
REBOOT

Simon Thompson
s.j.thompson@kent.ac.uk

CO545 Lecture 10

REBOOT

Essentials

Erlang works like a
calculator: erl

1>2+3*4.
14

Running Erlang

Create a foo.erl file
and load in Erlang

2>foo:bar(2,3).
true

Data types

Nums, Bools, atoms,
tuples, lists, functions.

2.13, false,
[{foo,32},{bar,27}]

Recursion

How to build loops
and repetition.

fac(0)->1;
fac(N)->n*fac(N-1).

Lists

Building, analysing and
using recursion

1> Xs = [2|[5|[]]].
[2,5]

Pattern matching

Used to make choice
and select data

{circle, {X,Y}, R} 

Essentials

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

You can use the built-in operations, functions and modules …

… as well as defining functions for yourself.

Erlang as a calculator

The Erlang programming model

In a functional programming language like Erlang

• computation is evaluation of expressions using functions,
operators and values;

• programming is the process of defining functions for
yourself, and devising data representations.

Infrastructure

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

Log into raptor.kent.ac.uk with putty.

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

Log into raptor.kent.ac.uk with putty.

Change into the subfolder by typing cd cake at the unix prompt.

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

Log into raptor.kent.ac.uk with putty.

Change into the subfolder by typing cd cake at the unix prompt.

Run erlang by typing erl.

  

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

Log into raptor.kent.ac.uk with putty.

Change into the subfolder by typing cd cake at the unix prompt.

Run erlang by typing erl.

Compiler your file in erlang by typing c(biscuit) to the erlang
prompt.

Running Erlang

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

… in a subfolder called cake.

Log into raptor.kent.ac.uk with putty.

Change into the subfolder by typing cd cake at the unix prompt.

Run erlang by typing erl.

Compiler your file in erlang by typing c(biscuit) to the erlang
prompt.

On raptor, outside Erlang

In Erlang (erl)

Erlang modules

-module(biscuit).

-export([pieces/1]).

pieces(0) -> 1;

pieces(N) -> N+pieces(N-1).

The name of the module has to be
the same as the file: biscuit.erl

To be able to use a function you
need to add it to the export list.

This number is the arity: the number
of arguments of the function.

Edit a file biscuit.erl in a text editor of your choice.

Save this file on raptor.kent.ac.uk …

Remember to use module:function when you call a function.

Remember to include the function in the export list.

Common errors

Data types

Numbers

Full precision integers
and floats

123456789801912,
23.4, 3#121, …

Atoms

Atoms are just
symbolic data:

atom, circle, ok,
'Fish finger', …

Booleans

Booleans are two
particular atoms

true, false

Lists

A collection of data:
can “iterate” over

[2,1], [4,7,5],
"foo", [2|[1|[]]]

Functions

‘Anonymous’ funs
don’t need naming.

fun (X)-> X*2 end,
fun foo:bar/2

Tuples

A collection of data:
view as a whole.

{234,"23",{true,7}}

In traditional languages function / method definitions looks like this

method_name(Variable, Variable, …) -> …

In Erlang we can put patterns instead of variables:

  

Pattern matching

dist({X,Y}, {X1,Y1})->
 math:sqrt(
 sq(X-X1)+sq(Y-Y1)).

sq(Z) -> Z*Z.

empty([]) -> true; 

empty(_L) -> false.

xOr(true,X) ->
 not X;

xOr(false,X) ->
 X.

Representing data

We often use tuples to represent fixed size composites of data, e.g.
a pair {X,Y} to represent a point in 2D space.

Another example is to represent a shape as a tuple: the initial atom
tells us what sort of shape it is.

{circle, {3.2, 4.2}, 6.3}
 {rectangle, {2.1, 3}, 4, 7}

centre

radius

height width

inside({circle,{X,Y},R} , {PX,PY}) ->

 dist({X,Y},{PX,PY}) < R;

inside({rectangle,{X,Y},H,W} , {PX,PY}) ->

 X-W/2 < PX and PX < X+W/2 and  
 Y-H/2 < PY and PY < Y+H/2.

… or rectangle?

Pattern matching The function inside has two
arguments: a shape and a point.

Pattern matching implements
choice: circle … ?

Pattern matching also lets us select
parts of a value: pull out X, Y, H, W, PX
and PY to use in the definition …

Assignment is a special case of  
pattern matching

{A,B} = {2,3}

{C,B} = {45,3}

{D,B} = {54,2}

  

Assignment is single assignment

Bind A to 2 and B to 3.

Bind C to 45 and check
that B is 3 … OK

Bind D to 54 and check
that B is 3 … Fails!

How many pieces with N cuts?

pieces(0) -> 1;

  

Pieces of paper

How many pieces with N cuts?

pieces(0) -> 1;

pieces(N) -> pieces(N-1) + N.

  

Pieces of paper

The value for 0 outright, and value for N using the value for N-1.

foo(0) -> …;

foo(N) -> … foo(N-1) ….

  

Recursion over numbers

The value for 0 outright, and value for N using the value for N-1.

mystery(0) -> 1;

mystery(N) -> N - mystery(N-1).

  

Working it out

Lists

Erlang list syntax can be confusing …

… but let’s try to cut through that.

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

[X|Xs]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

[X|Xs]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

[X|Xs]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

3>Xs.

[5,2]

[X|Xs]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

3>Xs.

[5,2]

[X|Xs]

“Under the hood” all lists
are built from [] using […|…].  

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

3>Xs.

[5,2]

[X|Xs]

“Under the hood” all lists
are built from [] using […|…].  

1>Xs = [2|[]].

[2]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

3>Xs.

[5,2]

[X|Xs]

“Under the hood” all lists
are built from [] using […|…].  

1>Xs = [2|[]].

[2]

2>Ys = [3|Xs].

[3,2]

Lists are either empty [] or
non-empty: every non-empty
list has a head X and a tail Xs.

1>[X|Xs] = [3,5,2].

[3,5,2]

2>X.

3

3>Xs.

[5,2]

[X|Xs]

“Under the hood” all lists
are built from [] using […|…].  

1>Xs = [2|[]].

[2]

2>Ys = [3|Xs].

[3,2]

3>[3|[2|[]]]

[3,2]

The value for [] outright, and value for [X|Xs] using the value for Xs.

product([]) -> 1;

product([X|Xs]) -> X * product(Xs).

Defining functions over lists

The value for [] outright, and value for [X|Xs] using the value for Xs.

foo([]) -> … ;

foo([X|Xs]) -> … product(Xs) … .

Defining functions over lists

The value for [] outright, and value for [X|Xs] using the value for Xs.

mystery([]) ->

 [];

mystery([X|Xs]) when X>0 ->

 [X | mystery(Xs)];

mystery([X|Xs]) when X=<0 ->

 [].

Working it out

REBOOT

Essentials

Erlang works like a
calculator: erl

1>2+3*4.
14

Running Erlang

Create a foo.erl file
and load in Erlang

2>foo:bar(2,3).
true

Data types

Nums, Bools, atoms,
tuples, lists, functions.

2.13, false,
[{foo,32},{bar,27}]

Recursion

How to build loops
and repetition.

fac(0)->1;
fac(N)->n*fac(N-1).

Lists

Building, analysing and
using recursion

1> Xs = [2|[5|[]]].
[2,5]

Pattern matching

Used to make choice
and select data

{circle, {X,Y}, R} 

