The lOCaml MOOC

Benjamin Canou, Yann Régis-Gianas

(joint work with Cagdas Bozman, Roberto Di Cosmo, Grégoire Henry and Ralf Treinen)

Canterbury, June 22,2017

Trends in Functional Programming in Education 2017

A humble and ambitious journey

TFPIE 2017 The OCaml MOOC 1/22

— Only 3 key notions of languages from the ML family :
— Functional programming,
— Static typing with full type inference, and
— Algebraic datatypes.
— Write medium sized programs of reasonable complexity using OCaml.

TFPIE 2017 The OCaml MOOC 2/22

...and Ambitious?

— Ensure that the learners who completed the course master the 3 key notions.
— ...injust 7 weeks.

TFPIE 2017 The OCaml MOOC 3/22

A secret goal :
Retain them all along the course.

TFPIE 2017 4/22

Who were our students?

TFPIE 2017 The OCaml MOOC 5/22

Where are they from?

E 8

\
L ¢

w

— 7000 learners enrolled;
— from more than 120 countries

(France, US, Spain, UK, India and Germany being the top 6);
— 2418 actually showed up when the course started.

TFPIE 2017 The OCaml MOOC 6/22

How old are they?

0.02 -

15 20 25 30 35 40 45 50 55 60 65 70 75 80
Age

TFPIE 2017 The OCaml MOOC 7/22

How educated are they?

Active Passed

Numbers avg.success | Numbers avg. success
High School | Il 255 n 2093 | W32 I 90.19
Associate 145 | 21.29 | 14 N 36.50
Bachelor I 567 [| 2670 | EE 113 I 37.12
Master I 775 | 37.13 | NN ?4? | HEE 36.69
PhD 226 || 38.00 | H75 I 01.44
Elementary | 17 | 26.43 | 11 I 100.0
Junior High 165 [| 21.14 | 19 I 35.44
Other 140 || 34.02 | 111 I 36.45
N/A I 438 || 3493 | 1N 128 I 39.41

Total 2418 615

Unusual for a MOOC : a lot of students.
The OCaml MOOC

TFPIE 2017

8/22

How did our students learn?

TFPIE 2017 The OCaml MOOC 9/22

Study and PRACTICE!

— Classic material : slides and videos (42 capsules, ~6 hours);
State-of-the-art exercise environment;

— 55 exercises (7 quizz, 48 automatically graded exercices) and 2 projects.
The total length of our own solutions is around 1500 loc.

— Oneimportant pedagogical idea :

No submission limit and deadlines on the exercises

— The consequence :

Students are working harder to get a score of 100%

TFPIE 2017 The OCaml MOOC 10/ 22

How good was the trip ?

TFPIE 2017 The OCaml MOOC 11/22

Number of students

After week 2, we had gathered a stable group of students

TFPIE 2017

7000
6000
5000
4000
3000
2000
1000

x x
= = = = =

x
=

W Proj —

12/22

How hard was it for the learners?

Weekly effort (hs/week)
per perceived difficulty

Too Difficult — o _
N &
Just Right | F------ _ 777777 4

Too Easy —

A majority of students found the difficulty just right
and spend 8 hours per week on the course!

TFPIE 2017 The OCaml MOOC 13/22

How pleasant was the trip?

Distr. of appreciation
per degree

I
e I e
Bachelor 4 © P - ,,,,,, 1

Associate — o | o
i St | £ .
T T T T T

0 1 2 3 4

Whatever the level of education, our students seem satisfied.

TFPIE 2017 The OCaml MOOC 14/22

The Exercise Platform

TFPIE 2017 The OCaml MOOC 15/ 22

A beginner’s IDE in the browser

Main features
— everything runs inside the browser, nothing to install;
— syntax colouring and forced indentation;
— OCaml runs inside a separate worker for responsiveness;
— incremental, randomized automated grading system;
— structured report with pretty printed test cases;
— interactive toplevel for quick testing.

We are building a standalone platform from this code : learn-ocaml.

TFPIE 2017 The OCaml MOOC 16/ 22

A minimal grader
1/3

Exercise text

1: <p>Given the type of binary tree in the
2: prelude, write the following function</p>
3:

4 :

5: <code>size: tree -> int</code>

6 : computes the number of tree elements.
7 : </1li>

8 :

9 : <code>height: tree -> int</code>

10 : computes the height of the tree;

1 : </1li>

12 :

TFPIE 2017 The OCaml MOOC 17/ 22

A minimal grader

2/3

Prelude

1: type tree =

2 : | Empty

3: | Node of tree * int * tree
Template

1: let rec size = "Replace_by_your_code."” ;;
2 : let rec height = "Replace_by._your_code."” ;;
Solution

1: let rec size = function

2: | Empty -> 0

3:] Node (1,_,r) -> 1 + size 1 + size r ;;
4 : let rec height = function

5: | Empty -> 0

6: | Node (1,_,r) ->

7 1 + max (height 1) (height r) ;;

TFPIE 2017 The OCaml MOOC 18/ 22

A minimal grader

Grader
1: let sample_tree () =
2 let rec aux 1lvl =
3: match Random.int 1lvl with
4 | @ -> Empty
5 | _ -> Node (aux (lvl-1), Random.int 100, aux (lvl-1))
6 : in aux 4 ;;
7 : set_result @@ ast_sanity_check code_ast @@ fun () ->
8 : [Section
9 : ([Text "Exercise_1:." ; Code "size"],
10 : test_function_1_against_solution
11 : [%ty: tree -> int] "size” []) ;
12 : Section
13 : ([Text "Exercise_2:." ; Code "height”],
14 : test_function_1_against_solution
15 : [%ty: tree -> int] "height” [1) 1 ;;

Graders are typed, with local run-time checks where student code is loaded

TFPIE 2017 The OCaml MOOC 19/22

How deep can we probe student code?

Not only the output!

— syntax (graders can insert AST rewriting steps)
(e.g. write this function using a single match expression);

— variable definition and scoping (using the typed AST)
(e.g. define this value using at most nlocal variables);

— function definition and application (including partial ones)
(e.g. perform this effect after passing the 3rd argument);

— side effects by introspecting references in student code
(e.g. randomize this array in place);

— complexity evaluation by instrumenting the standard operators
(e.g. sort an array using at most n-log(n) accesses);

— modules, interfaces and ADTs (turned into module packages by the grader)
(e.g. implement this interface for functional tries).

TFPIE 2017 The OCaml MOOC 20/22

How deep can we probe student code?

A successful approach :
— fair grader size / solution size ratio;
— good confidence thanks to static typing of graders;
— authors can concentrate on generating good test cases.

Technical limitations :
— command line toolchain and separate compilation;
— system libraries and 1/Os (all inside the browser);
— synchronous interaction (must conform to the event loop).

Main critics :

— students don’t write their own types (before ADTs are introduced);
— no feedback on the style of the code.

TFPIE 2017 The OCaml MOOC 21/22

— Let the students try again, and again, and again.
— Automatic grading is appreciated by students!
— We have trained 600 fresh camlers, ready to contribute to the community!

TFPIE 2017 The OCaml MOOC 22/22

The lOCaml MOOC

Thank you!

Trends in Functional Programming in Education 2017

List of projects and exercises

A Solver for Klotski

Random Text Generation

Integer identifiers

String identifiers

simple functions over integers
Simple functions over strings
Prime numbers

Enigma

Points and vectors

Time on planet Shadokus
Finding the minimum

Searching for strings in arrays
A small typed database

Pattern matching exhaustivity
A type for array indexes

The option type

First In First Out

Classic functions over lists
Symbolic manipulation of arithmetic expressions
Tries

Type directed programming

Balanced binary trees

List with an efficient concatenation
Advanced patterns

Lambda

Using first class functions
Functions returning functions
Optimizing partial applications

A small arithmetic interpreter
Using and writing the map function
Using fold to produce lists

Using fold to check predicates
Optimising a tree traversal using exceptions
Unraveling the automatic grader
Printing lists

The OCaml MOOC

TFPIE 2017

Displaying a Filesystem Hierarchy
Printing with loops

Producing fine ASCII art

Rotating the contents of an array
Implementing a stack with an array
Implementing mutable lists

Simple uses of references

Reading lines from the standard input
Opening modules

Accessing modules and submodules
Wrapping functions in a module
Type abstraction using a signature
Multiset

Remove elements from dictionaries
Char indexed hashtables

