{- Version 1, 'untyped' -}
data Color = R | B deriving Show
data RB a = E | T Color (RB a) a (RB a) deriving Show
{- Insertion and membership test as by Okasaki -}
insert :: Ord a => a -> RB a -> RB a
insert x s =
T B a z b
where
T _ a z b = ins s
ins E = T R E x E
ins s@(T B a y b)
| xy = balance a y (ins b)
| otherwise = s
ins s@(T R a y b)
| xy = T R a y (ins b)
| otherwise = s
member :: Ord a => a -> RB a -> Bool
member x E = False
member x (T _ a y b)
| xy = member x b
| otherwise = True
{- balance: first equation is new,
to make it work with a weaker invariant -}
balance :: RB a -> a -> RB a -> RB a
balance (T R a x b) y (T R c z d) = T R (T B a x b) y (T B c z d)
balance (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
balance (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
balance a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
balance a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
balance a x b = T B a x b
{- deletion a la SMK -}
delete :: Ord a => a -> RB a -> RB a
delete x t =
case del t of {T _ a y b -> T B a y b; _ -> E}
where
del E = E
del (T _ a y b)
| xy = delformRight a y b
| otherwise = app a b
delformLeft a@(T B _ _ _) y b = balleft (del a) y b
delformLeft a y b = T R (del a) y b
delformRight a y b@(T B _ _ _) = balright a y (del b)
delformRight a y b = T R a y (del b)
balleft :: RB a -> a -> RB a -> RB a
balleft (T R a x b) y c = T R (T B a x b) y c
balleft bl x (T B a y b) = balance bl x (T R a y b)
balleft bl x (T R (T B a y b) z c) = T R (T B bl x a) y (balance b z (sub1 c))
balright :: RB a -> a -> RB a -> RB a
balright a x (T R b y c) = T R a x (T B b y c)
balright (T B a x b) y bl = balance (T R a x b) y bl
balright (T R a x (T B b y c)) z bl = T R (balance (sub1 a) x b) y (T B c z bl)
sub1 :: RB a -> RB a
sub1 (T B a x b) = T R a x b
sub1 _ = error "invariance violation"
app :: RB a -> RB a -> RB a
app E x = x
app x E = x
app (T R a x b) (T R c y d) =
case app b c of
T R b' z c' -> T R(T R a x b') z (T R c' y d)
bc -> T R a x (T R bc y d)
app (T B a x b) (T B c y d) =
case app b c of
T R b' z c' -> T R(T B a x b') z (T B c' y d)
bc -> balleft a x (T B bc y d)
app a (T R b x c) = T R (app a b) x c
app (T R a x b) c = T R a x (app b c)