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Introduction
In order to solve path finding problems, we should take care about some properties 
prior the computation of the corresponding algorithm.

Some of such properties are:

• associativity

• distributivity

Same goes for the definitions of the operators involved in the (host) algorithm



Definitions: Path Addition



Definitions: Path Addition
We consider addition to the computation of the labels (or weights) of 
two or more edges or paths:



Definitions: Path Addition
We consider addition to the computation of the labels (or weights) of 
two or more edges or paths:

a b

x

y
z



Definitions: Path Addition
We consider addition to the computation of the labels (or weights) of 
two or more edges or paths:

a b

x

y
z

The addition of paths from a  to b  can be denoted as x  ⊕ y  ⊕ z, 
provided the definition for ⊕.
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Definitions: Path Multiplication
We consider multiplication to the computation of the labels (or weights) 
of two or more consecutive edges or paths:
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The multiplication of paths from a  to c  can be denoted as x  ⊗ y, 
provided the definition for ⊗.



Example
Let us compute the maximum capacity problem for the following 
graph, where operators ⊗1 = minimum (or ↓) and ⊕1 = maximum (or 
↑)
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Now, the maximum capacity from a to e is 1 no matter which path 
from a to e is selected. That is, we have a tie



Example (cont’d)
Now, we can incorporate another criterion to break such a tie, let’s 
say that we pick the shortest distance, implying ⊗2 = arithmetic 
addition (+) and ⊕2 = minimum (↓).

That is, now we have that: 

⊗ = (⊗1,⊗2) and ⊕ = (⊕1,⊕2)

in other words, 

⊗ = (↓1,+2) and ⊕ = (↑1,↓2)



Example (cont’d)

Also, we add the corresponding values for the new criterion as the 
second element in the pair-labels over the edges. That is, a pair 
(vj,vk) defines vj as the valid elements for maximum capacity and vk 
as the valid elements for shortest distance.
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The Problem
Computing the maximum capacity again, yields to a non optimal 
solution, that is,

a
(1,1)

b

c

d

(1,1)

(2,3)

(1,1)

the partial result, being (2,3) as (maximum capacity, shortest 
distance) leads to (1,4) instead of (1,3) in the final computation

b’ d’
(2,3)



The Problem (cont’d)

Algebraically, we can represent the above as follows: 

(1,1) ⊗ [ (1,1) ⊗ (1,1) ⊕ (2,3) ]  =  (1,1) ⊗ (1,1) ⊗ (1,1) ⊕ (1,1) ⊗ (2,3)  

            (1,1) ⊗ [ (1,2) ⊕ (2,3) ]  =  (1,1) ⊗ (1,2) ⊕ (1,4)  

                          (1,1) ⊗ [(2,3)]  =  (1,3) ⊕ (1,4)  

                                        (1,4)  ≠   (1,3)



Fun Approach: List of Pairs
Preserving local optimal and “potential” optimal results along the 
computation in a list, allows to compute the global optimal. The 
conditions are: 

storing the elements (pairs) preserving the following relation: 

(x1, y1) R (x2, y2) → x1 > x2 ∧ y1 > y2    ∨ 

(x2, y2) R (x1, y1) → x2 > x1 ∧ y2 > y1 

otherwise simply store the greatest x-tuple 



List of Pairs applied
let us denoted the list notation with {}  

(1,1) ⊗ [ (1,1) ⊗ (1,1) ⊕ (2,3) ] → (1,1) ⊗ [ {(1,2)} ⊕ (2,3) ] 

        → (1,1) ⊗ [ {(2,3),(1,2)} ] → (1,1) ⊗ [ {(2,3),(1,2)} ]    

                                        → { (1,3) } 

the global optimal as expected !!                                        



implementing MC-SD
We start with the types, calling join for ⊗ and choose for ⊕

since the functions should work either edges or paths, we turn every 
edge label into a singleton-path prior any computation
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Application: Single Source on DAGs

double arrow single arrow (sol2) dashed arrow (sol3)
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(c15,l15) ⊗ sol5 (c25,l25) ⊗ sol5 (c35,l35) ⊗ sol5
(c14,l14) ⊗ sol4 (c24,l24) ⊗ sol4 (c34,l34) ⊗ sol4
(c13,l13) ⊗ sol3 (c23,l23) ⊗ sol3
(c12,l12) ⊗ sol2

sol5 = (∞,0) ?

(c45,l45) ⊗ sol5 sol4

unit for  ⊗

sounds familiar ?

That’s right: Dynamic 
Programming !!!



Application: All Pairs (square matrix)
As an example of full (dense) connected graph, including cycles, we 
can recurre to the Floyd-Roy-Warshall algorithm (all-pairs shortest path)

for each (i,j) in N x N:
 if (i,j) is in E then:
   d(i,j) := w(i,j)
 else:
   d(i,j) := 0

for each k in N:
 for each i in N:
  for each j in N:
   d(i,j) := min{d(i,j),d(i,k) + d(k,j)}
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What is next?

• Include the analysis on Knapsack problem, where the ⊗ takes the weight 
of the bag as an argument 

• Include an analysis on the lazy and strict evaluations 

• Monadic implementation (Floyd-Roy-Warshall algorithm) 

http://staffwww.dcs.shef.ac.uk/people/J.Saenz_Carrasco/


