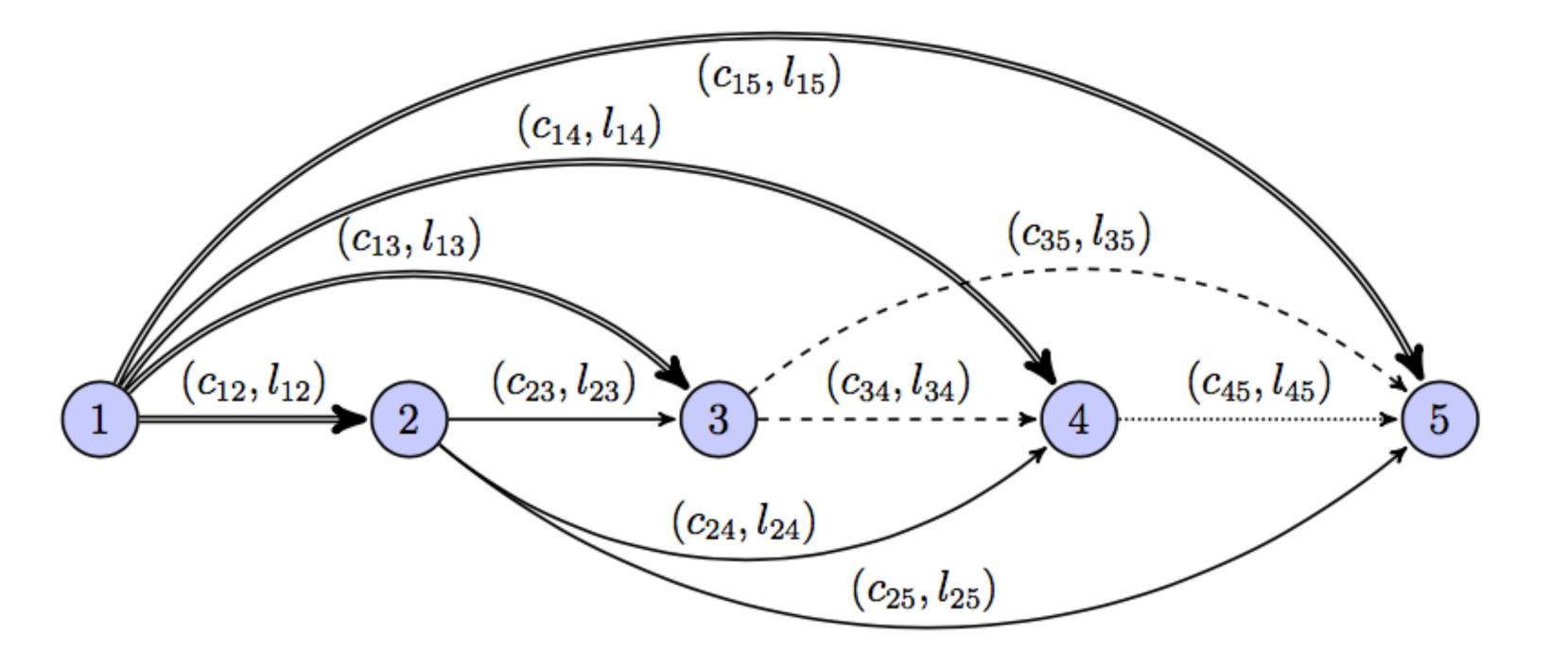
the global optimal as expected !!

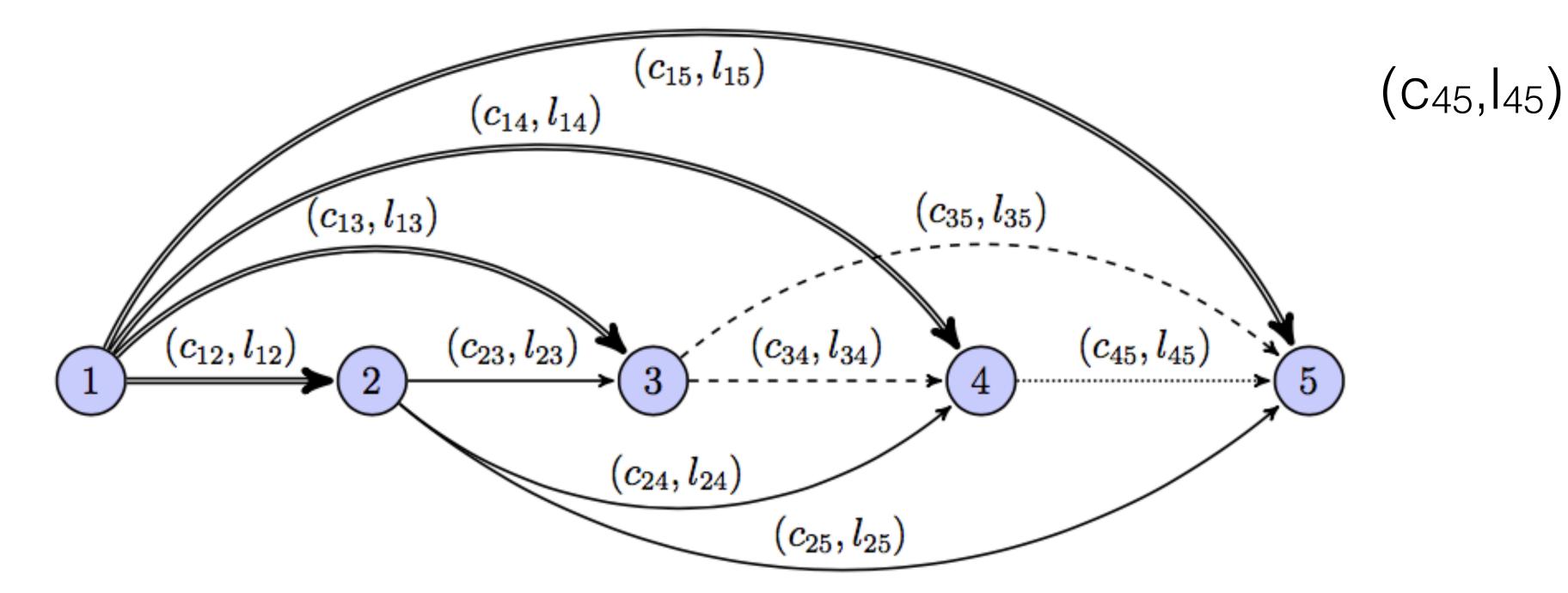
implementing MC-SD We start with the types, calling join for \otimes and choose for \oplus

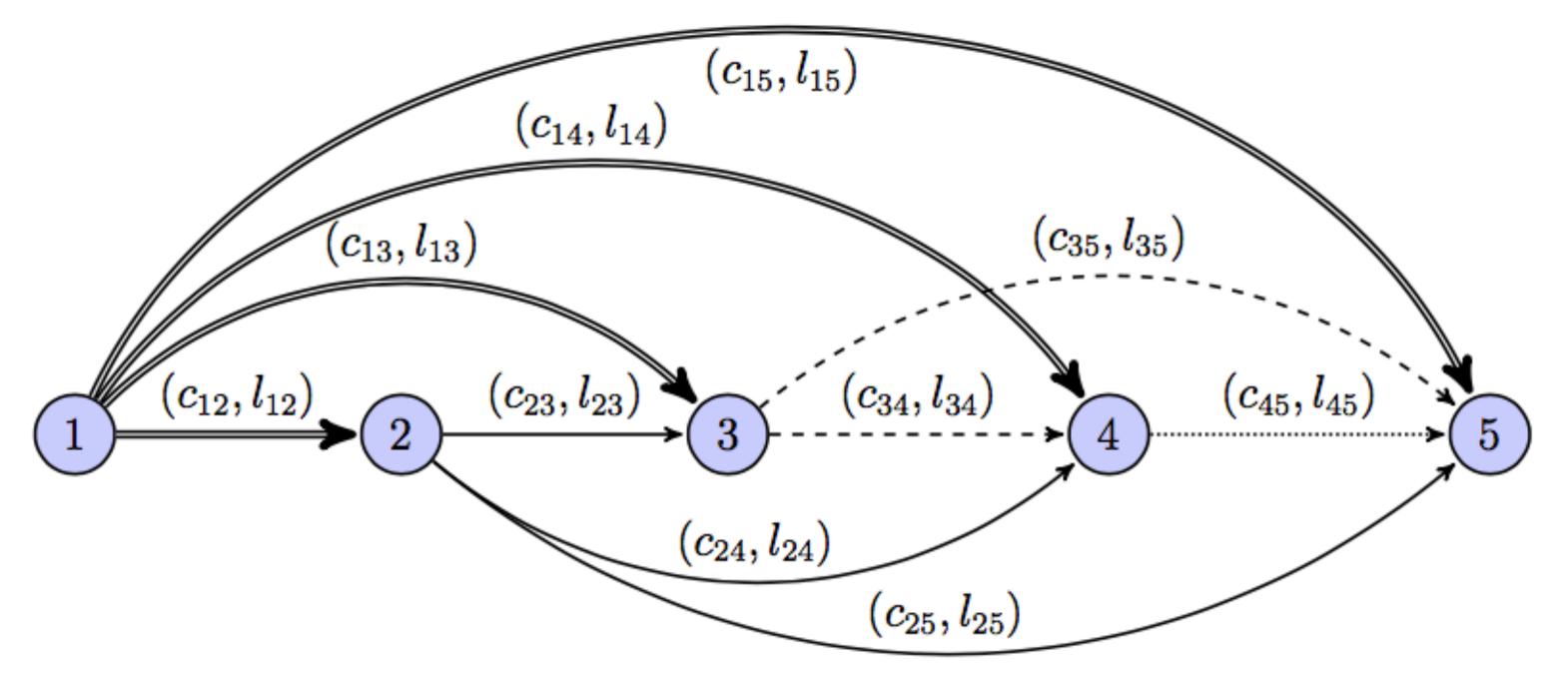
type BSP = [(Capacity, Distance)] $:: BSP \rightarrow BSP \rightarrow BSP$ join choose :: BSP \rightarrow BSP \rightarrow BSP

since the functions should work either edges or paths, we turn every edge label into a singleton-path prior any computation

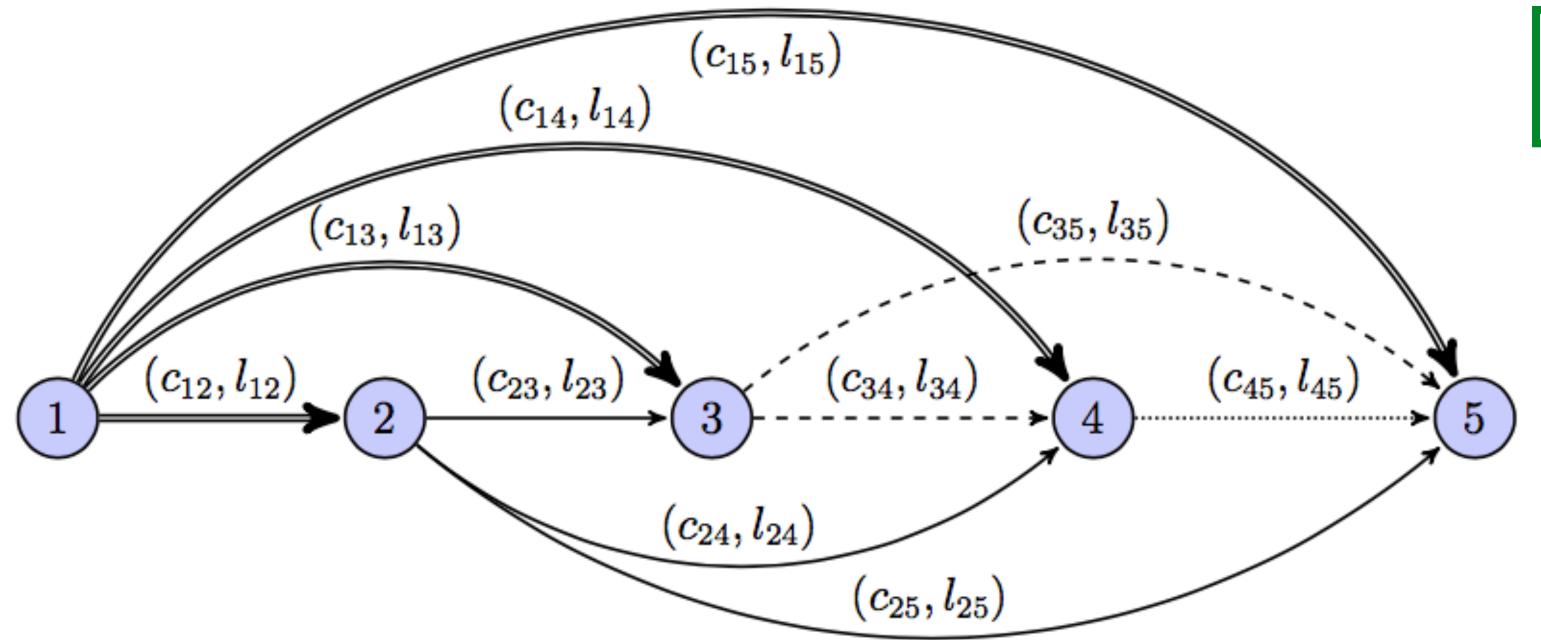


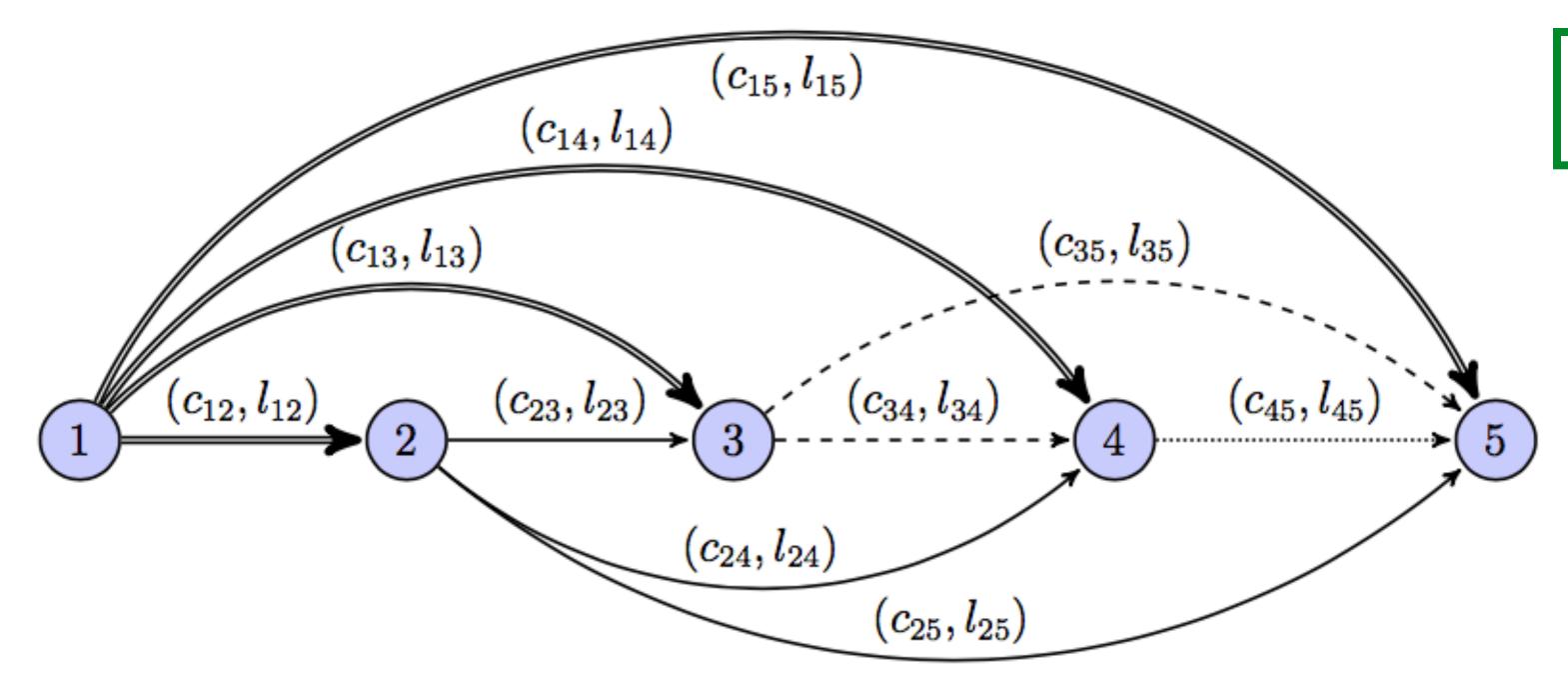




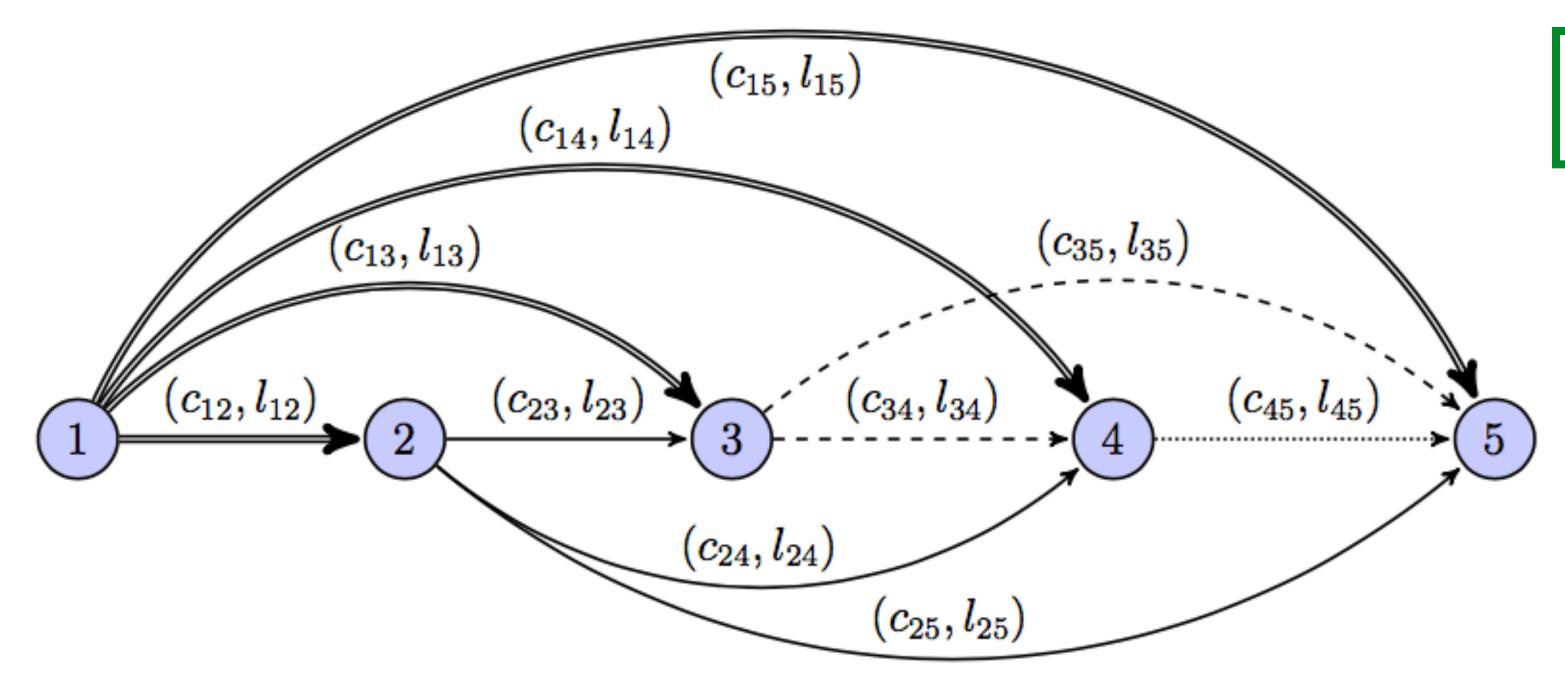


 $(C_{45}, I_{45}) \otimes \textbf{sol}_5$

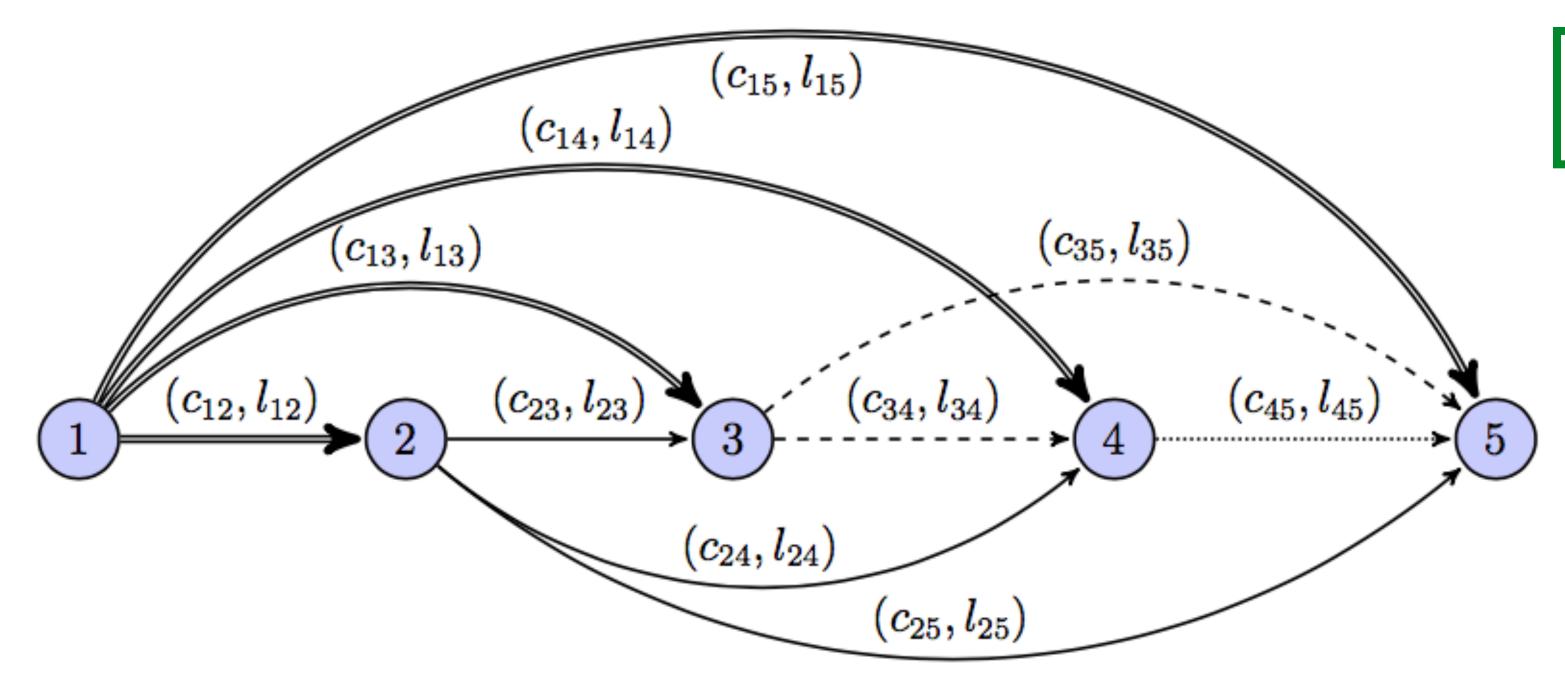




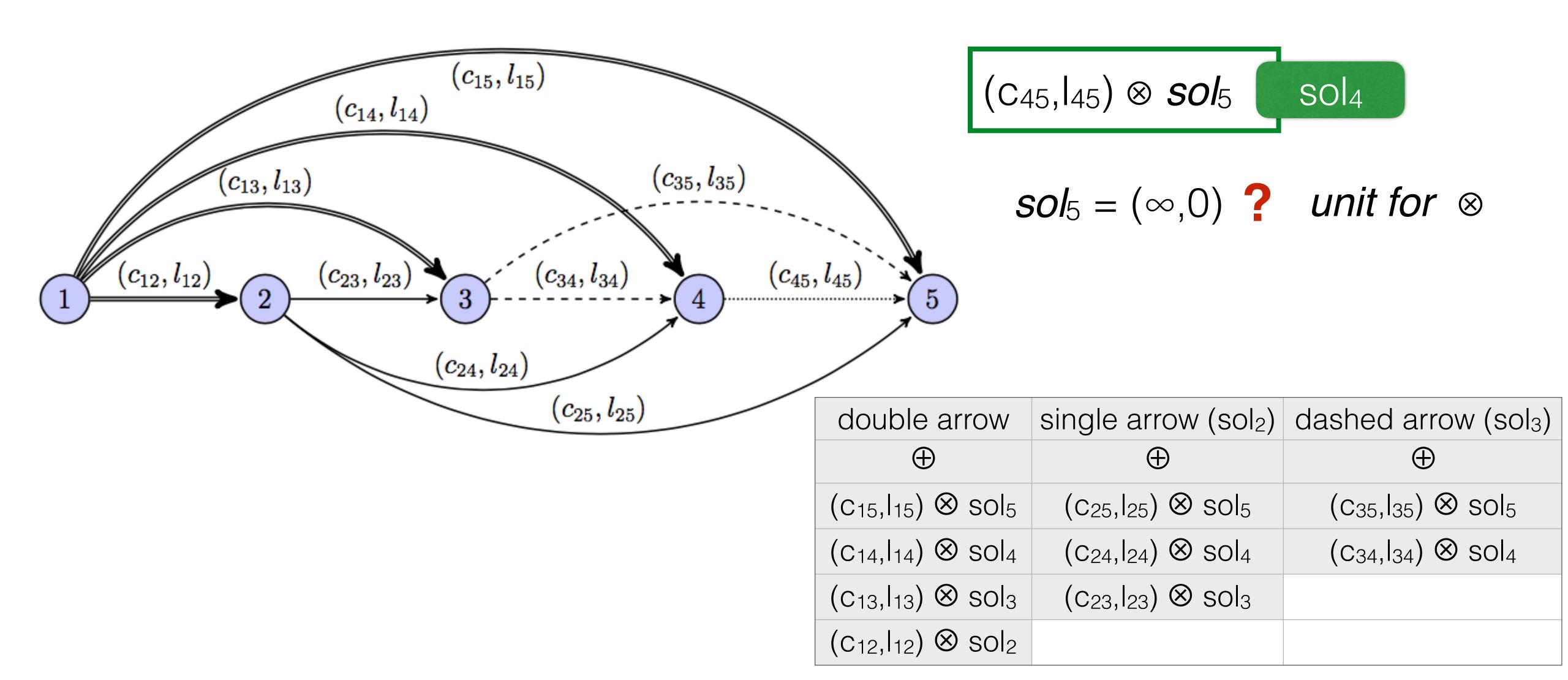
 $sol_5 = (\infty, 0)$

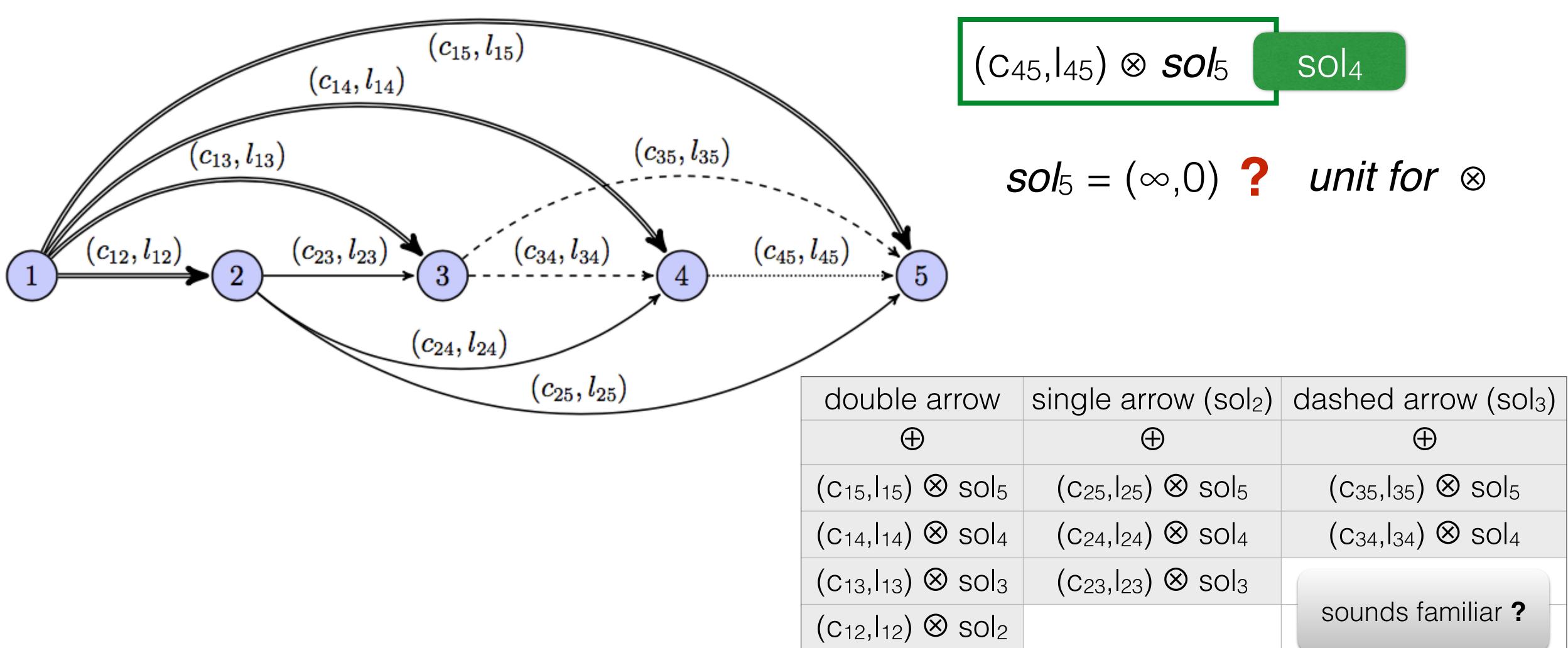


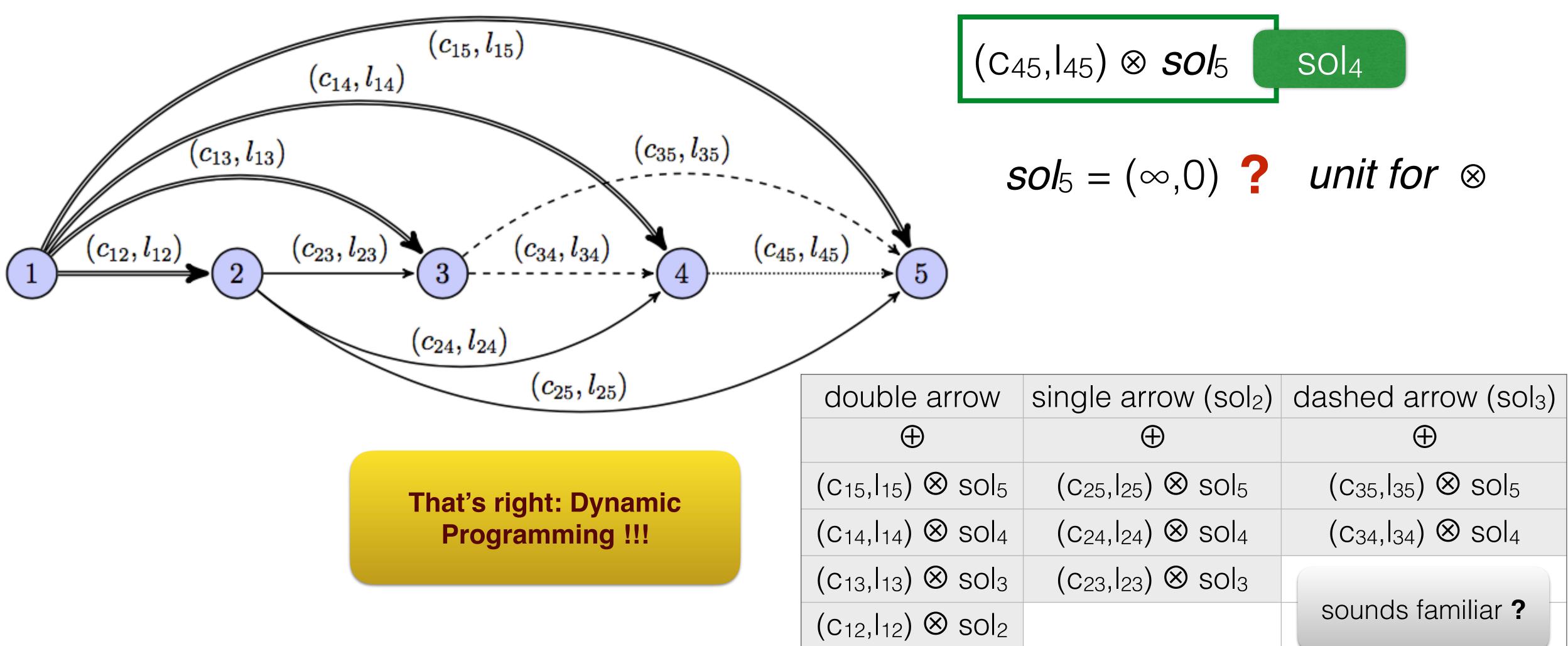
 $sol_5 = (\infty, 0)$?



$sol_5 = (\infty, 0)$? unit for \otimes







As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)

for each (i,j) in N x N: if (i,j) is in E then: d(i,j) := w(i,j)else: d(i,j) := 0

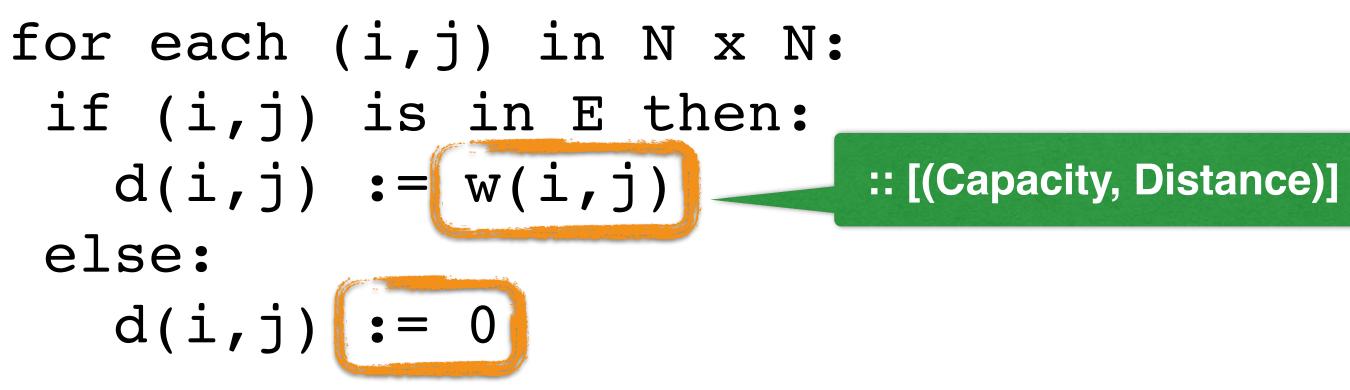
As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)

As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)

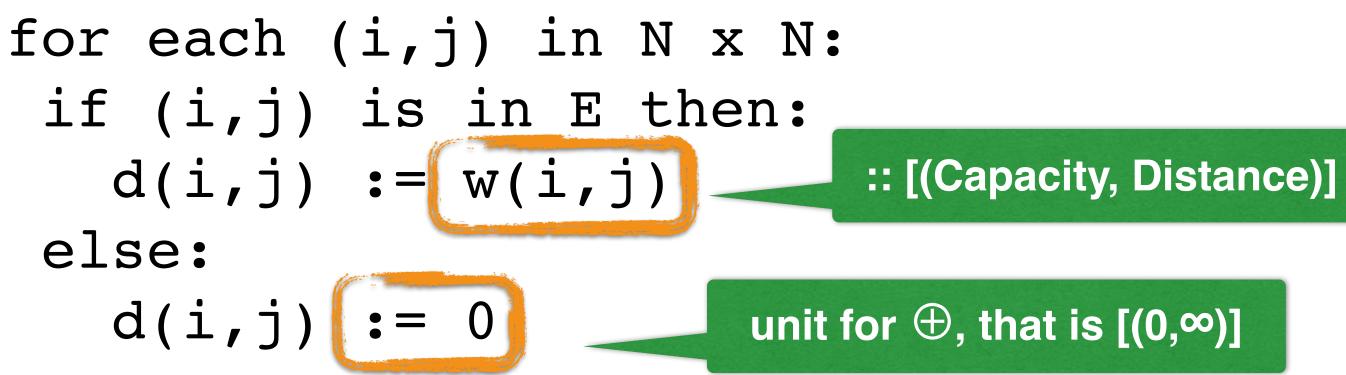
for each k in N: for each i in N: for each j in N: d(i,j) := min{d(i,j),d(i,k) + d(k,j)}

Distance)]

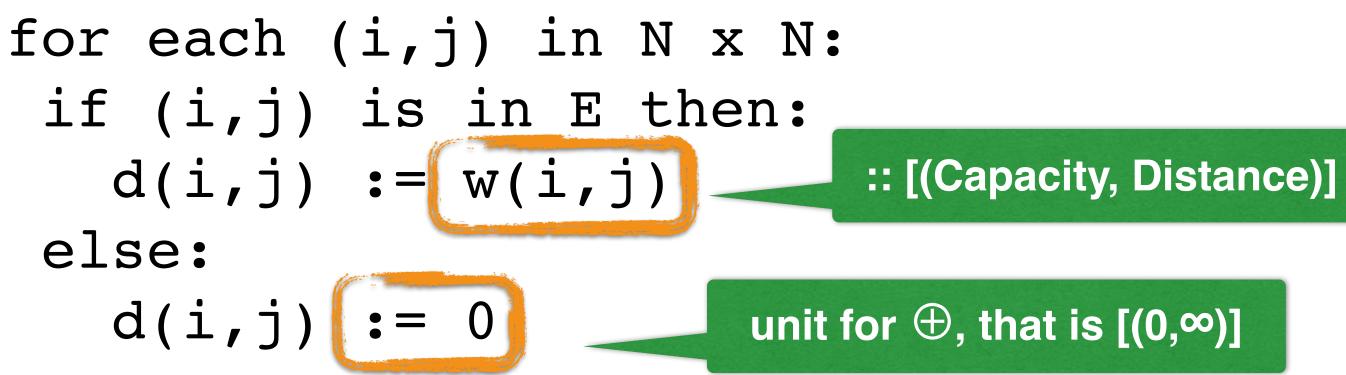
As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



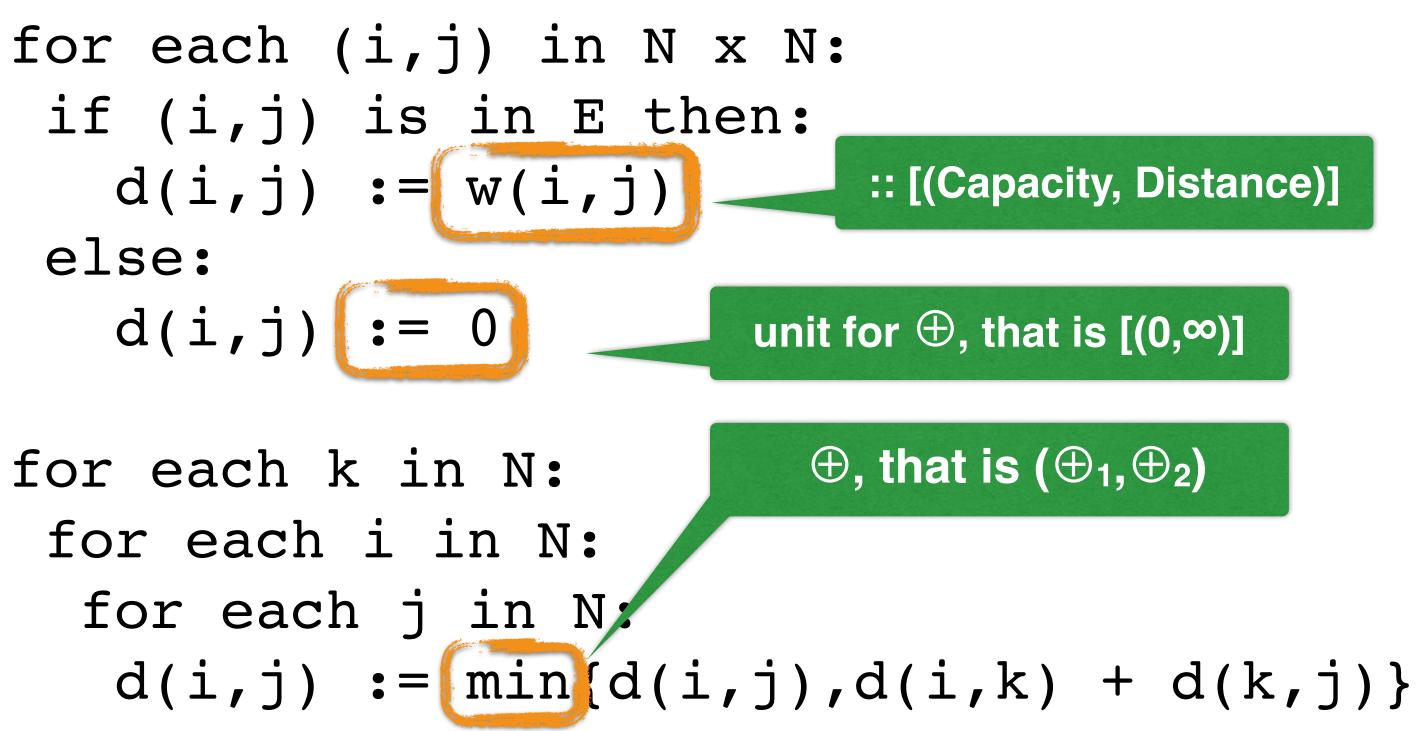
As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



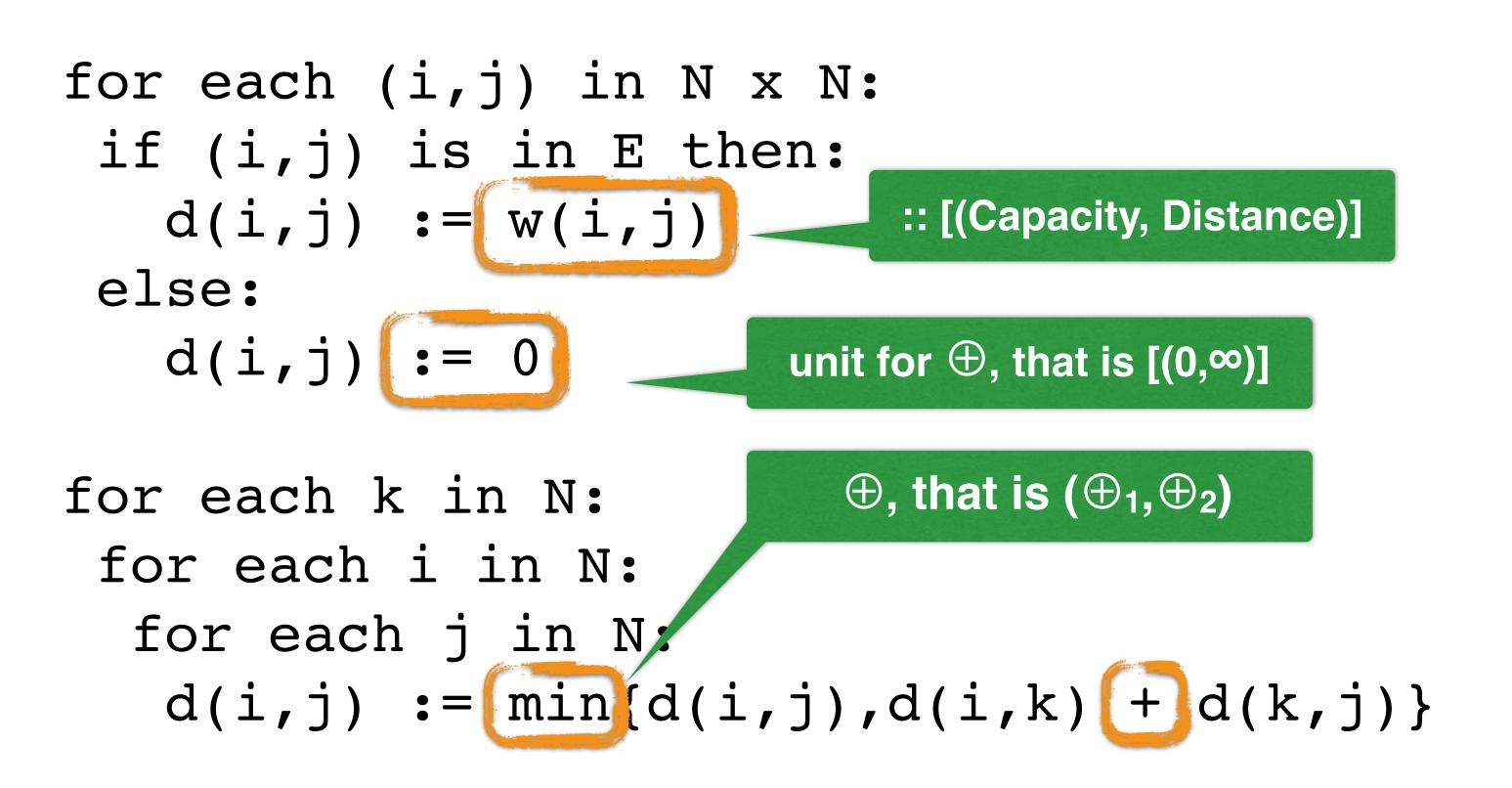
As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



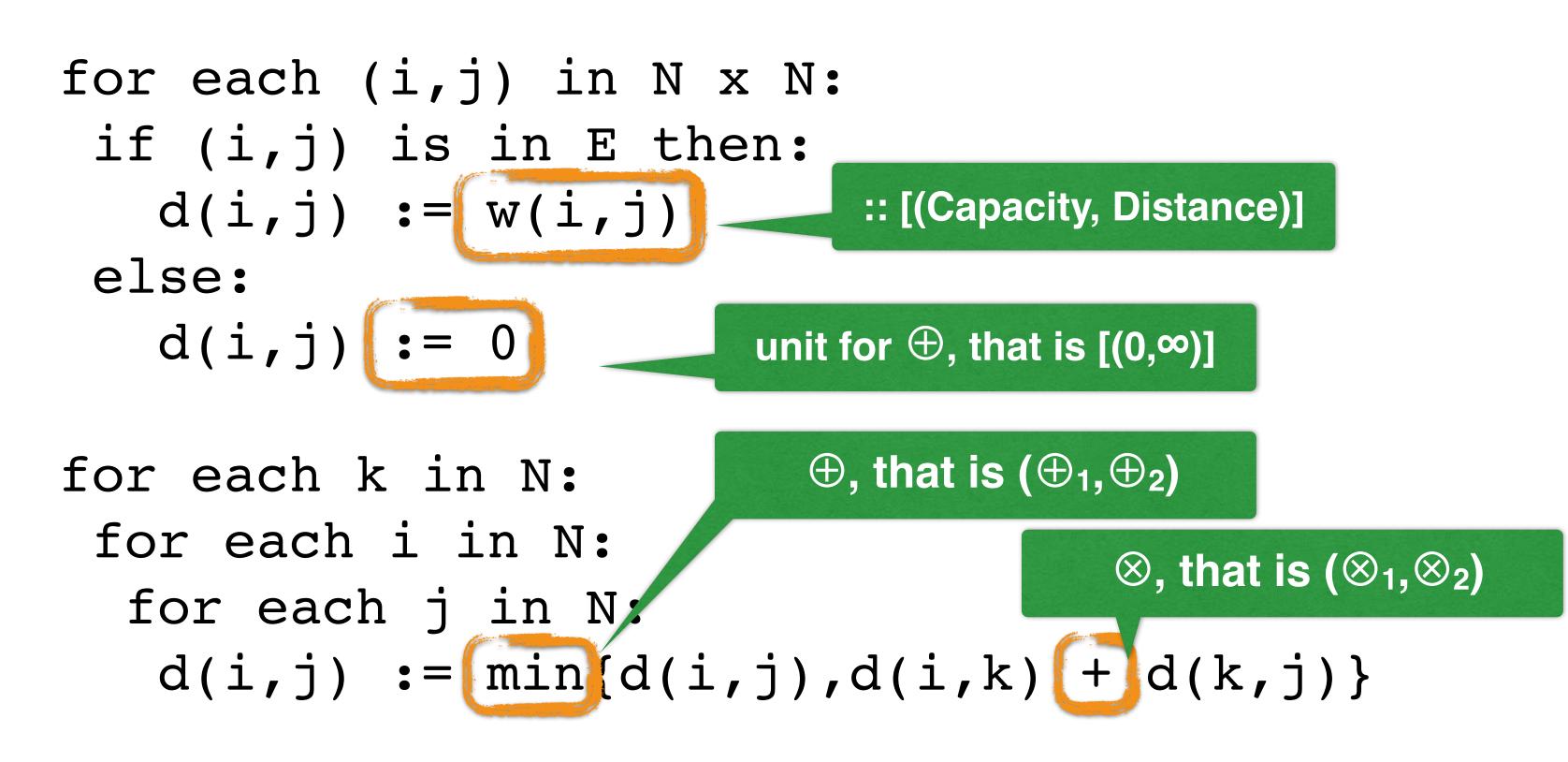
As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



As an example of full (dense) connected graph, including cycles, we can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)



```
choose :: [(Capacity, Distance)]
     -> [(Capacity, Distance)]
     -> [(Capacity, Distance)]
choose [] cls2 = cls2
choose cls1 [] = cls1
choose clcls1@((c1, l1) : cls1) clcls2@((c2, l2) : cls2)
 | c1 == c2 = (c1, min 11 12) : chAux (min 11 12) cls1 cls2
 | c1 > c2 = (c1, 11) : chAux 11 cls1 clcls2
 otherwise = (c2, 12) : chAux 12 clcls1 cls2
 where
   chAux [] [] [] = []
   chAux 1 [] ((c2, 12) : cls2) = chAux' 1 c2 12 [] cls2
   chAux l ((c1, l1) : cls1) [] = chAux' l c1 l1 cls1 []
   chAux l clcls10((c1, l1) : cls1) clcls20((c2, l2) : cls2)
          | c1 == c2 = chAux' | c1 (min | 1 | 2) cls1 cls2
          c1 > c2 = chAux' l c1 l1 cls1 clcls2
           otherwise = chAux' 1 c2 12 clcls1 cls2
      chAux' 1 c' l' cls1 cls2
           1 > 1' = (c', 1') : chAux 1' cls1 cls2
           otherwise =
                          chAux l cls1 cls2
```

join :: [(Capacity, Distance)] -> [(Capacity, Distance)] -> [(Capacity, Distance)] join [] _ = [] join _ [] = [] join ((c1, l1) : cls1) ((c2, l2) : cls2) $| c1 \leq c2 = jnAux c1 l1 l2 cls1 cls2$ otherwise = jnAux c2 l2 l1 cls2 cls1 where jnAux c l l' cls1 clcls2@((c2, l2) : cls2) $| c \leq c^2 = jnAux c | l^2 cls^1 cls^2$ | otherwise = (c, l + l'): case cls1 of

```
jnAux c l l' cls1 [] = (c, l + l') : [ (c1, l1 + l') | (c1, l1) <- cls1 ]
```

((c1, l1) : cls1) | c1 > c2 -> jnAux c1 l1 l' cls1 clcls2 -> jnAux c2 l2 l cls2 cls1

- of the bag as an argument
- Include an analysis on the lazy and strict evaluations
- Monadic implementation (Floyd-Roy-Warshall algorithm)

http://staffwww.dcs.shef.ac.uk/people/J.Saenz_Carrasco/

What is next?

• Include the analysis on Knapsack problem, where the \otimes takes the weight

