Component Adaptation and Assembly Using Interface Relatins

Stephen Kell

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue
Cambridge CB3 OFD
United Kingdom

firstname.lastname@cl.cam.ac.uk

Abstract The adapter pattern [Gamma et al. 1995] is a noble fail-
ure. It provides a modular, compositional approach to mis-
match, but despite these potential benefits, programmers
faced with mismatch usually chooseport source code by
invasive editing. This is unfortunate, because much ex@ens
in software stems frommany versions of similar thingsul-

Software’s expense owes partly to frequegitnplementa-
tion of similar functionality and partly tonaintenanceof
patches, ports or components targeting evolving intesface
More modular non-invasive approaches are unpopular be-

cause they entail laborious wrapper code. We propose Caket, ! s) .
a rule-based language describing compositions Uisiteg- iplied code means multiplied complexity and multiplied

face relations To evaluate it, we compare several existing costs. Invasive porting also risks introducing bugs to work

wrappers with reimplemented Cake versions, finding the lat- N9 code. To avoid these costs, we must make non-invasive
ter to be simpler and better modularised. adaptation a more effective option for the programmer.

Adapters can be described an order of magnitude more
Categories and Subject Descriptors D.2.3 [Coding Tools simply than conventional tools allow. Currently, writing

and Techniquds D.2.12 [Interoperability] adapters is repetitive, error-prone and inconvenient. We i
troduce a tool for concise, high-level and convenient de-

General Terms Languages scription of adapters, based on our special purpose larguag
Cake. Cake is rule-based: the Cake programmer declara-

1. Introduction tively specifies how components’ interfaces relate. Cake

advances on prior work by supporting context-dependent,
many-to-many relations between interface elements, and in
its automatic treatment of complex object structures. By ta
getting binaries, Cake is convenient, and eliminates com-
plexity associated with multiple build environments.

The contributions of this paper are as follows.

Today’s software development ecosystem is vast in scale
and decentralised in nature. Inevitably, most code is eitt

in isolation from most other code with which it could use-
fully be combined. Most software growgpwardsin stacks

or silos each piece written “for” some specific infrastruc-
ture: librariesfor some programming language, todts
some IDE or editor, pluginfor some web browser or me- A language of correspondence€ake abstracts black-box
dia player, applicationr some operating system or desk- adaptations using rules callembrrespondencesThese
top suite or hardware platform. Put differently, interfacis- both unify and extend the expressiveness found in prior
match abounds in software. Since there are always different work on black-box adaptation. In particular, they support
ways of expressing the same meaning, components that are complex relations between interfaces, of the kind found
logically compatible nevertheless evolve with mismatched in real adaptation tasks.

interfaces. Current software practices fail to exploit¢tbe-
positional potential within existing code; they encourage
from-scratch development and coupled code.

Object structures By applying correspondences while also
following pointers, Cake adapts complex object struc-
tures at no extra effort. Our implementation, which tar-
gets native binaries, makes use of novel well-behavedness
criteria in order to correctly discover object structunes i

real code at run time.
Permission to make digital or hard copies of all or part of thiork for personal or

classroom use is granted without fee provided that copesatr made or distributed Benefits We show, by using Cake to reimp|ement some pre-

for profit or commercial advantage and that copies bear titiseand the full citation P . .
on the first page. To copy otherwise, to republish, to posteswess or to redistribute eX|St|ng wrappers, how Cake results in S|mpler, better-

to lists, requires prior specific permission and/or a fee. modularised code.
OOPSLA/SPLASH’10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.)]]))
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. .. $10.00 We begin with Cake’s motivation and design goals.

2. Motivation // rules concerning functions

Currently, non-invasive adaptation is usually eschewed in p2k_node_seek(_, vn, oldoff, newoff, cred)
favour of invasive editing or from-scratch redevelopment. — RUMP_VOP_SEEK(vn, oldoff, newoff, cred);

. . p2k node remove(, vn as vnode bump, tgtvn as vnode bump,
To understand vv_hy, can|der that a_ldap_ters currently consis "c,)” . RUMP VOP REMOVE(vn, tgtvn, cn); -
of wrapper functions like the two in Fig. 1. These form
part of an adapter (covered fully in §6.1) between a pair of //I rules ?;’ncemllgg values ((VLE(that); that}) vnod
- . values puffs cookie t — that); that vnode;
filesystem interfaceguffs (here _exported) andJmp (here values puffs cookie t —— ({VUL(that); that}) vnode;
consumed). (Theeek call repositions an open file cursor, yalues vnode bump —({VLE(that); // also bump refcount
while remove deletes a directory entry.) We have added rump_vp_incref(that); that}) vnode;
comments, but the details are not important. Instead, @otic values vnode bump ——vnode; // unlock not required

. . values puffs cred (cred create(this)) — kauth cred;
several problems with this style of code. values puffs cred «——(cred destroy(this)) kauth cred;

values puffs cn (makecn(this)) — component name;
values puffs cn «— (freecn (this, 0)) component name;

int p2k_node_seek(struct puffs_usermount *pu,
puffs_cookie_t opc, off_t oldoff, off_t newoff,
const struct puffs_cred *pcr)
{ kauth_cred_t cred;
int rv;

Figure 2. Cake rules generating equivalent wrappers

cred = cred_create(pcr); // convert auth token

In short, wrappers are an unnecessarily complex approach
VLE (opc) ; // lock vnode ptr Pp y p pp

rv = RUMP_VOP_SEEK (opc, oldoff, newoff, cred); // call
VUL (opc) ; // unlock wvnode ptr
cred_destroy(cred); // destroy temp auth token

return rv;

}

to adaptation. Cake is a language designed to fix this prob-
lem. Figure 2 shows some Cake rules sufficient to generate
the wrappers in Figure 1. Again the details are not important
but notice several advantages.

Separation of concerns The Cake programmer writes

int p2k_node_remove (struct puffs_usermount *pu,
puffs_cookie_t opc, puffs_cookie_t targ,
const struct puffs_cn *pcn)

{ struct componentname *cn;

rules which we callcorrespondencesach rule localises
a particular piece of domain-specific knowledge about the
adaptation task. The compiler is responsible for compos-

int rv; ing rules into wrappers. In particular, notice here thaesul

cn = makecn(pcn); // issue temp name concerning functions and rules concerning values are kept
VLE(opc) // lock wnode ptr separate. Such rules form the basic Cake language (83).
rump_vp_incref (opc); // bump refcount .

VLE(targ) ; // lock target wnode Expressiveness Cake rules advance on prior work by sup-

rump_vp_incref (targ); // bump that refcount

rv = RUMP_VOP_REMOVE (opc, targ, cmn); // call rump

AUL (opc) ; // this time, unodes were unlocked
AUL(targ); //... by rump, so just assert this
freecn(cn, 0); // free temp name

porting context-sensitiveand many-to-manyrelations be-
tween interface elements. For example, a single function
may map to one of several calls on the opposing interface,
depending on what calls have come before, or to a sequence
of calls. Similarly, sets of values or objects occurring to-
gether may be treated as a group, and corresponded by a
single rule. These and other advanced features greatly ex-
tend the power of the Cake language (84).

return rv;

Figure 1. Example filesystem wrapper code
Object structures This example passes only isolated ob-
jects across the interface. However, Cake can handle the
exchange of arbitrary object graphs across mismatched in-
Poor modularity The code is notrivially repetitive. Each terfaces. This can eliminate considerable code: consider a
wrapper applies a different subset of rules, e.g. for treat- wrapper walking a linked list to convert each element in turn
ment of arguments. Considepc above: one case re- The programmer need only specify how separate classes of
quires a bumped reference count and has different un-object relate; the Cake runtime automatically explores the

locking semantics from the other. The programmer must graph, applying rules to the objects it finds (§5).
juggle these rules correctly amid the sea of similarity.

Repetition A large volume of similar code is required for a
conceptually simple task.

)) . Simpler, shorter code The rules above may appear to be
InconvenienceAmong other headaches, to compile this o 4 jittie shorter than the wrapper code. However, the en-
code the programmer must construct a hybrid build envi- e ;o adapter contains not two but 28 wrapper functions.
ronment supporting compilation against both interfaces. gach rule above contributes toanyof these wrappers, and
Complexity This shows a very simple case, where functions often many wrappers can be generated from a single rule.
correspond one-to-one. In others, complexity quickly es- The result is shorter, more readable and more maintainable
calates. code, as we show in three case studies (86).

libmpeg?2 client control flow ffmpeg client control flow

| NA

‘ mpeg2_parse(dec);

mpeg2_info_t

1
‘ fread(buf, size, n, f);

| asptay.out

FILE ‘ fopen(fname, “rb”); ‘ avcodec_init(; AVFormatContext
(| Open file and av_register_all();
‘ mpeg?2_init(); ‘ initialize decoder i ‘
1 av_open_input_file(out ic,
eoedesesdely fname, fmt, buf_size, params);
[
- D) AVFormatParameters
mpeg2_dec_s mpeg2_get_info(dec); ‘ ‘ av_find_stream_info(ic); ‘ -
' D)
! ‘ avcodec_find_decoder(c_id);
: !) AVStream
| ‘ avcodec_open(c_ctx, c_obj); ‘ ’F

avcodec_alloc_frame();

1
av_read_frame(pkt, ic); ‘
L AVCodecContext
)

codec_type

‘ mlpe92_buffer(dec, bgn, end) ‘

codec_id

avcodec_decode_video(c_obj,
frame, out got_pic, buf, size);

|
width
|] dl
height
| |
|

N

mpeg2_sequence._|

[width \/ | AVCodec

height fwrite(buf, size, n, f); - fwrite(buf, size, n,); !
display_width - - Write decoded - -

aisplay_height fwrite(buf, size, n, f); output fwrite(buf, size, n, f); AvPacket
chroma_widtn fwrite(buf, size, n, f);

fwrite(buf, size, n, f); E
|

av_free(frame);

[chroma_height \

AVFrame

linesize[4]
datala]

uint8_t[]

—N

clease per-frame,

TESOUrces

mpeg2_fbuf_t

av_free_packet(pkt);

| buriz]

id

uint8_t[] \& |
|

mpeg?2_close(); Release decoder

—
<

‘ avcodec_close(;

fesources and clos
input file

‘ av_close_input_file(;

@44\/4;(4\44\/

Figure 3. Example comparable usage patterns for libraditespeg2 andffmpeg

3. The design of Cake 3.1 Insights

We use a relatively ambitious running example to illustrate The primary design goal of Cake is to abstract composition
the design of Cake as a tool and a language. Can we takeasks in a modular way. In the spirit of Parnas’s information
a client and library implementing hitherto unrelated inter hiding [Parnas 1972], one useful approach is to restrict the
faces and, by writing a succinct description of their corre- programmer’s attention to some notionioferface just as
spondences, glue the unmodified binaries together? Fig. 3 describes the two components only in terms of the
Consider a simple program which uses a library to decode function calls and data structures that they exchange. We re
some video. There are many possible choices of library; we fer to this adlack-boxadaptation (cf. white-box approaches,
consider a client written against tiempeg? library!. Sup- which may reference arbitrary internals of a component).
pose we wish to link this instead against thapeg family A convenient formalisation of this notion of interface is
of librarieg. This has many plausible motivations: perhaps thetraceof a component’s interactions, of the sort displayed
to reduce the dependency footprint of a larger system, per-by tools such a&race®. Figure 4 shows thirace output for
haps to exploit the larger feature-setfbfipeg (which can our client’s interaction withibmpeg?2 so. Abstractly, a trace
decode video in other encodings than MPEG), or perhapsis simply a sequence of calls eventseach communicating
for differences in reliability or performance. Figure 3 a0 zero or more values. Cake code consists largely of rules
equivalent usage patterns of the two interfaces. Noteligatt which, abstractly, describeteansducerover this trace—that
correspondence between the two is nontrivial: in most casesis, an automaton which both recognises and generates. At
there is no one-to-one correspondence between either the obrun time, Cake-generated code feeds each component a trace
jects or the function calls used by the two interfaces. generated from those output by the other components. Note
that our discussion of traces is purely conceptual; a Cake

Lhttp://libmpeg2.sourceforge.net/
http://ffmpeg.org/ 3http://Itrace.alioth.debian.org/

mpeg2_init() = 0x9cd6180 ware, or recompile the software, nor even to possess source
mpeg2_info(0x9cd6180) = 0x9cda380

mpeg2_parse (0x9cd6180) =0 Code for target Components.

mpeg2_buffer (0x9cd6180, Oxbfd17d88, 0xbfd18d88) = 0x9cd6180 . .

mpeg2_parse (0x9cd6180) = 1 Applicability We want Cake to apply to a large volume
--- snipped --- f ot . .
npeg?_parse (0x81b£180) = 0 of existing components. We chose (somewhat arbitrarily) to

mpeg2_buffer (0x81b£180, Oxbf9e2ab8, 0xbf9e2ab8) = 0x81bf180 focus on components produced in the open-source commu-
npeg2_close (0xB1p£180) = 1 nity. These are often written in C;+€and other unsafe lan-
guages with explicit storage management. This entails cer-
tain memory-aware adaptation features (84.6), and careful
treatment of pointers (85). However, the core problem which
programmer never needs to generate or manipulate traces irCake addresses, namely interface mismatch among compo-
any way. nents, is specific neither to binaries nor to unsafe language

Figure 4. Example trace of ibmpeg?2 client

3.2 Requirements Non-goals Our design sacrifices focus on other potential
goals. We will touch on reasons why efficient implementa-
tion is possible, and why formal reasoning about Cake code
is feasible, but these are not explicit goals. Also, dedpite
getting modularity, note that Cake is natendule systemer
se: it does not define any novel abstraction of components
« Correspondences between events are not one-to-one. Ithemselves. Rather, it abstradiferences amongompo-
ffmpeg there is usually more than one call for eaitin- nent interfaces; its notions of component and interface are
peg? call, so we require a way of mapping one call to conventional.
many. Sometlmes this relationship is reversed, so we Safety At first glance it may appear risky to perform pro-
need to recognise a sequence of many calls and map Itgramming tasks at the binary level. We firmly believe that
back to a singleton. it need not be less safe than any existing source-level ap-
* Arguments to one call may not be sufficient to perform proach. For reasons of simplicity, Cake has not initiallgte
the corresponding call. For exampiepeg2 get info() designed to providguaranteesof safety. However, bina-
maps toav_find _stream(), but the latter needs a refer- ries admit exactly the same sorts of type-checking and local
ence to the input file—rather than the decoder, which in- reasoning as source-level representations, given apptepr
conveniently is the only argumenttepeg2 get info(). metadata.

* Components differ in the shapes of their data structures.\wgl|-abstractedness We also assume that our task is “well
Single fields or single objects may correspond to many apstracted”, meaning that there is sufficient information i
fields or many objects. Moreover, objects may be passedtraces generated (and traces accepted) to express theetequi
indirectly, perhaps over many levels of indirection from composition. This is precisely the necessary conditiorafor
the arguments themselves. black-box approach to suffice. We believe white-box tech-

nigues (including aspect-oriented programming, instnsime

tation systems and so on) to be an essential complement to
black-box ones, especially for turningpn-well abstracted
tasks into well-abstracted ones, which we consider for fu-

ture work (see 87).

What kinds of rules are required for realistic adaptatichsa
like our video decoding example? From Fig. 3 itis clear that
simple remappings of function signatures and object fields
are not sufficient, for several reasons.

These imply that our transducer needs tastasteful and
that it must be able to navigate object structures. At ruetim
Cake maintains two kinds of statpattern statewhich en-
ables matching of calls in a context-sensitive fashion;asid
sociation statewhich tracks sets of semantically related ob-
jects collaborating across sequences of calls. The proegram Computational power Cake is not Turing-powerful. We
mer does not manipulate this state directly, but embodies it believe that future work can semi-automate the generation
in abstract rules. Before describing these rules, we peovid of Cake code (discussed briefly in §7). Cake is emphatically
a summary of some additional design goals and a high-levelnota language for implementing new functionality, so it can
view of Cake. afford to sacrifice some computational power for tractapili

3.3 Additional goals Support heterogeneity Software is developed in a multi-
. : tude of languages and coded in a multitude of styles. We
Our design accommodates several other goals which make N . :
. . want Cake to embrace this diversity by enabling low-cost
Cake a more effective programming tool. : .
mix-and-match of heterogeneous components. Since much
Target binaries Since traces are agnostic to source code code can be compiled down to a single binary representa-
and source language, Cake affords the convenience of work-tion, Cake is well-placed for this. So far our examples have
ing on binaries—the form in which software is usually de- centred on C-language codebase; many other procedural and
ployed. To apply Cake to some installed software, it is not object-oriented languages also fit Cake’s model and could be

necessary to reproduce the build environment for that soft- supported with little effort (primarily back-end suppoaor f

exists elf reloc ("foo.0") foo { /* optional info ... x/};

exists elf reloc("bar.o") bar { /* optional info ... %/},

derive elf reloc ("foobar.o") foobar = link[foo, bar] {
foo «— bar

Cake-generated cod {

Figure 5. High-level view of an application of Cake }

4

input components Cake source Figure 7. Skeleton of a simple Cake program

mpeg2play ffmpeg

// your correspondences here...

[Cake compiler | fopen (fname, "rb")[0] — av_open_input_file(
out , fname);
minor generated generated
rewrites makefile code

values FILE «—— AVFormatContext {};

CRE

‘ conventional tools (Id, make, c++, ...) ‘

mpeg2 init() — { avcodec init();
av_register_all (); }

—

(new mpeg2 dec s);

O©CoO~NOUA~WNEPE

Figure 6. Cake’s tool flow

Figure 8. Some simple Cake correspondence rules

interposing on virtual function dispatch). Supportinger-
definedstyles of object code is planned future work.
)) pressed in a simple algebra of built-in functions and oper-
3.4 High-level view ators. The most important of theseliisk, which applies to
Fig. 5 gives a high-level view of the intended result of our a list of component names. All the correspondence rules we
video decoding adaptation task: the original components have seen would appear inside a block openedimk&ey-
bridged by some Cake-generated adaptation logic. (While word, and these account for the vast bulk of any typical Cake
our examples show only two components, Cake applies program. Since correspondence rules always relptgraof
equally well to tasks involving any number.) interfaces, rules appear in pairwise blocks, of which there
Fig. 6 illustrates Cake’s place in the toolchain. The Cake may be many for a givetink application (if linking more
compiler inputs a collection of components (in the form of than two components).
binaries) and some Cake code, and outputs Cake-generated
source code, build rules for assembling the output binary 3.5 Syntactic conventions
(out of this code and the original binaries), and possibly
some extended and relinked versions of the original bisarie
Fig. 7 shows the outline of a Cake source file. There are
two main top-level constructsxists andderive. The first of
these identifies an existing component—typically a relocat
able object file—and optionally adds descriptive inforroati
to supplement the debugging information already present.
Cake’s interface model is based on DWARF 3 [Fre 2005]
and its notions of “types” and “subprograms”. The availabil
ity of debugging information is a huge convenience which
we will assume for the purposes of this paper, although Cake
does not demand it—all such information can be supplied

within the exists block. Certain annotations may also be)
added (§4.3). 3.6 Simple correspondences

Arrows in Cake signify correspondence rules, and point in
the direction of data flow. In Cake source code, correspon-
dence arrows are rendered using angle brackets and double-
hyphens. For example, the bidirectional arrowkis->. In

this paper we typeset them directly as long arrows. Aside
from this, Cake’s syntax is familiar from other languages,
and is mostly C-like. For ease of recognition we typeset all
arrow operators specially:> denotes indirect member se-
lection as in C, and is typeset:; meanwhile=> denotes
functional abstraction as in ML, typesst; its converse=
(typeset<=) binds names to function return values (84.1).

Cake’s other essential top-level constructlésive. This Corresponding events Lines 1-2 in Figure 8 define an
describes a new component to be created by assembly an@évent correspondence, stating that a calfdpen() with
adaptation ofexisting ones. Derived components are ex- second argumentrb” should be translated to a call to

av_open input file().* Theout keyword signifies thatthe ~ nothing about e.g. how to tre&tLE objects passed across
first argument is an “output parameter” into which the logi- other interfaces. In this example the Cake compiler can au-
cal “return value” of the call will be written; Cake automat- tomatically deduce what value correspondences need to be
ically maps this to the return value expectedfbyen()— applied, whereas in a few cases it is necessary to manually
handling of this is discussed in detail later (84.6). Fipall instantiate a value correspondence.

the [0] qualifier matches only the firgbpen() call in the
client’s execution (since it may want to open other files not
for video decoding).

Programmer knowledge Like any programming tool, Cake
depends on the programmer to understand the semantics of
the domain. In writing the above rule, the programmer ex-
Corresponding values Line 4 says that #&VFormatCon- ploits two facts about the client's usage of tliempeg?2

text object (on theffmpeg side) can be created fromFiLE interface: that it is accompanied by C library calls such as
object (on thelibmpeg2 side) and vice-versa. In this in- fopen() to do the file 1/O, and that thérst fopen() call
stance, no further rules are specified and no fields are propaopens the video file—signified by tH8] suffix to the pat-
gated between the two. This is sufficient since fhieE ob- tern® Similarly, the programmer is responsible for writing
ject is completely opaque to the client. If the objects were rules which, in combination, access tffenpeg interface

not opaque, we could add rules inside the braces to de-correctly, e.g. by inserting thev _register _all() call.

scribe how their fields relate. In combination with the pre-
vious rule, Cake can now generate a wrapperfépen()
which callsav _open input_file() with appropriate param- Cake automatically drawmplicit correspondences between
eters and substitutes th®/FormatContext object with a compatible like-named elements in linked interfaces. Ker e
FILE object on return. ample, if one module requires functidoo() and another
provides it, an event correspondence is automatically draw
between them. This reproduces the behaviour of a conven-
tional linker. Since our current example is an example of
unanticipated compositigriew names match, so the gains

guage. (Although syntactically C-like, this language imeo from narr]n?-;n?tcﬂmg arelnjodeét.kH(;wtev;er, namel-n:_atchmg
pletely independent of the components’ source Ianguages,IS very helptul when applying L.ake laterface evolution
since Cake deals only with binaries.) A spegiabtfix arrow where many interface elements can be matched without pro-

syntax is provided to describe handling of a return event, grammer intervention. .
here saying that a new object of classeg? dec s should Cake extends name-matching to structured values. If two
be allocated on return topeg2 init Agaiﬁ this object is interfaces both define a clabsr, then these will be corre-

treated opaquely, so we do not need to describe its fields, SPONded: if onebar contains fieldsmplitude, breadth and
curvature, and the otheibreadth, curvature and density,
3.7 Remarks on simple Cake usage Cake will correspondreadth andcurvature, and leave the
others uncorresponded. This means that minor mismatches
in size or layout of structures are automatically adapted
Dual scoping As befits a language describing relations, around. For example, the implementation of the C library
Cake haglual scoping different sides of an arrow denote caj| fstat() often needs to adapt between kernel- and user-
different components, in whose respective scopes names argormatstat structures, owing only to layout differences and
resolved. The left-hand side of our rules always representeytra fields. Cake could perform this adaptation automati-
the libmpeg?2 client, and the right-hand side represent al- ca|ly. In the rare case where a given name-matching is not

ways theffmpeg libraries. This means that arrows may point \anted, it can be overridden by mapping the name to an al-
left-to-right or right-to-left, according to which datafidhe ternative element (if one exists) osid.

rule describes. Event correspondences are described using |dentifiers often contain meaningful structure. A com-

pattern-matching: the arrow-tail side (the “source”) Bpr plementary name-matching feature is faetern construct,
sents a pattern that the event matches, perhaps supplyingyhere a single rule can map together sets of similar event
names; these are then bound on the other side (the “sink’names using regular expression matching. The following

side) to the elements they matched in the call. We can bindfictitious example expresses three similar event correspon
events to stubs in cases, as in lines 6—7 above, where thgjences in one rule.

function correspondence is not one-to-one.

Rule selection Note that these rules only apply to inter- pattern edit_(cut|copy|paste) (w, sel, ctxt)
actions between our specific pair of components; they say — clipboard_op _\1 (w, sel, ctxt);

3.8 Correspondences for free: name matching

Compound statementsand return Lines 6—9 describe ini-
tialization of the library state. The pair finpeg initializa-

tion calls is given as a compound statement in Cake’s “stub
language”, a simple loop- and recursion-free imperatiae la

We may remark on the usage seen so far.

4Readers familiar with théfmpeg APl may notice that we have used >We briefly describe a cleaner approach to this class of rased on a
Cake’s argument defaulting support to reduce the numbergoingents in more dynamic notion of components defined by generab$iedsof traces,
the second call, for clarity of exposition. as future work (87).

Use of names is sometimes latent rather than explicit. For calls. The ellipsis functions much like %” within a regular
example, integer fields may implicitly model enumerations expression, matching any intervening character sequence,
or sets; function arguments may also be best understood bybut ellipsis matches thghortestsuch sequence rather than
their name rather than positionally. Cake supportamaes the longest. If we had left out the ellipsis, this would match
annotation for applying a vocabulary of names (e.g. perhapsonly if the two calls occurred in direct succession (among
from a separate enumeration type, or perhaps given explic-all calls across this particular interface).
itly) to functions or integer fields, in order to induce fugth
name-matching. 4.2 Generating data-dependent call sequences: stubs

Cake’s stub language offers some special features for han-
4. Advanced features of Cake dling complex data-dependent sequences of calls. These are
We saw in Section 3.2 that simple correspondences are in-illustrated by the right-hand side of the tinpeg2 _get _info()
sufficient for realistic tasks like our video decoding exam- rule begun in the previous section.
ple. This section discusses the features of Cake which make
it sufficiently powerful to tackle these real-world use-ess /* ... continued x/ — {

4.1 Corresponding sequences of events: event context av_find_stream_info(f) // in-place update to f
ponding sed & let dec..vid_idx — find(// Cake algorithm

Often when performing an adaptation, considering each call fesstreams, // among the file s streams...
independently is not enough: the correct action depends on fn x = // lambda! find the video stream

what calls have come before. To this end, Cake event pat- x<—codec——codec type == CODEC_TYPE VIDEO)
terns may be prefixed by @ntext predicatethe rule only & let codec ctxt = f;streams[dec...vidiidx] -
applies where certain preceding calls have occurred. Auto- g, |et codec = avcodec find decoder(

matic management of the state necessary to match such pat- " codec ctxtscodec id)

terns is another way in which Cake saves programmer ef- . aycodec open(codec ctxt, codec) -

fort. In our example, we use this facility when the clientre- g codec ctxt } -

trieves an object storing metadata about the video file: e te -
Cake that a call tanpeg2 get info() follows earlier calls

to fopen() andmpeg2 init(), whose arguments and return
values are significant.

Error discovery Manually determining the success or fail-
ure from every function call can get very tedious. Every ex-
pression in the Cake stub language has a “success” or “fail-
ure” outcome, logicallyseparatefrom any result value it
may yield if successful. Cake determines the success of a
function call in astyle-dependentay (as described in 84.3).
The default style assumes that functions returning sigmed i
tegers are successful iff they return zero, and that painter
Since it may be necessary to refer to values passed ofreturning functions are successful iff they return nonknul
returned during the preceding calls, context predicates ca This style is typical of a majority of C APIs. Calls that re-

bind names just like event patterns can. Tdiekeyword al- turn neither a signed integer nor a pointer are treated as al-
lows further names to be bound to return values and usefulays succeeding.

auxiliary values. This doesot denote assignment (and the .
same name may not be re-bound within a rule). In patterns Error handling - Stubs are generally not complex enough
like the above which bind names to return values of contex- t0 require try—catch exception handling. Instead, exjwess

tual calls, we can use the shortername < syntax instead can be joined with short-circuit boolean connectiy&sand
of let (see the Appendix for examples). ;|, in an idiom similar to that found in Unix shell program-

ming. Unlike the shell, success exists independently of the
result value, so the connectives are distinct from the tzoole
operator& and||. In the few cases where the style does
not detect error status correctly, the programmer canexpli
itly describe success conditions using tuecess pseudo-
variable and constantsid (which yields no value but al-
'ways succeeds) ardalil (which always fails).

// here ".." matches any intervening call sequence
let f = fopen(fname, "rb"),

let dec = mpeg2 init(), ...,

mpeg2 get info(dec) —// to be continued...

Resolving ambiguity There is a potential ambiguity in
context matchingwhich preceding call is relevant? When
acall tompeg2 get info() occurs, thdibmpeg? client has

not yet associated its decoder with an input stream. How-
ever, inffmpeg the correspondingv find stream info()

call requires an input stream as an argument. Somehow
we must match the incoming call with the relevant preced-
ing fopen() call. What if there have beemanypreceding Binding Just adet binds names to values in context pat-
fopen() calls? Cake assumes that related calls occur closeterns, it can bind names to values in stubs. These enable data
together: it matches thaearestprecedingfopen() (with dependencies between calls. Tha keyword also binds a
appropriate arguments). This is expressed using the ellip-name, and is used when calling functions have output pa-
sis (. .) to extend our pattern over unspecified intervening rameters (84.6).

Associations Sometimes bound names are not enough; a // C declaration

. . n 5 3 3 3 P 3 n
stub must navigate a data structure to find relevant argusment il/lt :ZZ(;;"‘S‘_‘“““ from int (call it ’a’) to int
to a call. The dot.j and short arrow-(>, typeset—) have the '
C-like “access member” semantics in Cake. Analogously, ,/ cae description :
the ... syntax is overloaded to denote “access associated”: // "foo is a function from int (call it 'a’) to int"
it enables formation and dereferencingasisociationde- foo: (a: int) = int; L o
tween objects or values. Associations are the mechanism for// "t is 4 bytes of the 'signed’ base type encoding

. . int: class of base signed <4>;

many-to-many value correspondences in Cake, and are dis- -
cussed in Section 4.4.

Figure 9. Interface description syntax

Lambdas and algorithms Traversing data structures algo-

rithmically is beyond the scope of Cake. However, simple do not contain debugging information, but distributorsaft
algorithms are often indispensable when performing adap- supply it as an optional extraWe encourage this practice,
tation. Cake makes a selection of algorithms available in since there is considerable value in providing debugging in
the stub language, hefend denoting linear search. Algo- formation to users (e.g. enabling higher-quality bug régjor
rithms are defined outside of Cake in an implementation-
specific way. Currently, we exploit the fact that Cake’s back
end generates*€ code: most of the € standard library’s
algorithms may be applied. Cake automatically infers wsabl
iterator definitions using itstyle-dependermtotion of lists

and arrays (84.7). Since algorithms sometimes take func-
tions or predicates as arguments, simple functions may beAnnotations The same syntax extends DWARF by accept-
defined as lambdas in the stub language. The expressiveneggg certain annotations. For example, attributesor inout

of this is deliberately constrained: lambdas may not contai can be made to function arguments, affecting how Cake ap-
other lambdas, and cannot refer to themselves, so cannot inplies value correspondences to values flowing into and out

Interface description As described earlier (83.4), Cake al-
lows programmers to supplement or replace available debug-
ging information withinexists blocks. For this, we devised a
simple textual syntax for the relevant subset of DWARF, of
which Fig. 9 shows a small fragment.

troduce recursion in the stub language. of a function call (§84.6). Some of these annotations could be
o useful to debuggers as well as to Cake; we plan to feed these
4.3 Practicalities back into the DWARF design process.

We have now seen the basics of the Cake language. In thiSComprehension As with any programming tool, we as-
interlude we diSCUSS SeVeral practical iSSUeS arising én th sume that the programmer understands the interfaces he is
use of Cake. coding against. In addition to debugging information, the
programmer might use various means to gain this under-
standing: APl documentation, source code, other code ex-
ercising the same interfaces, patterns mined from such code
[Wasylkowski et al. 2007] or reverse-engineering toolsl{Ba
akrishnan et al. 2005]. The latter is especially relevargnvh
Cake is used to compose binaries for which source code is
Source languages Cake can compose components deriv- not available. Although these means each have their short-
ing from several source languages. In this paper we havecomings, we consider these as separable problems; in this
targetted only components written in C, since our current work we assume that the combination of these techniques is
implementation lacks understanding of some incidental fea sufficient to gain the necessary understanding.

tures found in binaries originating in other languagestisuc
as name-mangling, and various DWARF constructs). Adding
such support in most cases is straightforward and is ongoing
work. (At run time, some cooperation with garbage collec-
tors is required: see 85.)

Target representation Our chosen binary representation is

relocatable object coderhis means compiled native code,

before linking, in any modern containing format such as
ELF. Most of our work has applied Cake only to static
linking, but its approach applies equally to dynamic lirkkin

Styles All components introduced by asxists block are
interpreted according to style Styles are an abstraction
mechanism designed to seamlessly support mixing and
matching of object code adopting different sets of inter-
face conventions, perhaps originating from multipleck-
Obtaining debugging information Compilers usually re- agings(e.g. component systems, application plugins, etc.),
guire acommand-line flag to enable generation of debugginglanguage implementations and/or coding styles. Styles de-
information® Most software builds released to end users termine various higher-level interpretations which th&e€a

s compiler appli_es to opject cod_e, including error-handling
An extended set of flags may be needed to generate the treatment of lists, string handling and so on. At present,
most detailed debugging information available. Wigac we)

have been usingg3 -fno-eliminate-unused-debug-symbols Cake supports only one style, the “default style”, which-cor

-fno-eliminate-unused-debug-types. We also disable inlining, since responds to the conventions typically found in components
premature inlining can potentially interfere with Caketeprocedural op-
timisation is best done at link time, when a complete calpbriz available. 7e.g. in Debian and certain other GNU/Linux distributions

written in C. However, Cake is designed to accommodate

multiple user-defined styles in the future. values (dec: mpeg2_dec_s, info: mpeg2_info_s,

sequence: mpeg2 sequence s, fbuf: mpeg2 fbuf s)

Instantiate Many clients dynamically load back-end com- «—— (ctxt: AVCodecContext, vid _idx: int,

ponents, such as plug-ins. To use Cake across these inter- p: AVPacket, s: AVStream, codec: AVCodec)

faces requires a small extra feature. Since the clientdoles n { // ensure an AVPacket exists on any flow L-to-R

call the back-endlirectly, but through an indirect dispatch void — ?(new AVPacket tie ctxt) p;

table, we provide arinstantiate primitive used alongside // picture dimensions are in sequence and ctxt

link in derive expressions. This constructs an instance of a sequence «+— ctxt {

given data structure—usually a dispatch table—and creates // width and height done automatically

a new symbol for each element in the structure. This lifts ta- display width «— width;

ble entries to first-class symbolic function names which can display height «— height; // here we assume a

be used like any other inlank block. chroma_width «—width / 2; // 4:2:2 pixel format,
chroma _height < height / 2; };

n// info.sequence always points to sequence object

info.sequence (&sequence)«—7? void;

3// special conversion required for buffers

Conveniences Theinline construct is similar texists, but
allows a component to be supplied not by reference to a
existing file, but by inclusion of a snippet of foreign source
code embedded directly in a Cake source file. These snippet
are lexed but not parsed by Cake, so any language with (Puf < frame { _ _

compatible lexical structure (up to balanced opening and PUf[0] as packed_luma_line[height] ptr

closing braces) may be used; they are de-lexed and output < data[0] as padded_line[ctxt.height] ptr;

as source files alongside Cake’s other output, and compiled PUf[1] as packed _chroma_line[chroma_height] ptr

; «—— data[1l] as padded line| ctxt.height / 2] ptr;
at the same time as Cake-generated code (85.1). —
g (85.1) buf[2] as packed chroma line[chroma height] ptr

4.4 Many-to-many value correspondences «—— data[2] as padded line|ctxt.height / 2] ptr;

In our running example dibmpeg?2 andffmpeg, the struc- P i i

tures maintained during decoding by the two libraries con- Values packed_luma_line «—padded_line { .

tain mostly the same information, but split differently amyo void (memcpy(this, that, display _width)) — veid; };
various objects. In general, while objects or values often d values packed chroma_line «—padded line {

not correspond one-to-one among different interfaces, we v0id (memcpy(this, that, chroma_width))«—— void; };
can often say that group of objects corresponds to another
group. Many-to-many value correspondences describe how
to create and update values in one group from (multiple)
values in the other. Fig. 10 illustrates this and some other fields (using the initialization rule), but will subsequignt
advanced features of value correspondences. leave them alone (there are no update rules), avoiding re-
peatedly re-initializing the fields at each traversal ofithe
terface (which might clobber updates made earlier by code
on the co-object side). The separation is asymmetric: itthe

is no separate initialization rule, an update rule will bedys
whereas the converse is not true.

Figure 10. An advanced value correspondence

Associations Each many-to-many value correspondence
createsassociationsat run time. Each instantiated associa-
tion is a tuple binding together several objects. Bindings a
formed in stubs by applying thiet keyword to in combi-
nation with the “access associated” connective, written
These tuples constitute a dynamic relation maintainedrat ru Primitive values Cake can usually deduce sensible be-
time, analogously with join tables in a relational databdse haviour for passing primitive values between components,
tuple persists as long as any bound object does. since it inherits from DWARF an understanding of all
the common encodings of primitive values like integers,

Initialization versus update Value correspondences may booleans, characters or floating-point data

distinguishinitialization from update as seen in the first
rule above. When an object flows across an interface for Tying The tie keyword can be used when allocating ob-
the first time, Cake may need to instantiate one or more jects in Cake, to specify that the allocated object should be
corresponding objectéco-objects). Initialization rules use deallocated at the same time as the tied-to object. This is
an arrow suffixed with a question mark. When initializing a common requirement in Cake, since objects created by
the right-hand side above,will point to a newAVPacket adaptation logic are normally tightly dependent on some
object. Rules without the question mark angdate rules application-domain object. Tying greatly reduces the need
Above, no update rule is needed because the client neverfor explicit object freeing in Cake. Tying may be thought
updates any state correspondingMéPacket’s fields. Al- of as a generalisation of stack-allocated objects or coethi
ternatively, sometimes a co-object’s fields have no analo- subobjects; in all these cases, one object’s lifetime @te
gous fields in the original object. Cake will initialize tlees that of some other allocation. Implementation of tyingesli

on the Cake runtime’s ability to interpose on object deallo-
cation, which is also used heavily by the Cake runtime inter-
nally (§5.4.2).

Internal reference The unusual-looking rule describing
info.sequence is used to describe the pointer structures

strncpy :
(dest: out char[len], buf: char ptr, len: size t)
= char[len] ptr;

within a group of objects. When creating aupeg2 _info_s strndup: .
structure, Cake needs to know thats¢guence field should (buf: char[] ptr, max_len: size t)
pointto the relateehpeg2 sequence s structure. Since this = char[] caller_free (free) ptr;

does not depend on any value from the right-hand sicid, _ _ _ _
appears (to denote “no value”), but the syntax is otherwise Figure 11. Enabling allocation adaptations asrncpy()
identical to any other correspondence. andstrndup()

Applying functions A bracketed stub-language expression

on one side of an arrow may be used to apply a function that singly-indirected arguments typically denote “imqe

to the outcome of the source side, for cases where someupdate’—a value passesit of the call as well asn. Cake
computation is required in order to acquire the correct-sink will apply the appropriate value correspondences on both en
side representation. (Consider a sink-side field storing antry and exit. These semantics ensure that balanced opgsatio
index into a table, while the source provides only a pointer can be reliably expressed (e.g. to insert locking and unlock
to the corresponding element—a search through the table ising as an object traverses an interface).

required.) Such functions may be applied eitbefore or A singly-indirected argument might also denotecarput
after the conversions implied by other rules, according to parameter(typically passing an uninitialised location in the
which side of the arrow the expression appears on. caller’s stack frame). Since the direction may perform a

(meaningless) conversion on contents of the stack location

Thisand that Thethis andthat keywords are pointers to >)
the argument can be annotatechas. Similarly, for objects

the local and (respectively) other-side representatibiisen . : X
value (i.e. before and after applications of the value cor- N© longer validafter a call (e.g. if deallocated during the

respondence). These pointers can be useful when applying@!l); We can annotate the pointer as ianptr argument,
functions as values traverse the interface. In the examplePr€venting any outputvalue correspondence from running.
above, both interfaces describe some buffers containiag th ~ ommonly, outputvalues flow into caller-allocated mem-
decoded data, but with a subtlety: the layout of the buffers °rY- However, some interfaces return callee-allocatedltes

not quite identical. Irffmpeg each line is padded, whereas Given simple annotations, Cake can automatically adapt be-
in libmpeg? there is no padding. The code above uses the tween mismatches in these caller-versus-callee allatatio
as keyword, which implicitly defines a new named class of Sémantics. Consider the C library functiostsncpy() and

value (equivalent to a DWARF type) and treats the value as St™dup() (Shown in Fig. 11). In the first, a caller supplies
if it were of that class. We can then supply special value its own buffer for output data to be placed in. The second in-

correspondences for that class—here these override the deStéad returns a pointer to a new buffer, which the caller must

fault handling ofuint8 t arrays, usingnemcpy() on this free when finished.

andthat to move the data in a padding-sensitive fashion. Thanks to thecaller_free annotation, Cake will adapt a
call to the first function so that it instead calls the second,

4.5 Adapting constants by post-copying the callee-provided buffer into the caller

Sometimes, correspondences occur at the level of individua Provided buffer and then freeing the former. Cake can also
values. Consider exp||c|t|y mapp|ng the individual elensen adapt a Ca.” to the Second funCtiOI’l SO that |t Ca||S the f|_r}5t, b
of two enumeration types. Cake providesaale construct ~ Pre-allocating a buffer and returning it.
for this purpose, syntactically much like a value correspon
dence but mapping constants or literals rather than fields.
Components often statically embed meaningful static Pointers may also point to arrays; as seen in Fig. 11 with
data (e.g. configuration file paths) which need to be adapted.char[], array syntax can be used to name a local field which
We support unilateral adaptation of these by rewrite rules holds the length of the array. Cake usually detects the size
in exists blocks. Strings can be matched by regular expres- of arrays at run time and applies appropriate conversions
sions, and updated in the object file by appending new static (85.3).

4.7 Arrays and lists

data and rebinding existing references. This is the oniyfor Cake also has a style-dependent notionitefables

of binary rewriting done by Cake. in the default style this includes arrays (either statycall
sized, length-affixed, or explicitly terminated as with Iaul

4.6 Input and output parameters terminated strings) and linked lists. These allow algonish

Pointers are used to perform certain forms of parameter-(find seen in Section 4.2) to be applied uniformly to any
passing. Cake’s default style assumes (unless overridden}ktyle-defined iterable.

N

4.8 Function pointers 5.1 Compiler back-end

Functions are just another kind of object. Although theirin Cake models a program as a set of communicating object
ternal structure is opaque to Cake, we already have a mechfiles—or more properly, groups of objects files, which we
anism for describing correspondences between functions,call components. Communication occurs along the control
namely, event correspondences. Passing a function panter path of the program; an “event” between two components’
equivalent to giving the recipient a capability to raiserégge interfaces occurs when control flows out of one component
across the interface between a pair of components. There-and into another. Cake is implemented by interposing on
fore, Cake will handle flow of function pointers appropri- these events: Cake-generated code runs when events occur.
ately provided there is some event correspondence defined The defining characteristic of a component s that it isrinte
across that interface whose sink expression is a simple in-nally well-matched with itself—no interposition is necass
vocation of the passed function (rather than, say, a multi- on communicatiomvithin the component.)
expression stub). Consider the following example. The current implementation of Cake assumes that inter-
component data flow occurs only through function calls,
through shared objects whose sharing was established at run
client «— library time through function calls (e.g. by passing a pointer in an
{ register callback (f, arg) — add handler(f, arg); earlier function call). This allows Cake to intervene at the
notify user cb(message, aux) «— (message, aux); } point where sharing is established. We discuss this fuither
Section 5.4. The assumption might be violated by statically
Here the developer describes how a function pointer may allocated shared variables, since sharing is established a
be passed from client to library bygister callback(). Line link time. In practice, globals shared among components are
2 adapts a mismatch in the callback registration interfdge: rare. Where they do exist, this interface is usually that of a
client requires a call namedgister _callback whereas the standard library (e.g. the C libraryi&rno) rather than one

library provides only a similar function calledd handler. suffering mismatch.
For simplicity our rules assume that the callback interface Our current Cake compiler’s back-end uses a specially
itself (e.g. the signature of functions passed ad tharam- createddwarfhpp tool to generate € headers which re-

eter) is well-matched between the two interfaces, but if ad- produce the ABIs described in DWARF information, us-

ditional adaptations are required on the function, they can ing compiler-specific attributes to match alignment and en-

be added as a lambda expression (e.g. wrapped afoiand coding where necessary. The Cake compiler outputs wrap-

add handler above). pers in the form of the € code consuming these head-
The event correspondence in line 3 is unusual becauseers, and a POSIX makefile. Cake’s algorithms and lamb-

it does not specify a name for the called function, but sim- das map conveniently onto those provided by.@/rappers

ply uses the “ ” syntax, meaning “some call” . This is be- are interposed using the linkeFsirap option, and we have

cause the because the call-site in the library is an indirect prototyped a similar mechanism using the dynamic linker's

call, so does not statically name the function it is calling. LD PRELOAD setting for the dynamic linking case. To

Without line 3, or some other rule callingtify user cb perform string rewriting and occasional other symbol re-

from library, the Cake compiler would not generate code to binding, Cake’s back-end uses a specially modified version

interpose on the callback—e.g. to apply the value correspon of GNU objcopy ©.

dences appropriate for the two components. The presence of)

this rule enables function pointers (suchhasify user cb) 5.2 Compiler status

to be correctly adapted as they are passed to the library, byAt the time of writing, our Cake implementation is not com-

substituting a pointer to a Cake-generated wrapper whieh ap plete, but is progressing fast. Code generation for is imple

plies the relevant correspondences. mented for the simpler kinds of correspondences and is a
work in progress for the remainder. The compiler back-end
4.9 Completing the example machinery, includinglwarfhpp and the modifiedbjcopy,

is complete. The Cake runtime is also very usable and has
_been used successfully in some earlier case studies involv-
Ijng script-generated wrapper cotle.

One hurdle remains in our running example, which is to
match up the decoder loops of the two interfaces use pat
terns. This requires no new Cake language features, so fo
space reasons we have left it to the Appendix, which con- 5 3 pynamic binding

tains the example’s Cake code in full.
When control passes from one component to another, Cake

behaves as if the program’s entire object graph is carried

5. Implementation . —
http://ww.gnu.org/software/binutils/

We diSCU_SS the Compiler implementation brieﬂy’ and the 9We encourage the reader to check for software releases ke web
Cake runtime in detail. pagehttp://www.cl.cam.ac.uk/%7esrk31/cake/.

over and transformed according to the set of value corre- For a pointer whose referent is statically typed with type
spondences. Itactual behaviour is subtler and less ineffi- 7, admissible reinterpretations are as follows.
cient (85.4.2).

Objects in native code are not self-describing at run time,
and the debugging information which describes them, much * If 7 is structured, reinterpretations to argro-offset con-

* If 7 is primitive, no reinterpretations are admissible.

like static types, is inherently imprecise. If debug infeem taining typeare admissible. A zero-offset containing type
tion says that a function returns a pointer t¥Vadget, and is one which contains a subobject of typat offset zero.
Window is a subclass diVidget, the function might actually We allow this to support the idiom often found in C-

return aWindow pointer. Suppose we write some Cake rules language object systefitsvhich simulate inheritance by
to adapt between two different implementations of a similar ~ zero-offset containment.

windowing toolkit. *If 7 is structured, reinterpretations to any DWARF-
recorded inheriting type are admissible. This allows
widgets_ A «—widgets_B for downcasts using DWARF’s special inheritance tag
{ // an event correspondence (which supports single or multiple inheritance).
find widget(descr) — get matching widget(descr);) _ _
values Widget «— Widget To discover themost preciseDWARF type for a given
{ /x .. %/} pointer, we use knowledge of address space layout to de-
values Window «——Window duce whether the object is in heap, stack or static storage.
{ /% .. */ % For the latter two cases, a precise type is found in debugging

information (for the allocating stack frame or static vatea
) .]) definition). This also reveals whether the object is partrof a
Cake has dynamic matching semantics. If the pointed- 5rray12 |n the heap-allocated case, we exploit our assump-
to object “is a”Window, thenWindow's rules must apply. o that the recipient might deither byte-scaleor block-

We achieve this by defining an *is a” relationship between gcaje adjustment (but not both) to derive a best-effort-solu
DWAREF types. In turn, this means assuming a certain “well- using linear programming, as follows.

behavedness” of the target code: DWARF information may

be imprecise, but not wilfully misleading. Arrays compound 1. Discover the size and start address of the object's heap
this difficulty: does a pointer point to one object, or to (or blockin bytes, using implementation-specific knowledge
into) a block containing several? If Cake decides incotyect of the heap. (This requires that custom allocators be in-
it will not app|y the correct conversions. In summary, the strumented to collaborate with the Cake rUntime.) If the

Cake runtime must be able to decide two questions about startaddress and size match the pointer and its static type,
objects. we have an answer.

2. Else test whether the heap block is an array (block-scale
adjustment): if its size is a multiple of this static type’s
size, and the pointer’s offset into the heap block is a
nonnegative integer multiple of that size, assume we have

* Given a pointer to an object, whatock-scale adjust- a pointer into an array occupying the entire heap block.
mentsmight a component make, to navigate among ob-

jects in the same array?

* Given a pointer to an object, whhayte-scale reinterpre-
tationsmight a component reasonably make, to reveal a
pointer to a larger object?

3. Else test whether the heap block is a containing object

(byte-scale adjustment): compute what (admissitde)

The two are not independent: to apply pointer arithmetic, taining typeswould have sizes matching the heap block
a component must know the element size, so we assume sizeand consistent offset. If there is a unique match, we
that a component magot do both byte- and block-scale are finished: we assume that the adjusted static type pre-
reinterpretations (unless the Cake programmer provides a cisely describes the object.
precise type by annotatiof.

Cake’s rules about allowable byte-scale reinterpreta-
tions define what we caldmissible reinterpretationg hey

If this fails, we issue a run-time warning and proceed
with an imprecise type. This is often not a problem, depend-

are designed to separate out common-case “well-behavedNd ON h(_)W the receiving component i.nterpret_s the pointer.
pointer adjustments from uncommon cases requiring annota—We consider the unknowability of precise run-time types for

tion. We call these uncommon cases “abstraction violating” heap-allocated objects as a weakness in language runtime

after prior work [Neamtiu et al. 2006] which also provides design, which hinders not only Cak(_e but also debugger_s,
evidence that they are suitably rare. garbage collectors and other dynamic analyses. The omis-

sion is often deliberate—for example, the C language defi-

10To do both would be to access an array through a pointer whatie s - -
type did not reflect the true element size. In our experiehisedccurs only A popular example is GObjedtttp: / /www.gtk.org/

when a function receives an array asaid*, but accesses the array by 12Note that we are now requiring that debugging informatisrequivalent
strengthening that type. Cake’s annotations handle tisis canveniently. annotation, be availablet run time

nition explicitly disclaims the existence of a definitiveen more precisely below.) The effect igpartially split heap—

pretation for any memory location. However, in reality,pro some objects are shared, and others are replicated (perhaps

grammers nearly alwaydo have such definitive interpreta- in alternative representations).

tions in mind. Compile-time analyses could generate peecis Enforcing this invariant is nontrivial because of the tran-

heap metadata in most cases (e.g. by examining data flowsitivity of reachability. We start by partitioning the (infi

out of malloc()), and issue warnings in others. nite) set of run-time objects into equivalence classesdase

A similar problem occurs with unions: which arm of the on their “most precise DWARF type” (85.3). Our question

union is the currently valid representation? Nontriviaéus then becomes whether Cake can allow two components to

of unions is sufficiently rare that we have left this to future share an object of a given class. We only have space to out-

work. The best treatment is to re-encode union types asline the intuition behind our algorithm here. Firstly, cates

Pascal-style variant types: these are supported by DWARF,the DWARF types of all objects which arelated between

and the re-encoding can be expressed as annotations in @ach pair of interfaces. We call this theaster type rela-

Cakeexists block. tion for that pair, and it is enumerated by the set of of value
correspondences established between the two components

5.4 Adapting objects (including those made by name-matching). Next, we define

We consider objects to be structured values viwtio key a binary relationrepresentation compatibilitpn DWARF
additional properties: identity and lifetime. types, recursively as follows.

5.4.1 Object identity * For a structured type: if the two structures define identical
Cake understands objects’ addresses in memory as their sets of field names at identical offsets, and for each like-
identities. At run time, it maintains a table called tbe- named field the field’s type is representation-compatible,
object relationwhich maps related identities to each other. ~ then the structures are representation compatible.

As pointers pass across an interface, Cake substitutes poin « For a pointer type: all pointers are representation compat-
ers to appropriateo-objectsUsually, for a given tuple in the ible. We account for reachability in a separate step (be-
co-object relation, exactlgneobject was allocated by user low).

code; the others were allocated by Cake when a pointer to the
first object, or some subsegent co-object, was pagsesh-
ciations(84.4) are implemented by mapping each object to
an Cake-generatatmbrella objectwhich contains pointers The “possibly shareable” set is those pairs in the mas-
to other objects in the association. At present this coimstra ter type relation that are representation compatible. Mot a
an object to be participating in at most one association at aof these are actually shareable, because they might contain
time, although we intend to relax this to one per correspon- pointers to objects which are not shareable. We generate the
dence rule, by giving each association rule a run-time tag. “definitely shareable” from the “possibly shareable” set by

. I removing (until a fixed point) pairs where, given a pointer
54.2 Object lifetime to somegsﬁared object,pboth) cpomponents c%uld reffch some
When applying value correspondences to produce trans-piece of memory about which their expectations are not rep-
formed versions of objects, Cake must allocate memory. resentation compatible. We do this by consideringtipe
This memory has a lifetiméied to the user-managed ob- reachability graphas the connected digraghi, £) whereE
jects that caused its allocation. Implementing tying reggii includes(v:, v») iff a pointer to typev; can yield a pointer to
interposing on object deallocation. In the case of heap-deal typew, by eithermember selectioar an admissible reinter-
location (withfree() or other heap-specific mechanism) this pretation (85.3). We must label each edge to identify which
is straightforward. For stack-allocated objects, Caketmus member was selected or what interpretation was applied,
interpose on cleanup of the allocating stack frame. This is then remove anya, 3) if there exist someon-shareable
implemented by replacing the on-stack return address éor th o’ and3’ reachable respectively fromandg by analogous
allocating frame with the address of a handler. This handler paths in each’s type reachability graph.
uses the stack pointer to identify which frame is returning, = We conclude this discussion with a few notes.

deallocates any tied objects, and jumps back to the intended)) .
return address. Opaque and ignored pointers A technique complement-

ing this algorithm is to obtain more precise information
5.4.3 Sharing objects about the interpretatiorsach componennakes of its ob-

As described so far, each component appears to have ité_ects. If a compon_ent always ignores some field in an ob-
own heap, completely separate from other components’. Inject, or treats a pointer opaquely, this can enable more shar
fack:.’ C?:(ets”qws S_hal’l?hg tOf Oer]eCts betweetn ComplonentsﬁlaA subtlety here is enumerations, bitfields and other engsdiayered
subject to the invariant that each component can only réachonio primitive types. We rely on programmer annotation terpret these,
objects whose representation it understands. (We defise thi for example using theames construct (Section 3.8).

* For a primitive type, the types are representation compat-
ible if and only if size and encoding match exacly.

ing. We are working on support for this using programmer- be reimplemented in Cake and was left as-is (to be linked
suppliedopaque andignored annotations; future work could alongside the Cake-generated code).

infer these by analysis. o . - L .
Limitations Even if Cake did little to simplify code (which

Update propagation and multithreading The “partially is far from true), there are inherent benefits in Cake’s black
split heap” is compatible with multithreaded programming, box, binary approach which are not substantially evalu-
but our current propagation policy is not. Specifically, we ated here. Our goals with Cake are not simply to provide
currently use a policy of propagating updates betwakn a marginally better way of coding adapters, but rather to
replicas whenever control passes between components; thignable a shift in development practices towards integratio

is correct in the single-threaded case, although slow (be-based approaches and away from reimplementation and in-
cause of potentially high update volumes at each interfacevasive editing. Clearly this cannot be achieved or evatliate
crossing). To reduce the update volume, points-to analysisin small-scale studies.

could produce a tighter bound on which objects’ updates

may be needed during a given call. Our policy also risks 6.1 Bridging related componentsiibp2k

deadlock in multithreaded programs where more than oneFfjlesystems are a ubiquitous abstraction: filesystemitike
Component contains active threads at a given inStant, Sinceterfaces are imp|emented deep within Operating System ker-
depending on the program’s control flow, updates may nevernels, but also in graphical desktop environments, in web
be propagated. A periodic background sync thread could en-servers and elsewhere. The programming interfaces behind
sure liveness, but since this might activate mid-update, en \yhich filesystems are implemented are invariaihgtractly
suring safety is a problem: it could most likely be solved sjmilar yet often concretely differentand conventionally

like the analogous problem in dynamic software update coded adapters exist between some of them. We took the
systems, using “quiescent update points” [Neamtiu et al. |ibp2k adapter [Kantee 2009] from NetBSD, which adapts
2006] and programmmer-annotated “propagation points” petween NetBSD's native user-space filesystem implemen-
[Neamtiu and Hicks 2009]. A final problem in the multi- tation (uffs) and a special environment for running unmodi-

threaded case is conflicting updates to separate replicas ofied kernel code, including filesystems, in user-space),
(logically) shared state. To solve this, shared-writealle and reimplemented it using Cake.

jects could be managed using an alternative replicatiee-fr Figure 12 shows a large portion of the Cake code for this

approach, using memory protection techniques to trap up-task. We were fortunate to have a one-to-one correspondence

dates. between most calls in the two interfaces, with well-matched
naming conventions; this is captured neatly in tpadtern

6. Evaluation rules (labelled “hunk 1”).

Cake's major advance is as a convenient, powerful adap- There are some simple correspondences between objects

tation tool which can be applied to real-world tasks. we N the two interfaces (hunk 2). Somemp library calls
therefore evaluate it by identifying a series of examplegas €@ve theirvnode target unlocked, so we need not apply

which havealreadybeen performed using conventional ap- RUMP_VOP_UNLOCK() in those cases (hunk 3). These

proaches, and comparing this code to the equivalent Cakec@lls are exactly those which may modify the filesystem’s di-
ectory structure; such calls also require the referenoatco

code. We discuss each task briefly and report aggregate mea” o X .
surements for both versions (lines-of-code counts, tokena ©f any modifiedvnode to be pre-incremented to avoid pre-
statement counts). Since we currently lack a complete imple Mature reclamation, as captured by #hede_bump rules.

mentation of Cake, reimplementing existing adapters is thi Somerump functions return output values through pa-
way is useful, because we can nevertheless gain reasonabl@Meters (hunk 4a). Theffs interface requires these to be

assurance that our Cake code is complete by checking thaP2SSed through an opaque objeatfs _newinfo, populated
all of the original logic is accounted for in the Cake version using setter functions. We can express this firstly by descri
ing whichrump calls’ arguments are outputs, and secondly

Measurements Although we use count-based measure- by providing value correspondences betwpeffis newinfo
ments, we appreciate their shortcomings. Cake’s lower and the relevamump structures.

counts certainly originate partly in improved abstractiount Code inlibrump originated in the kernel, where client
perhaps also to incidental factors such as a reduction In boi reading and writing of file data requires address-space
erplate code. We have partially remedied this by providing traversal. The four relevant calls use a special interface
“adjusted” counts for C code, made after erasing common C called uio for passing this data. To us, this is just a new
boilerplate (specifically, variable declarations and fiorc way of packaging parameters for input and/or output, and is
prototypes), but this is an ad-hoc adjustment which stdslo handled by a few more correspondences.

not account for certain other areas where Cake’s syntax may The rules shown generate complete implementations of
be more concise (e.g. error-path control flow). The “remain- all but six of the 28p2k wrappers. The omissions are ex-
ing” column in our tables refers to C code that could not plained by special error-handling requirements, one-oyn

// hunk 1: basic event correspondence patterns
pattern puffs fs (.x) { names (mount:)}
—— rump_vfs \1 { names (mount:) };
pattern puffs node (.x) { names (mount: , cookie: _ as
vnode unlocked ptr) }
—— RUMP_VOP_\U\1\E { names (cookie:) };

// hunk 2: basic value correspondences

values puffs usermount (puffs getspecific (this)) — mount;
values puffs cred (cred create(this)) — kauth cred;
values puffs cred «——(cred destroy(this)) kauth cred;

// hunk 3: more value corresps incl.
values vnode unlocked —
({RUMP_VOP LOCK(that, LK EXCLUSIVE); that}) vnode;

special unlocked-return

values vnode unlocked «——(RUMP_VOP UNLOCK(that, 0)) vnode;

values puffs cn (makecn(this)) — component name;
values puffs cn «—(freecn(this, 0)) component name;
values vnode bump —
({RUMP VOP LOCK(that, LK EXCLUSIVE);

rump vp_incref(that); that}) vnode;
values vnode bump «—vnode; // unlock not required
puffs_node create(mount, vn as vnode bump, ni, cn, vap)
— RUMP_VOP_CREATE(vn, ni, cn, vap);
puffs node mknod(mount vn as vnode bump, ni, cn, vap)
— RUMP_VOP_MKNOD(vn, ni, cn, vap);
// ... similar for remove, link, rename,

// hunk 4a: how to output parameters by "newinfo"

values puffs newinfo ({puffs newinfo setcookie(this, that); this})
«— (RUMP_VOP UNLOCK(this, 0)) vnode;

// Some calls return a fuller set of newinfo

values puffs full newinfo ({puffs newinfo setcookie(this, that);

puffs newinfo setvtype(this,
puffs newinfo setsize(this,
puffs newinfo setrdev(this, rdev);
({let (vtype, vsize, rdev) = rump getvninfo(this); this}) vnode
// hunk 4b: tell Cake which calls need " full " newinfo...
exists elf archive (" puffs.a") puffs; // this hunk would appear at
derive elf archive puffs inst = // ...the top of the .cake file
instantiate (puffs, puffs ops, pops, "puffs");
puffs _inst { declare {
puffs fs fhtonode : (
out puffs newinfo as puffs fuII _newinfo) =
puffs _node lookup : (
out puffs newinfo as puffs full)= 1}

vtype);

vsize);
this }) —

__newinfo,

// hunk 5: shared locking
values vnode lkshared

— ({RUMP_VOP _LOCK(that, LK SHARED); that}) vnode;
values vnode lkshared «—({

RUMP _VOP UNLOCK(that, 0); that}) vnode;

// hunk 6: input/output by uio
values uio outbuf (buf: uint8 t[] ptr, resid: size t ptr,
off: const off t)—— (rump uio setup(that—buf,
xthat—resid, that— offset, RUMPUIO READ)) uio;
values uio outresult «—(rump uio free(this)) uio;
values uio_outres len off —({rump uio_getresid(that—resid);
rump_uio_getoff(&that—readoff);
rump_uio_free(this)}) uio;
puffs _node read(mount, vn as vnode lkshared,
uio as uio outbuf(buf, resid, offset),
, resid out as uio outresult, cr, ioflag)
— RUMP_VOP_ READ(vn, uio, ioflag, cr);
// similar : readlink , readdir, "uio_inbuf" and write

Figure 12. Selected rules from the2k study

C adjusted| Cake | remaining C
LoC (nbnc)| 605 | 523 133 | 54
tokens 3469 | 3137 1131 | 347
semicolons | 358 | 277 69 33

Table 1. Comparingp2k implementations in Cake and C.

function mappings, and function correspondences which do
not follow the naming convention. They were easily handled
by a few more event correspondences (not shown).

In summary, Cake can express thgk component in
a fraction of the code size, and in a way which localises
each concern of the two interfaces’ syntactic and seman-
tic differences far more clearly than the existip@k code.
For example, treatment of unlocking and reference count-
ing is handled by discrete and localised rules, rather than
being scattered throughout the code. The only logic re-
quired which Cake couldn’t adequately express was about
40 lines of C code irp2k.c which load the filesystem (the
p2k run fs() function). This loader is necessary because
puffs only calls intop2k indirectly, through a table of func-
tion pointers passed during initialization. We instargtititis
table using Cake'sistantiate helper (84.3).

Table 1 shows the aggregate comparison of Cajeks
with the original implementation.

6.2 Migration between support libraries: ephy—webkit

Another area of continuing evolution is in web browsers. The
Epiphany web browsét migrated during 2007—08 from a
Mozilla-based HTML display widget to supporting adition-
ally a Webkit-based one. We compare Epiphany’s internal
WebKitEmbed adaptation layer with a Cake implementa-
tion.

Since the developers of Epiphany chose to strip out the
adaptation layer around July 2008, after Webkit migration
was completed, to target Webkit APIs directly, we used
Subversion revision 8300 (28 June 2008) and isolated the
adaptation logic in clas®VebKitEmbed for Cake reim-
plementation. (Although there is no relevant discussion in
the changelogs or mailing list archives, clearly the devel-
opers anticipated no future need to change the target API;
this strikes us as optimistic.) For simplicity, we left &s-i
some additional adaptation code handling cookie manage-
ment, password management and certain other functiopality
since this contained only no-op implementations in our cho-
sen revision. Similarly, we retained the utility class#'s-
bKitEmbedPrefs andWebKitEmbedHistoryltem for use by
our adaptation logic; these could be implemented in Cake,
but owing to their small size, their C code is dominated by
boilerplate, so would not give a useful measurements.

Epiphany uses subclassing (using the GObject library) to
connect arEmbed object with a Webkit instance: the sub-
class’s fields point to Webkit resources. In Cake we use an

4http://www.gnome.org/projects/epiphany/

association: the Embed object is associated with the neleva
Webkit objects.

values EphyEmbed «—(web_view: WebKitWebView,
scrolled window: GtkScrolledWindow,
load state: WebKitEmbedlLoadState,
loading _uri: char []);

Most of the calls between the two interfaces map very
directly. Some are left unimplemented by Epiphany; these
are mapped to empty stubs in Cake.

ephy load(embed, url as raw url, flags, preview embed)
— { let embed...loading url = url;
webkit _web view open(embed...web view, url); };

ephy stop load(embed) —

webkit web view stop loading(embed...web view);
ephy can go back(embed) —

webkit web view can go back(embed...web view);
ephy can go forward(embed) —

webkit web view can go forward(embed...web view);
ephy can go up(embed) —{ false };

C adjusted| Cake | remaining C
LoC (nbnc)| 525 | 513 161 | O
tokens 2529 | 2455 784 | 0
semicolons | 175 | 163 70 0

Table 2. Comparison oéphy—webkit in Cake and C.

browser and its back-end are relatively simple, Cake’s pow-
erful rule-based value conversions do not pay off as heavily
as inp2k. Table 2 shows the aggregate comparison of the
original implementation and Cake’s.

6.3 Evolving interfaces in distributed systemsXCL

Codebases in long-lived distributed systems accumulate
complexity over time. Occasionally developers choose to
redesign the client interfaces to shed this complexity and
better serve current needs. Such an initiative began in the
X Window System around 2003, when a new client library
XCB was proposed to replacdib. For clients ofXlib, an
adaptation layer calledCL [Sharp and Massey 2002] was

The two components exchange history item ODJeCtS. jeyised. We took a small but representative subset of the
Value correspondences are provided. Note that in both cases,~| source code (around 600 raw lines out of 6000) and

these are passed @kist objects, but with different payload
types. Our object-sharing analysis (85.4.3) correctlgloas
this: the list nodes are not shared. We rely on explicit spe-
cialisation of thevoid pointers in eacl&List node. Without
this, the pointed-to objects would not be explored by the
Cake runtime.

// in Epiphany "exists"

ephy get forward history: () =>GList of EphyHistoryltems;

// in Webkit "exists"

webkit web back forward list get forward list with limits:
() = GList_of WebKitWebHistoryltems;

// in "link "
ephy get forward history(embed)
—{
let full list =
webkit web view get back forward list(embed...web view);
let copied sublist
webkit web back forward list get forward list with limits(
full _list , WEBKIT BACK FORWARD LIMIT);
copied sublist };

Epiphany provides code to manually walks and convert
the two history lists. Our code simply treats the list as an

reimplemented it using Cake.

Since XCB is designed to be more minimal thadiib,
there is a small abstraction gap between the two. As a result,
some utility code fromXCL whose purpose was to bridge
that gap was retained unmodified for use with our Cake im-
plementation. Meanwhile, many data structures are shared
verbatim betweeiXlib and XCL, so there was only limited
opportunity to exploit the expressiveness of value cooasp
dences.

This study exposed a flaw with the current Cake lan-
guage: it has no means to factor out cross-rule commonal-
ity which cannot be captured using value correspondences.
In XCL there is some such commonality. For example, sev-
eral Xlib calls for setting window properties map to the
XCBChangeProperty call, which takes many arguments. In
XCL, there is anXSetProperty function which abstracts
away most of these arguments, and series of dothiercalls
are implemented using this function. In Cake we were forced
to implement each as a verbose calKioBChangeProperty
instead, making the Cake version longer than the C version.

object graph and applies the relevant value correspondence // longhand in Cake, repeating the XCBChangeProperty call

Pattern-matching on event correspondences also simplifieg(setw

the load and manager do_command functions. Finally,
a small benefit in the Cake implementation is a relative
lack of boilerplate: whereas Epiphany’s use of the GObject

MName(dpy, w, tp) —XCBChangeProperty(
dpy, PropModeReplace,

w, XA WM NAME, tp—encoding,
tp—format, tp<—nitems, tp—value);

library necessitates somewhat verbose C code to perform// shorthand in ¢, using ISetTeztProperty convenience
downcasts and populate a dispatch table, by contrast Cakeroid XSetWMName (Display *dpy, Window w, XTextProperty *tp)

can succinctly instantiate the table usimgtantiate. Since

{ XSetTextProperty(dpy, w, tp, XA_WM_NAME); }

associations are formed dynamically and navigated using Table 3 shows the aggregate comparison of the original

run-time metadata, downcasts are unnecessary.
This case study proves a fair demonstration of Cake.

implementation and Cake’s. We were disappointed not to
make bigger savings in this study. The abstraction gap con-

However, since the data passed back and forth between thdributed some additional complexity to the Cake code, as did

C adjusted| Cake| remaining C preprocessor (e.g. to redirect function calls). Stylehes
LoC (nbnc)| 380 | 315 189 | 42 more indispensable when targetting components written in
tokens 2581 | 2328 1543 | 232 other languages. For example, comfortable support for C
semicolons | 187 | 148 107 | 19 and Java requires styles to interpret name-mangling cenven
tions, virtual function dispatch and exception handlingr O
Table 3. Comparison of aiXCL subset in Cake and C. immediate future work is to tackle these and related issues.

Scale Our evaluation case studies are relatively small.
the asynchronous style of dispatch in X@B interface, and However, we would expect interface size or “surface area”
the fact thatXlib’'s return Conventions, which return 1 on to grow Sub]inear]y with both component size and program
success, do not match Cake’s default style of error report- sjze (“volume”). A deeper study of this is warranted.
ing (84.2). We hope that support for styles in Cake willbe _))
able to abstract these more cleanly in the future. Had we Bidirectionality - Currently in Cake, only the simplest cor-
had the resources to implement the whole of XCL in Cake, respondences may easily be made bidirectional. In future
we would expect better figures, since greater commonality WOrk we hope to unify stubs and patterns somewhat, so that

would be extracted by value correspondences. more rules can be naturally bidirectional. For instance, a
stub which doesa(); b() can be treated as a pattern which
7. Discussion and future work matches the sequeng@, b() in the reverse direction. Stubs

i i which restrict themselves to reversible programming con-
Performance Achievable performance using Cake de- girycts, much likdensesBohannon et al. 2008], could be

pends greatly on the “cut” of the interfaces being composed. interchangeably rendered as patterns in this way.
We have several reasons to believe that Cake’s generated

code can be efficient in many cases: it is often remarkably Automation Cake’s correspondences are effectively a some-
similar to hand-written code (particularly thek study),and ~ What strengthenesdpecificationsuch as might be fed to a
link-time optimisations can be applied after Cake has done converter synthesis algorithm [Passerone et al. 2002]. Sti
its work. The relatively slow uptake of link-time optimisa- Missing is a description of thgrotocolsof the input compo-

tion Suggests that Cross-”brary calls are rare|y perfma nents, so that the trickier aSpeCtS of control structurebean

critical (cf. intra-library calls). Finally, there is hugeope inferred automatically. Recent work on object usage paiter

for adding further annotations and analysis to allow genera mining [Wasylkowski et al. 2007] extracts exactly this info

tion of faster code. mation; this could be a basis for greater automation of Cake
coding.

Applicability Cake’s range of applicability can only be
discovered in the longer-term, but its underlying model is 8 Related work
highly general and certainly not limited to procedural inte
action. Cake’s design might apply particularly well to dis-
tributed systems where storage is naturally replicatecemor
than it is shared.

Cake is primarily an adaptation tool, and combines many of
the techniques in foundational work on procedural adapta-
tion [Purtilo and Atlee 1991] and protocol adaptation [¥ell
and Strom 1997, Passerone et al. 2002, Bracciali et al. 2005]
White-box complement Cake only tacklesvell-abstracted Jigsaw [Bracha et al. 1993] is an early system proposing lim-
tasks (§3). Binary instrumentation systems, such as Pik [Lu ited adaptation and composition abstractions for binaries
et al. 2005] could make an extremely useful complement to None of this work has Cake’s support for complex object
Cake for turning ill- into well-abstracted tasks, but we édav structures (85), nor many-to-many correspondences among
yet to investigate this. values (84.4), nor Cake’s level of expressiveness in data-
dependent function correspondences. More generally, none
presents a complete and practical tool design nor experimen
tal evaluation on realistic use-cases.

Cake’s interface correspondence rules are similaoto-
position rulesfound in subject-oriented programming [Har-
rison and Ossher 1993], although the latter is neither &blac
box approach (since rules may range over all source arti-
facts) nor specialised for adaptation tasks. Cake’s natfon
value correspondences is somewhat similar to “typemaps”
in Swig [Beazley 1996]. Swig targets a strictly smaller prob
Binariesand styles The programmer must understand two lem (interoperation between CfCand scripting languages)
versions of their interface: source-level and binarydeve than Cake, and has a clear directional bias (the script-inter
With C code (the “default style” target) these two views face isgenerated fronthe C one) which constraints its order
are usually very similar, but can be obscured by use of the of application. Cake’s treatment of pointers, being able to

Dynamic component structure Cake currently identifies
“components” by interfaces visible statically in objectleo
Often, however, the same static set of functions and data-
types can realise logically quite different componentsiat r
time. For example, twbILE objects might each constitute a
logical componentto which different adaptation rules dtiou
be applied. A refined notion of component interfaces as
“slices” of a trace, identified by patterns much like event
sequences (84.1), could support such use-cases.

translate entire object graphs at a time, is far more expres-Dominic Orchard, Robin Message, Jukka Lehtosalo, Derek

sive than Swig's. Murray, Steven Hand, Chris Smowton, David Evans, Atanu
Recent work has furthered adaptation as a language fea-Ghosh and Alan Lawrence. This work was supported by an

ture in G+ code [Jarvi et al. 2007], as a compatibility tech- EPSRC Doctoral Training grant.

nigue in cooperation with refactoring tools [Dig et al. 2D08

and as a source-to-source translation for Java code [Nita an References

N_Otk'n 2010]. The Iatter_ work, N'ta_ and NOtk'n’S_“th'_ F. Arbab and F. Mavaddat. Coordination through channel @amp

ning”, shares many of its goals with Cake. While their sition. InProc. Coordination pages 21-38, 2002.

tOOI.SUDportS a StITICtIy smaller set of adaptations thaneQ_ak G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.

(which does not include the breadth of context-sensitive, -~ qesurfer/x86—a platform for analyzing x86 executablies.

stateful or many-to-many mappings for which Cake was de- pyoc. 14th Intl. Conf. Compiler ConstructipB005.

signed), Cake lacks its “deep adaptation”, meaning the abil DB . . . L
. Beazley. Swig: An easy to use tool for integrating scrigti
ity to fgctortwo variant components into a single component languages with C and C++. Proceedings of the 4th USENIX
targeting a more abstract API. ~ TcliTk Workshoppages 129-139, 1996.

Cake is aIso_ a component assembly Ia_nguage. It Was. In_A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
quence(_j by Knit [R_e'd etal. ZOOQ]' but_radlcally extends its A. Schmitt. Boomerang: resourceful lenses for string déta.
adaptation capabilities. It shares its deliberate conjmunal Proc. POPL '08 pages 407—419. ACM, 2008.
constraints with SuperGlue [McDirmid and Hsieh 2006], but
applies to a different programming problem. Other work
in component orchestration and coordination, such as Reo
[Arbab and Mavaddat 2002] or Orc [Misra and Cook 2006]
generally does notinclude adaptation as a primary goal, and
consequently lacks a full feature-set, but sometimes never
theless caters to some adaptation use-cases in a black-bo
style similar to Cake’s.

Flexible Packaging [DeLine 2001] is perhaps the wor
with most closely aligned long-term goals to Cake, in seek-
ing to separate functionality from integration, but takes a . . .
clean-slate approach. It also concerns only matters of’sty DWARF Debugging Information Format versionBree Standards
(Cake’s analogy wittpackaging rather than detailed inter- Group, December 2005.

face mismatch (since it is envisaged that the packaging au-E- Gamma, R. Helm, R. Johnson, and J. Vlissi@i#sign patterns:
thor would also write code to adapt the details). elements of reusable object-oriented softwakedison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1995.

9. Conclusions W. Harrison and H. Ossher. Subject-oriented programming: a

)]] critique of pure objects. ACM SIGPLAN Nof. 28:411-428,
We have presented the design and implementation of Cake, 1993,

a Ianguage Qesigned_to abstract the adaptation, compps_itio 3. Janvi, M. Marcus, and J. Smith. Library composition anaiua-

and integration of mismatched components by describing {5 ysing C++ concepts. IRroc. 6th Intl. Conf. on Generative
abstractrelations between component interfaces. Our im- programming and Component Engineeripages 73-82, 2007.
plementation for native binaries finds novel use for debug- A. Kantee. Rump file systems: Kernel code reborrPloceedings

ging information and applies novel techniques to enable dy- ¢ the 2009 USENIX Annual Technical ConferenBerkeley,
namic behaviour and selective sharing of objects exchanged ca UsA, 2009. USENIX Association.

by such code. We have demonstrated how Cake’s features- « |,k R. Cohn. R. Muth. H. Patil. A. Klauser. G Lowney.
apply to real coding tasks, and our application of Cake 10 g wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
three real case studies demonstrates its ability to yied si tomized program analysis tools with dynamic instrumeaotati
pler, better modularised code. In Proc. PLDL ACM, 2005.

A. Bracciali, A. Brogi, and C. Canal. A formal approach to com
ponent adaptationl. Syst. Softw74:45-54, 2005.

G. Bracha, C. Clark, G. Lindstrom, and D. Orr. Module manage-
ment as a system service. @OPSLA Workshop on Object-
oriented Reflection and Metalevel Architectyr&893.

Q. DeLine. Avoiding packaging mismatch with flexible pacieayg
IEEE Transactions on Software Engineeri2§:124-143, 2001.

K D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA: a tool fo

generating binary adapters for evolving java librariesPtoc.
30th Intl. Conf. Softw. Engpages 963-964. ACM, 2008.

S. McDirmid and W. Hsieh. SuperGlue: Component programming
Acknowledgments with object-oriented signals. IECOOP 2006 Springer, 2006.
The author is grateful for feedback and encouragement fromJ. Misra and W. Cook. Computation orchestration: A basis for
David Greaves. Amitabha Roy suggested using the on-stack wide-area computing.J. Softw. & Syst. Modeling:83-110,
return address to interpose on stack frame cleanup, and pro- 2006.
vided code. Jamey Sharp provided valuable support for thel. Neamtiu and M. Hicks. Safe and timely dynamic updates for
XCL case study. This version has benefited from helpful sug- multi-threaded programs. Proc. PLDI 09, pages 13-24, 2009.
gestions from Michael Hicks, Jon Crowcroft, Tim Deegan, |. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynia
Tim Harris, Orion Hodson, David Greaves, Alan Mycroft, software updating for C. |Rroc. PLDI’06. ACM, 2006.

M. Nita and D. Notkin. Using twinning to adapt programs to chroma_width «—width / 2; // 4:2:2 pixel format

alternative APIs. IrProc. 32nd Intl. Conf. Softw. EndEEE, chroma_ height «— height / 2; };
2010. /I info.sequence always points to sequence object
D. Parnas. On the criteria to be used in decomposing Systeams i info.sequence (&sequence)«—7 void;

modules.Communications of the ACM5:1053-1058, 1972. /I special conversion required for buffers
fbuf «— frame {

R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni buf[0] as packed luma line[height] ptr

Vincentelli. Convertibility verification and converter rshesis: «— data[0] as padded_line[ctxt.height | ptr;
Two faces of the same coin. Rroc. Intl. Conf. Computer-Aided buf[1] as packed_chroma_line[chroma _height] ptr
. «— data[1] as padded line[ctxt.height / 2] ptr;
Design 2002. buf[2] as packed chroma line[chroma height] ptr
J. Purtilo and J. Atlee. Module reuse by interface adaptatio [data[2] as padded_line[ctxt.height / 2] ptr;
Software — Practice and Experiencl:539-556, 1991. }
. . . values packed luma line «——padded line {
A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: void (memcpy(this, that, display width))<— void; };
Component composition for systems software. Froc. 4th values packed chroma_line «—padded _line {
OSDI, pages 347-360. USENIX Association, 2000. void (memcpy(this, that, chroma_width))«—— void; };

J. Sharp and B. Massey. XCL: An Xlib compatibility layer for I+ The loop in ffmpeg proceeds frame-by-frame, whereas in fibg2

. . x each iteration might yield zero frames (in the STATE_BUFFER
XCB. In Proceedmgs of the FREENIX Track: 2002 USENIX x case)+orx one or more frames (in the STATE_SLICE case). Solve

Annual Technical Conferenced SENIX Association, 2002. « this by ensuring that each iteration yields exactly one &am
. - . . * d by both lib d client/
A. Wasylkowski, A. Zeller, and C. Lindig. Detecting objectage mpi‘g;""s,,i,siﬁg’ﬁf;fgl y_, 0{t \,oi'd r?ry and - client
anomalies. IrProc. ESEC-FSE 'O7pages 35—-44. ACM, 2007. B —

) o STATE BUFFER;
D. Yellin and R. Strom. Protocol specifications and compoénen /» Notice use of [0]: "the first call to mpeg2_parse ()

adaptorsACM TOPLAS$19:292-333, 1997. = *on a given dec, for all dec returns STATE_BUFFER/

I+ Reading from the input file handle must also be mapped to an

x ffmpeg library call. Since success of fread () entails a rmetu
A. Comp|ete examp]e * value of nmemb, we must return this, irrespective of the size

+ of the frame actually read. This is a rare example where error

. . * - reporting conventions must be explicitly satisfied in stub/
exists elf reloc("libmpeg2play.o") mpeg2play;

exists elf external sharedlib ("avcodec") avcodec; let f = fopen (fname, "rb")[0], ,

exists elf external sharedlib ("avformat") avformat; let dec = mpeg2 init(), ...,

exists elf external sharedlib ("avutil") avutil ; fread(_, , nmemb, f) —

alias any [avcodec, avformat, avutil] ffmpeg; { { av_read frame(dec...packet, f) ;& nmemb } ;| 0; };

derive elf_reloc("mpeg2play2ffmpeg.o") program = link| /+ Since ffmpeg handles input buffering for us, no
mpeg2play, ffmpeg » action is required on a call to mpeg2_buffer (}/

mpeg2 buffer(_, /xbufx/ , /xbuf + sizx/) — { void };
mpeg2play «— ffmpeg - - - -

. I+ The client calls mpeg2_parse () to request decoded framdss T
fopen (fname, "rb")[0] — av_open input_file(out , fname); » ftranslates to a call to avcodec_decode video (). Since oarliee
values FILE —— AVFormatContext /x{} «/; » call to av_read_frame () may have returned a frame from a
mpeg2_init() — { avcodec_init(); » different stream (e.g. an audio stream in the same file), we ha

av_register_all() } * two cases to consider. These map directly to the libmpeg2 staots
*

— STATE_BUFFER ("must read more data ") and STATE_SLICE ("@memore
{new mpeg2 dec_s}; » decoded frames available "), distinguished by an if--therlse. */
f <« fopen (fname, "rb")[0],
let f = fopen(fname, "rb"), ..., dec < mpeg2_init(), ...,
let dec = mpeg2_init(), ..., size < fread(, , nmemb, f),
mpeg2 get info(dec) —{) mpeg2 parse(dec) —{ let frame avail = (
av_find stream info(f) // in-place update to f if dec...packet.stream index == dec...vid idx
i& let dec...vid_idx = find(// standard algorithm then { av_free(dec..frame); // this is null - safe
fstreams, let dec..frame = avcodec alloc_frame();
fn x = x—codec—codec_ type // lambda! avcodec decode video2(dec...codec ctxt,
== CODEC_TYPE_VIDEO) frame, out got picture, dec...packet);
;& let codec ctxt = f<streams[dec...vid idx] true } -
;& let codec = avcodec find decoder(else false)
codec ctxt—codec id) 1o
;& avcodec open(codec ctxt, codec) -
i& codec_ctxt }; --{ if frame avail then STATE SLICE
)) B else STATE BUFFER };
values (dec: mpeg2 dec_s, info: mpeg2 info_s, /~ Notice the special reverse -arrow syntax for returning. @&dwer,
sequence: mpeg2 sequence_s, fbuf: mpeg2 fbuf s) « the special "--{" (" continuing ") syntax retains all namendings
«—— (ctxt: AVCodecContext, vid idx: int, « from the preceding stub./
p: AVPacket, s: AVStream, codec: AVCodec)
{ /= Finally , we relate the state tear-down calls of the two famsgs. »/

/I ensure an AVPacket exists , on any flow L-to-R

X X mpeg2 close(dec) — { av_ free(dec...picture);
void — 7(new AVPacket tie ctxt) p; - (dec) { av_free()

avcodec close(dec...codec);
) .) . av_close input file(dec...ic); }
/I picture dimensions are in sequence and ctxt - - -

sequence «—— ctxt { { delete dec };
/I width and height done automatically } /I end mpeg2play— ffmpeg
display width «— width; }; /I end derive

display height «— height; // here we assume a

