
Component Adaptation and Assembly Using Interface Relations

Stephen Kell

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom�rstname.lastname�
l.
am.a
.uk
Abstract
Software’s expense owes partly to frequentreimplementa-
tion of similar functionality and partly tomaintenanceof
patches, ports or components targeting evolving interfaces.
More modular non-invasive approaches are unpopular be-
cause they entail laborious wrapper code. We propose Cake,
a rule-based language describing compositions usinginter-
face relations. To evaluate it, we compare several existing
wrappers with reimplemented Cake versions, finding the lat-
ter to be simpler and better modularised.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]; D.2.12 [Interoperability]

General Terms Languages

1. Introduction
Today’s software development ecosystem is vast in scale
and decentralised in nature. Inevitably, most code is written
in isolation from most other code with which it could use-
fully be combined. Most software growsupwardsin stacks
or silos, each piece written “for” some specific infrastruc-
ture: librariesfor some programming language, toolsfor
some IDE or editor, pluginsfor some web browser or me-
dia player, applicationsfor some operating system or desk-
top suite or hardware platform. Put differently, interfacemis-
match abounds in software. Since there are always different
ways of expressing the same meaning, components that are
logically compatible nevertheless evolve with mismatched
interfaces. Current software practices fail to exploit thecom-
positional potential within existing code; they encourage
from-scratch development and coupled code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

The adapter pattern [Gamma et al. 1995] is a noble fail-
ure. It provides a modular, compositional approach to mis-
match, but despite these potential benefits, programmers
faced with mismatch usually choose toport source code by
invasive editing. This is unfortunate, because much expense
in software stems frommany versions of similar things. Mul-
tiplied code means multiplied complexity and multiplied
costs. Invasive porting also risks introducing bugs to work-
ing code. To avoid these costs, we must make non-invasive
adaptation a more effective option for the programmer.

Adapters can be described an order of magnitude more
simply than conventional tools allow. Currently, writing
adapters is repetitive, error-prone and inconvenient. We in-
troduce a tool for concise, high-level and convenient de-
scription of adapters, based on our special purpose language
Cake. Cake is rule-based: the Cake programmer declara-
tively specifies how components’ interfaces relate. Cake
advances on prior work by supporting context-dependent,
many-to-many relations between interface elements, and in
its automatic treatment of complex object structures. By tar-
getting binaries, Cake is convenient, and eliminates com-
plexity associated with multiple build environments.

The contributions of this paper are as follows.

A language of correspondencesCake abstracts black-box
adaptations using rules calledcorrespondences. These
both unify and extend the expressiveness found in prior
work on black-box adaptation. In particular, they support
complex relations between interfaces, of the kind found
in real adaptation tasks.

Object structures By applying correspondences while also
following pointers, Cake adapts complex object struc-
tures at no extra effort. Our implementation, which tar-
gets native binaries, makes use of novel well-behavedness
criteria in order to correctly discover object structures in
real code at run time.

BenefitsWe show, by using Cake to reimplement some pre-
existing wrappers, how Cake results in simpler, better-
modularised code.

We begin with Cake’s motivation and design goals.

2. Motivation
Currently, non-invasive adaptation is usually eschewed in
favour of invasive editing or from-scratch redevelopment.
To understand why, consider that adapters currently consist
of wrapper functions like the two in Fig. 1. These form
part of an adapter (covered fully in §6.1) between a pair of
filesystem interfaces,pu�s (here exported) andrump (here
consumed). (Theseek call repositions an open file cursor,
while remove deletes a directory entry.) We have added
comments, but the details are not important. Instead, notice
several problems with this style of code.int p2k_node_seek(stru
t puffs_usermount *pu,puffs_
ookie_t op
, off_t oldoff, off_t newoff,
onst stru
t puffs_
red *p
r){ kauth_
red_t
red;int rv;
red =
red_
reate(p
r); //
onvert auth tokenVLE(op
); // lo
k vnode ptrrv = RUMP_VOP_SEEK(op
, oldoff, newoff,
red); //
allVUL(op
); // unlo
k vnode ptr
red_destroy(
red); // destroy temp auth tokenreturn rv;}int p2k_node_remove(stru
t puffs_usermount *pu,puffs_
ookie_t op
, puffs_
ookie_t targ,
onst stru
t puffs_
n *p
n){ stru
t
omponentname *
n;int rv;
n = make
n(p
n); // issue temp nameVLE(op
); // lo
k vnode ptrrump_vp_in
ref(op
); // bump ref
ountVLE(targ); // lo
k target vnoderump_vp_in
ref(targ); // bump that ref
ountrv = RUMP_VOP_REMOVE(op
, targ,
n); //
all rumpAUL(op
); // this time, vnodes were unlo
kedAUL(targ); //... by rump, so just assert thisfree
n(
n, 0); // free temp namereturn rv;}

Figure 1. Example filesystem wrapper code

Repetition A large volume of similar code is required for a
conceptually simple task.

Poor modularity The code is nottrivially repetitive. Each
wrapper applies a different subset of rules, e.g. for treat-
ment of arguments. Considerop
 above: one case re-
quires a bumped reference count and has different un-
locking semantics from the other. The programmer must
juggle these rules correctly amid the sea of similarity.

InconvenienceAmong other headaches, to compile this
code the programmer must construct a hybrid build envi-
ronment supporting compilation against both interfaces.

Complexity This shows a very simple case, where functions
correspond one-to-one. In others, complexity quickly es-
calates.

// rules
on
erning fun
tionsp2k_node_seek(_, vn, oldo�, newo�,
red)
−→ RUMP_VOP_SEEK(vn, oldo�, newo�,
red);p2k_node_remove(_, vn as vnode_bump, tgtvn as vnode_bump,
n) −→ RUMP_VOP_REMOVE(vn, tgtvn,
n);// rules
on
erning valuesvalues pu�s_
ookie_t −→ ({VLE(that); that}) vnode;values pu�s_
ookie_t ←−({VUL(that); that}) vnode;values vnode_bump −→({VLE(that); // also bump ref
ountrump_vp_in
ref(that); that}) vnode;values vnode_bump ←−vnode; // unlo
k not requiredvalues pu�s_
red (
red_
reate(this))−→ kauth_
red;values pu�s_
red ←−(
red_destroy(this)) kauth_
red;values pu�s_
n (make
n(this))−→
omponent_name;values pu�s_
n ←− (free
n (this , 0))
omponent_name;

Figure 2. Cake rules generating equivalent wrappers

In short, wrappers are an unnecessarily complex approach
to adaptation. Cake is a language designed to fix this prob-
lem. Figure 2 shows some Cake rules sufficient to generate
the wrappers in Figure 1. Again the details are not important,
but notice several advantages.

Separation of concerns The Cake programmer writes
rules which we callcorrespondences. Each rule localises
a particular piece of domain-specific knowledge about the
adaptation task. The compiler is responsible for compos-
ing rules into wrappers. In particular, notice here that rules
concerning functions and rules concerning values are kept
separate. Such rules form the basic Cake language (§3).

Expressiveness Cake rules advance on prior work by sup-
porting context-sensitiveand many-to-manyrelations be-
tween interface elements. For example, a single function
may map to one of several calls on the opposing interface,
depending on what calls have come before, or to a sequence
of calls. Similarly, sets of values or objects occurring to-
gether may be treated as a group, and corresponded by a
single rule. These and other advanced features greatly ex-
tend the power of the Cake language (§4).

Object structures This example passes only isolated ob-
jects across the interface. However, Cake can handle the
exchange of arbitrary object graphs across mismatched in-
terfaces. This can eliminate considerable code: consider a
wrapper walking a linked list to convert each element in turn.
The programmer need only specify how separate classes of
object relate; the Cake runtime automatically explores the
graph, applying rules to the objects it finds (§5).

Simpler, shorter code The rules above may appear to be
only a little shorter than the wrapper code. However, the en-
tire p2k adapter contains not two but 28 wrapper functions.
Each rule above contributes tomanyof these wrappers, and
often many wrappers can be generated from a single rule.
The result is shorter, more readable and more maintainable
code, as we show in three case studies (§6).

Figure 3. Example comparable usage patterns for librarieslibmpeg2 and�mpeg
3. The design of Cake
We use a relatively ambitious running example to illustrate
the design of Cake as a tool and a language. Can we take
a client and library implementing hitherto unrelated inter-
faces and, by writing a succinct description of their corre-
spondences, glue the unmodified binaries together?

Consider a simple program which uses a library to decode
some video. There are many possible choices of library; we
consider a client written against thelibmpeg2 library1. Sup-
pose we wish to link this instead against the�mpeg family
of libraries2. This has many plausible motivations: perhaps
to reduce the dependency footprint of a larger system, per-
haps to exploit the larger feature-set of�mpeg (which can
decode video in other encodings than MPEG), or perhaps
for differences in reliability or performance. Figure 3 shows
equivalent usage patterns of the two interfaces. Note that the
correspondence between the two is nontrivial: in most cases
there is no one-to-one correspondence between either the ob-
jects or the function calls used by the two interfaces.

1http://libmpeg2.sour
eforge.net/
2http://�mpeg.org/

3.1 Insights

The primary design goal of Cake is to abstract composition
tasks in a modular way. In the spirit of Parnas’s information
hiding [Parnas 1972], one useful approach is to restrict the
programmer’s attention to some notion ofinterface, just as
Fig. 3 describes the two components only in terms of the
function calls and data structures that they exchange. We re-
fer to this asblack-boxadaptation (cf. white-box approaches,
which may reference arbitrary internals of a component).

A convenient formalisation of this notion of interface is
thetraceof a component’s interactions, of the sort displayed
by tools such asltra
e3. Figure 4 shows theltra
e output for
our client’s interaction withlibmpeg2.so. Abstractly, a trace
is simply a sequence of calls orevents, each communicating
zero or more values. Cake code consists largely of rules
which, abstractly, describe atransducerover this trace—that
is, an automaton which both recognises and generates. At
run time, Cake-generated code feeds each component a trace
generated from those output by the other components. Note
that our discussion of traces is purely conceptual; a Cake

3http://ltra
e.alioth.debian.org/

mpeg2_init() = 0x9
d6180mpeg2_info(0x9
d6180) = 0x9
da380mpeg2_parse(0x9
d6180) = 0mpeg2_buffer(0x9
d6180, 0xbfd17d88, 0xbfd18d88) = 0x9
d6180mpeg2_parse(0x9
d6180) = 1# --- snipped ---mpeg2_parse(0x81bf180) = 0mpeg2_buffer(0x81bf180, 0xbf9e2a58, 0xbf9e2a58) = 0x81bf180mpeg2_
lose(0x81bf180) = 1
Figure 4. Example trace of alibmpeg2 client

programmer never needs to generate or manipulate traces in
any way.

3.2 Requirements

What kinds of rules are required for realistic adaptation tasks
like our video decoding example? From Fig. 3 it is clear that
simple remappings of function signatures and object fields
are not sufficient, for several reasons.

• Correspondences between events are not one-to-one. In�mpeg there is usually more than one call for eachlibm-peg2 call, so we require a way of mapping one call to
many. Sometimes this relationship is reversed, so we
need to recognise a sequence of many calls and map it
back to a singleton.

• Arguments to one call may not be sufficient to perform
the corresponding call. For example,mpeg2_get_info()
maps toav_�nd_stream(), but the latter needs a refer-
ence to the input file—rather than the decoder, which in-
conveniently is the only argument tompeg2_get_info().

• Components differ in the shapes of their data structures.
Single fields or single objects may correspond to many
fields or many objects. Moreover, objects may be passed
indirectly, perhaps over many levels of indirection from
the arguments themselves.

These imply that our transducer needs to bestateful, and
that it must be able to navigate object structures. At run time,
Cake maintains two kinds of state:pattern state, which en-
ables matching of calls in a context-sensitive fashion; andas-
sociation state, which tracks sets of semantically related ob-
jects collaborating across sequences of calls. The program-
mer does not manipulate this state directly, but embodies it
in abstract rules. Before describing these rules, we provide
a summary of some additional design goals and a high-level
view of Cake.

3.3 Additional goals

Our design accommodates several other goals which make
Cake a more effective programming tool.

Target binaries Since traces are agnostic to source code
and source language, Cake affords the convenience of work-
ing on binaries—the form in which software is usually de-
ployed. To apply Cake to some installed software, it is not
necessary to reproduce the build environment for that soft-

ware, or recompile the software, nor even to possess source
code for target components.

Applicability We want Cake to apply to a large volume
of existing components. We chose (somewhat arbitrarily) to
focus on components produced in the open-source commu-
nity. These are often written in C, C++ and other unsafe lan-
guages with explicit storage management. This entails cer-
tain memory-aware adaptation features (§4.6), and careful
treatment of pointers (§5). However, the core problem which
Cake addresses, namely interface mismatch among compo-
nents, is specific neither to binaries nor to unsafe languages.

Non-goals Our design sacrifices focus on other potential
goals. We will touch on reasons why efficient implementa-
tion is possible, and why formal reasoning about Cake code
is feasible, but these are not explicit goals. Also, despitetar-
getting modularity, note that Cake is not amodule systemper
se: it does not define any novel abstraction of components
themselves. Rather, it abstractsdifferences amongcompo-
nent interfaces; its notions of component and interface are
conventional.

Safety At first glance it may appear risky to perform pro-
gramming tasks at the binary level. We firmly believe that
it need not be less safe than any existing source-level ap-
proach. For reasons of simplicity, Cake has not initially been
designed to provideguaranteesof safety. However, bina-
ries admit exactly the same sorts of type-checking and local
reasoning as source-level representations, given appropriate
metadata.

Well-abstractedness We also assume that our task is “well
abstracted”, meaning that there is sufficient information in
traces generated (and traces accepted) to express the required
composition. This is precisely the necessary condition fora
black-box approach to suffice. We believe white-box tech-
niques (including aspect-oriented programming, instrumen-
tation systems and so on) to be an essential complement to
black-box ones, especially for turningnon-well abstracted
tasks into well-abstracted ones, which we consider for fu-
ture work (see §7).

Computational power Cake is not Turing-powerful. We
believe that future work can semi-automate the generation
of Cake code (discussed briefly in §7). Cake is emphatically
nota language for implementing new functionality, so it can
afford to sacrifice some computational power for tractability.

Support heterogeneity Software is developed in a multi-
tude of languages and coded in a multitude of styles. We
want Cake to embrace this diversity by enabling low-cost
mix-and-match of heterogeneous components. Since much
code can be compiled down to a single binary representa-
tion, Cake is well-placed for this. So far our examples have
centred on C-language codebase; many other procedural and
object-oriented languages also fit Cake’s model and could be
supported with little effort (primarily back-end support for

Cake-generated code

mpeg2play ffmpeg

Figure 5. High-level view of an application of Cake

.o.o.o.o .o.so

input components

.cake

Cake source

.o.o

minor

rewrites

.cc

generated

code

.mk

generated

makefile

Cake compiler

conventional tools (ld, make, c++, …)

Figure 6. Cake’s tool flow

interposing on virtual function dispatch). Supportinguser-
definedstyles of object code is planned future work.

3.4 High-level view

Fig. 5 gives a high-level view of the intended result of our
video decoding adaptation task: the original components
bridged by some Cake-generated adaptation logic. (While
our examples show only two components, Cake applies
equally well to tasks involving any number.)

Fig. 6 illustrates Cake’s place in the toolchain. The Cake
compiler inputs a collection of components (in the form of
binaries) and some Cake code, and outputs Cake-generated
source code, build rules for assembling the output binary
(out of this code and the original binaries), and possibly
some extended and relinked versions of the original binaries.

Fig. 7 shows the outline of a Cake source file. There are
two main top-level constructs:exists andderive. The first of
these identifies an existing component—typically a relocat-
able object file—and optionally adds descriptive information
to supplement the debugging information already present.
Cake’s interface model is based on DWARF 3 [Fre 2005]
and its notions of “types” and “subprograms”. The availabil-
ity of debugging information is a huge convenience which
we will assume for the purposes of this paper, although Cake
does not demand it—all such information can be supplied
within the exists block. Certain annotations may also be
added (§4.3).

Cake’s other essential top-level construct isderive. This
describes a new component to be created by assembly and
adaptation ofexisting ones. Derived components are ex-

exists elf_relo
 ("foo.o") foo { /* optional info ... */ };exists elf_relo
 ("bar.o") bar { /* optional info ... */ };derive elf_relo
 ("foobar.o") foobar = link[foo, bar℄ {foo ←→ bar{ // your
orresponden
es here...}};
Figure 7. Skeleton of a simple Cake program

1 fopen (fname, "rb")[0℄ −→ av_open_input_�le(
2 out _, fname);
3
4 values FILE ←→ AVFormatContext {};
5
6 mpeg2_init() −→ { av
ode
_init();
7 av_register_all (); }
8 ←−

9 (new mpeg2_de
_s);
Figure 8. Some simple Cake correspondence rules

pressed in a simple algebra of built-in functions and oper-
ators. The most important of these islink, which applies to
a list of component names. All the correspondence rules we
have seen would appear inside a block opened by alink key-
word, and these account for the vast bulk of any typical Cake
program. Since correspondence rules always relate apair of
interfaces, rules appear in pairwise blocks, of which there
may be many for a givenlink application (if linking more
than two components).

3.5 Syntactic conventions

Arrows in Cake signify correspondence rules, and point in
the direction of data flow. In Cake source code, correspon-
dence arrows are rendered using angle brackets and double-
hyphens. For example, the bidirectional arrow is<-->. In
this paper we typeset them directly as long arrows. Aside
from this, Cake’s syntax is familiar from other languages,
and is mostly C-like. For ease of recognition we typeset all
arrow operators specially:-> denotes indirect member se-
lection as in C, and is typeset→֒; meanwhile=> denotes
functional abstraction as in ML, typeset⇒; its converse<=
(typeset⇐) binds names to function return values (§4.1).

3.6 Simple correspondences

Corresponding events Lines 1–2 in Figure 8 define an
event correspondence, stating that a call tofopen() with
second argument�rb� should be translated to a call to

av_open_input_�le().4 Theout keyword signifies that the
first argument is an “output parameter” into which the logi-
cal “return value” of the call will be written; Cake automat-
ically maps this to the return value expected byfopen()—
handling of this is discussed in detail later (§4.6). Finally,
the [0℄ qualifier matches only the firstfopen() call in the
client’s execution (since it may want to open other files not
for video decoding).

Corresponding values Line 4 says that aAVFormatCon-text object (on the�mpeg side) can be created from aFILE
object (on thelibmpeg2 side) and vice-versa. In this in-
stance, no further rules are specified and no fields are propa-
gated between the two. This is sufficient since theFILE ob-
ject is completely opaque to the client. If the objects were
not opaque, we could add rules inside the braces to de-
scribe how their fields relate. In combination with the pre-
vious rule, Cake can now generate a wrapper forfopen()
which callsav_open_input_�le() with appropriate param-
eters and substitutes theAVFormatContext object with aFILE object on return.

Compound statements and return Lines 6–9 describe ini-
tialization of the library state. The pair of�mpeg initializa-
tion calls is given as a compound statement in Cake’s “stub
language”, a simple loop- and recursion-free imperative lan-
guage. (Although syntactically C-like, this language is com-
pletely independent of the components’ source languages,
since Cake deals only with binaries.) A specialpostfix arrow
syntax is provided to describe handling of a return event,
here saying that a new object of classmpeg2_de
_s should
be allocated on return tompeg2_init. Again, this object is
treated opaquely, so we do not need to describe its fields.

3.7 Remarks on simple Cake usage

We may remark on the usage seen so far.

Dual scoping As befits a language describing relations,
Cake hasdual scoping: different sides of an arrow denote
different components, in whose respective scopes names are
resolved. The left-hand side of our rules always represent
the libmpeg2 client, and the right-hand side represent al-
ways the�mpeg libraries. This means that arrows may point
left-to-right or right-to-left, according to which data flow the
rule describes. Event correspondences are described using
pattern-matching: the arrow-tail side (the “source”) repre-
sents a pattern that the event matches, perhaps supplying
names; these are then bound on the other side (the “sink”
side) to the elements they matched in the call. We can bind
events to stubs in cases, as in lines 6–7 above, where the
function correspondence is not one-to-one.

Rule selection Note that these rules only apply to inter-
actions between our specific pair of components; they say

4 Readers familiar with the�mpeg API may notice that we have used
Cake’s argument defaulting support to reduce the number of arguments in
the second call, for clarity of exposition.

nothing about e.g. how to treatFILE objects passed across
other interfaces. In this example the Cake compiler can au-
tomatically deduce what value correspondences need to be
applied, whereas in a few cases it is necessary to manually
instantiate a value correspondence.

Programmer knowledge Like any programming tool, Cake
depends on the programmer to understand the semantics of
the domain. In writing the above rule, the programmer ex-
ploits two facts about the client’s usage of thelibmpeg2
interface: that it is accompanied by C library calls such asfopen() to do the file I/O, and that thefirst fopen() call
opens the video file—signified by the[0℄ suffix to the pat-
tern.5 Similarly, the programmer is responsible for writing
rules which, in combination, access the�mpeg interface
correctly, e.g. by inserting theav_register_all() call.

3.8 Correspondences for free: name matching

Cake automatically drawsimplicit correspondences between
compatible like-named elements in linked interfaces. For ex-
ample, if one module requires functionfoo() and another
provides it, an event correspondence is automatically drawn
between them. This reproduces the behaviour of a conven-
tional linker. Since our current example is an example of
unanticipated composition, few names match, so the gains
from name-matching are modest. However, name-matching
is very helpful when applying Cake tointerface evolution,
where many interface elements can be matched without pro-
grammer intervention.

Cake extends name-matching to structured values. If two
interfaces both define a classbar, then these will be corre-
sponded; if onebar contains fieldsamplitude, breadth and
urvature, and the otherbreadth,
urvature and density,
Cake will correspondbreadth and
urvature, and leave the
others uncorresponded. This means that minor mismatches
in size or layout of structures are automatically adapted
around. For example, the implementation of the C library
call fstat() often needs to adapt between kernel- and user-
formatstat structures, owing only to layout differences and
extra fields. Cake could perform this adaptation automati-
cally. In the rare case where a given name-matching is not
wanted, it can be overridden by mapping the name to an al-
ternative element (if one exists) orvoid.

Identifiers often contain meaningful structure. A com-
plementary name-matching feature is thepattern construct,
where a single rule can map together sets of similar event
names using regular expression matching. The following
fictitious example expresses three similar event correspon-
dences in one rule.pattern edit_(
ut|
opy|paste) (w, sel ,
txt)
−→
lipboard_op_\1 (w, sel,
txt);

5 We briefly describe a cleaner approach to this class of rule, based on a
more dynamic notion of components defined by generalisedslicesof traces,
as future work (§7).

Use of names is sometimes latent rather than explicit. For
example, integer fields may implicitly model enumerations
or sets; function arguments may also be best understood by
their name rather than positionally. Cake supports anames
annotation for applying a vocabulary of names (e.g. perhaps
from a separate enumeration type, or perhaps given explic-
itly) to functions or integer fields, in order to induce further
name-matching.

4. Advanced features of Cake
We saw in Section 3.2 that simple correspondences are in-
sufficient for realistic tasks like our video decoding exam-
ple. This section discusses the features of Cake which make
it sufficiently powerful to tackle these real-world use-cases.

4.1 Corresponding sequences of events: event context

Often when performing an adaptation, considering each call
independently is not enough: the correct action depends on
what calls have come before. To this end, Cake event pat-
terns may be prefixed by acontext predicate: the rule only
applies where certain preceding calls have occurred. Auto-
matic management of the state necessary to match such pat-
terns is another way in which Cake saves programmer ef-
fort. In our example, we use this facility when the client re-
trieves an object storing metadata about the video file: we tell
Cake that a call tompeg2_get_info() follows earlier calls
to fopen() andmpeg2_init(), whose arguments and return
values are significant.// here "..." mat
hes any intervening
all sequen
elet f = fopen(fname, "rb"), ...,let de
 = mpeg2_init(), ...,mpeg2_get_info(de
) −→// to be
ontinued...

Since it may be necessary to refer to values passed or
returned during the preceding calls, context predicates can
bind names just like event patterns can. Thelet keyword al-
lows further names to be bound to return values and useful
auxiliary values. This doesnot denote assignment (and the
same name may not be re-bound within a rule). In patterns
like the above which bind names to return values of contex-
tual calls, we can use the shortervarname ⇐ syntax instead
of let (see the Appendix for examples).

Resolving ambiguity There is a potential ambiguity in
context matching:which preceding call is relevant? When
a call tompeg2_get_info() occurs, thelibmpeg2 client has
not yet associated its decoder with an input stream. How-
ever, in�mpeg the correspondingav_�nd_stream_info()
call requires an input stream as an argument. Somehow,
we must match the incoming call with the relevant preced-
ing fopen() call. What if there have beenmanyprecedingfopen() calls? Cake assumes that related calls occur close
together: it matches thenearestprecedingfopen() (with
appropriate arguments). This is expressed using the ellip-
sis (. . .) to extend our pattern over unspecified intervening

calls. The ellipsis functions much like “.*” within a regular
expression, matching any intervening character sequence,
but ellipsis matches theshortestsuch sequence rather than
the longest. If we had left out the ellipsis, this would match
only if the two calls occurred in direct succession (among
all calls across this particular interface).

4.2 Generating data-dependent call sequences: stubs

Cake’s stub language offers some special features for han-
dling complex data-dependent sequences of calls. These are
illustrated by the right-hand side of the thempeg2_get_info()
rule begun in the previous section./* ...
ontinued */ −→ {av_�nd_stream_info(f) // in-pla
e update to f;& let de
...vid_idx = �nd(// Cake algorithmf →֒streams, // among the �le ' s streams...fn x ⇒ // lambda! �nd the video streamx→֒
ode
→֒
ode
_type == CODEC_TYPE_VIDEO);& let
ode
_
txt = f→֒streams[de
...vid_idx℄;& let
ode
 = av
ode
_�nd_de
oder(
ode
_
txt→֒
ode
_id);& av
ode
_open(
ode
_
txt,
ode
);&
ode
_
txt }
Error discovery Manually determining the success or fail-
ure from every function call can get very tedious. Every ex-
pression in the Cake stub language has a “success” or “fail-
ure” outcome, logicallyseparatefrom any result value it
may yield if successful. Cake determines the success of a
function call in astyle-dependentway (as described in §4.3).
The default style assumes that functions returning signed in-
tegers are successful iff they return zero, and that pointer-
returning functions are successful iff they return non-null.
This style is typical of a majority of C APIs. Calls that re-
turn neither a signed integer nor a pointer are treated as al-
ways succeeding.

Error handling Stubs are generally not complex enough
to require try–catch exception handling. Instead, expressions
can be joined with short-circuit boolean connectives;& and;|, in an idiom similar to that found in Unix shell program-
ming. Unlike the shell, success exists independently of the
result value, so the connectives are distinct from the boolean
operators&& and||. In the few cases where the style does
not detect error status correctly, the programmer can explic-
itly describe success conditions using thesu

ess pseudo-
variable and constantsvoid (which yields no value but al-
ways succeeds) andfail (which always fails).

Binding Just aslet binds names to values in context pat-
terns, it can bind names to values in stubs. These enable data-
dependencies between calls. Theout keyword also binds a
name, and is used when calling functions have output pa-
rameters (§4.6).

Associations Sometimes bound names are not enough; a
stub must navigate a data structure to find relevant arguments
to a call. The dot (.) and short arrow (->, typeset֒→) have the
C-like “access member” semantics in Cake. Analogously,
the . . . syntax is overloaded to denote “access associated”:
it enables formation and dereferencing ofassociationsbe-
tween objects or values. Associations are the mechanism for
many-to-many value correspondences in Cake, and are dis-
cussed in Section 4.4.

Lambdas and algorithms Traversing data structures algo-
rithmically is beyond the scope of Cake. However, simple
algorithms are often indispensable when performing adap-
tation. Cake makes a selection of algorithms available in
the stub language, here�nd denoting linear search. Algo-
rithms are defined outside of Cake in an implementation-
specific way. Currently, we exploit the fact that Cake’s back-
end generates C++ code: most of the C++ standard library’s
algorithms may be applied. Cake automatically infers usable
iterator definitions using itsstyle-dependentnotion of lists
and arrays (§4.7). Since algorithms sometimes take func-
tions or predicates as arguments, simple functions may be
defined as lambdas in the stub language. The expressiveness
of this is deliberately constrained: lambdas may not contain
other lambdas, and cannot refer to themselves, so cannot in-
troduce recursion in the stub language.

4.3 Practicalities

We have now seen the basics of the Cake language. In this
interlude we discuss several practical issues arising in the
use of Cake.

Target representation Our chosen binary representation is
relocatable object code. This means compiled native code,
before linking, in any modern containing format such as
ELF. Most of our work has applied Cake only to static
linking, but its approach applies equally to dynamic linking.

Source languages Cake can compose components deriv-
ing from several source languages. In this paper we have
targetted only components written in C, since our current
implementation lacks understanding of some incidental fea-
tures found in binaries originating in other languages (such
as name-mangling, and various DWARF constructs). Adding
such support in most cases is straightforward and is ongoing
work. (At run time, some cooperation with garbage collec-
tors is required: see §5.)

Obtaining debugging information Compilers usually re-
quire a command-line flag to enable generation of debugging
information.6 Most software builds released to end users

6 An extended set of flags may be needed to generate the
most detailed debugging information available. Withg

 we
have been using-g3 -fno-eliminate-unused-debug-symbols-fno-eliminate-unused-debug-types. We also disable inlining, since
premature inlining can potentially interfere with Cake. Interprocedural op-
timisation is best done at link time, when a complete call graph is available.

// C de
laration// "foo is a fun
tion from int (
all it 'a') to int"int foo(int a);// Cake des
ription :// "foo is a fun
tion from int (
all it 'a') to int"foo: (a: int) ⇒ int ;// "int is 4 bytes of the ' signed ' base type en
oding"int :
lass_of base signed <4>;
Figure 9. Interface description syntax

do not contain debugging information, but distributors often
supply it as an optional extra.7 We encourage this practice,
since there is considerable value in providing debugging in-
formation to users (e.g. enabling higher-quality bug reports).

Interface description As described earlier (§3.4), Cake al-
lows programmers to supplement or replace available debug-
ging information withinexists blocks. For this, we devised a
simple textual syntax for the relevant subset of DWARF, of
which Fig. 9 shows a small fragment.

Annotations The same syntax extends DWARF by accept-
ing certain annotations. For example, attributesout or inout
can be made to function arguments, affecting how Cake ap-
plies value correspondences to values flowing into and out
of a function call (§4.6). Some of these annotations could be
useful to debuggers as well as to Cake; we plan to feed these
back into the DWARF design process.

Comprehension As with any programming tool, we as-
sume that the programmer understands the interfaces he is
coding against. In addition to debugging information, the
programmer might use various means to gain this under-
standing: API documentation, source code, other code ex-
ercising the same interfaces, patterns mined from such code
[Wasylkowski et al. 2007] or reverse-engineering tools [Bal-
akrishnan et al. 2005]. The latter is especially relevant when
Cake is used to compose binaries for which source code is
not available. Although these means each have their short-
comings, we consider these as separable problems; in this
work we assume that the combination of these techniques is
sufficient to gain the necessary understanding.

Styles All components introduced by anexists block are
interpreted according to astyle. Styles are an abstraction
mechanism designed to seamlessly support mixing and
matching of object code adopting different sets of inter-
face conventions, perhaps originating from multiplepack-
agings(e.g. component systems, application plugins, etc.),
language implementations and/or coding styles. Styles de-
termine various higher-level interpretations which the Cake
compiler applies to object code, including error-handling,
treatment of lists, string handling and so on. At present,
Cake supports only one style, the “default style”, which cor-
responds to the conventions typically found in components

7 e.g. in Debian and certain other GNU/Linux distributions

written in C. However, Cake is designed to accommodate
multiple user-defined styles in the future.

Instantiate Many clients dynamically load back-end com-
ponents, such as plug-ins. To use Cake across these inter-
faces requires a small extra feature. Since the client does not
call the back-enddirectly, but through an indirect dispatch
table, we provide aninstantiate primitive used alongsidelink in derive expressions. This constructs an instance of a
given data structure—usually a dispatch table—and creates
a new symbol for each element in the structure. This lifts ta-
ble entries to first-class symbolic function names which can
be used like any other in alink block.

Conveniences The inline construct is similar toexists, but
allows a component to be supplied not by reference to an
existing file, but by inclusion of a snippet of foreign source
code embedded directly in a Cake source file. These snippets
are lexed but not parsed by Cake, so any language with
compatible lexical structure (up to balanced opening and
closing braces) may be used; they are de-lexed and output
as source files alongside Cake’s other output, and compiled
at the same time as Cake-generated code (§5.1).

4.4 Many-to-many value correspondences

In our running example oflibmpeg2 and�mpeg, the struc-
tures maintained during decoding by the two libraries con-
tain mostly the same information, but split differently among
various objects. In general, while objects or values often do
not correspond one-to-one among different interfaces, we
can often say that agroupof objects corresponds to another
group. Many-to-many value correspondences describe how
to create and update values in one group from (multiple)
values in the other. Fig. 10 illustrates this and some other
advanced features of value correspondences.

Associations Each many-to-many value correspondence
createsassociationsat run time. Each instantiated associa-
tion is a tuple binding together several objects. Bindings are
formed in stubs by applying thelet keyword to in combi-
nation with the “access associated” connective, written. . . .
These tuples constitute a dynamic relation maintained at run
time, analogously with join tables in a relational database. A
tuple persists as long as any bound object does.

Initialization versus update Value correspondences may
distinguish initialization from update, as seen in the first
rule above. When an object flows across an interface for
the first time, Cake may need to instantiate one or more
corresponding objects(co-objects). Initialization rules use
an arrow suffixed with a question mark. When initializing
the right-hand side above,p will point to a newAVPa
ket
object. Rules without the question mark areupdate rules.
Above, no update rule is needed because the client never
updates any state corresponding toAVPa
ket’s fields. Al-
ternatively, sometimes a co-object’s fields have no analo-
gous fields in the original object. Cake will initialize these

values (de
: mpeg2_de
_s, info: mpeg2_info_s,sequen
e: mpeg2_sequen
e_s, fbuf: mpeg2_fbuf_s)
←→ (
txt : AVCode
Context, vid_idx: int,p: AVPa
ket, s: AVStream,
ode
: AVCode
){ // ensure an AVPa
ket exists on any �ow L-to-Rvoid −→?(new AVPa
ket tie
txt) p;// pi
ture dimensions are in sequen
e and
txtsequen
e ←→
txt {// width and height done automati
allydisplay_width ←− width;display_height ←− height ; // here we assume a
hroma_width ←−width / 2; // 4:2:2 pixel format,
hroma_height ←− height / 2; };// info.sequen
e always points to sequen
e obje
tinfo.sequen
e (&sequen
e)←−? void;// spe
ial
onversion required for bu�ersfbuf ←→ frame {buf [0℄ as pa
ked_luma_line[height℄ ptr
←→ data[0℄ as padded_line[
txt.height ℄ ptr ;buf [1℄ as pa
ked_
hroma_line[
hroma_height℄ ptr
←→ data[1℄ as padded_line[
txt.height / 2℄ ptr ;buf [2℄ as pa
ked_
hroma_line[
hroma_height℄ ptr
←→ data[2℄ as padded_line[
txt.height / 2℄ ptr ;} };values pa
ked_luma_line ←−padded_line {void (mem
py(this, that, display_width))←− void; };values pa
ked_
hroma_line ←−padded_line {void (mem
py(this, that,
hroma_width))←− void; };

Figure 10. An advanced value correspondence

fields (using the initialization rule), but will subsequently
leave them alone (there are no update rules), avoiding re-
peatedly re-initializing the fields at each traversal of thein-
terface (which might clobber updates made earlier by code
on the co-object side). The separation is asymmetric: if there
is no separate initialization rule, an update rule will be used,
whereas the converse is not true.

Primitive values Cake can usually deduce sensible be-
haviour for passing primitive values between components,
since it inherits from DWARF an understanding of all
the common encodings of primitive values like integers,
booleans, characters or floating-point data.

Tying The tie keyword can be used when allocating ob-
jects in Cake, to specify that the allocated object should be
deallocated at the same time as the tied-to object. This is
a common requirement in Cake, since objects created by
adaptation logic are normally tightly dependent on some
application-domain object. Tying greatly reduces the need
for explicit object freeing in Cake. Tying may be thought
of as a generalisation of stack-allocated objects or contained
subobjects; in all these cases, one object’s lifetime is tied to
that of some other allocation. Implementation of tying relies

on the Cake runtime’s ability to interpose on object deallo-
cation, which is also used heavily by the Cake runtime inter-
nally (§5.4.2).

Internal reference The unusual-looking rule describinginfo.sequen
e is used to describe the pointer structures
within a group of objects. When creating anmpeg2_info_s
structure, Cake needs to know that itssequen
e field should
point to the relatedmpeg2_sequen
e_s structure. Since this
does not depend on any value from the right-hand side,void
appears (to denote “no value”), but the syntax is otherwise
identical to any other correspondence.

Applying functions A bracketed stub-language expression
on one side of an arrow may be used to apply a function
to the outcome of the source side, for cases where some
computation is required in order to acquire the correct sink-
side representation. (Consider a sink-side field storing an
index into a table, while the source provides only a pointer
to the corresponding element—a search through the table is
required.) Such functions may be applied eitherbeforeor
after the conversions implied by other rules, according to
which side of the arrow the expression appears on.

This and that The this andthat keywords are pointers to
the local and (respectively) other-side representations of the
value (i.e. before and after applications of the value cor-
respondence). These pointers can be useful when applying
functions as values traverse the interface. In the example
above, both interfaces describe some buffers containing the
decoded data, but with a subtlety: the layout of the buffers is
not quite identical. In�mpeg each line is padded, whereas
in libmpeg2 there is no padding. The code above uses theas keyword, which implicitly defines a new named class of
value (equivalent to a DWARF type) and treats the value as
if it were of that class. We can then supply special value
correspondences for that class—here these override the de-
fault handling ofuint8_t arrays, usingmem
py() on this
andthat to move the data in a padding-sensitive fashion.

4.5 Adapting constants

Sometimes, correspondences occur at the level of individual
values. Consider explicitly mapping the individual elements
of two enumeration types. Cake provides atable construct
for this purpose, syntactically much like a value correspon-
dence but mapping constants or literals rather than fields.

Components often statically embed meaningful static
data (e.g. configuration file paths) which need to be adapted.
We support unilateral adaptation of these by rewrite rules
in exists blocks. Strings can be matched by regular expres-
sions, and updated in the object file by appending new static
data and rebinding existing references. This is the only form
of binary rewriting done by Cake.

4.6 Input and output parameters

Pointers are used to perform certain forms of parameter-
passing. Cake’s default style assumes (unless overridden)

strn
py :(dest : out
har[len ℄, buf:
har ptr , len : size_t)
⇒
har[len ℄ ptr ;strndup:(buf:
har [℄ ptr , max_len: size_t)
⇒
har [℄
aller_free (free) ptr ;

Figure 11. Enabling allocation adaptations onstrn
py()
andstrndup()
that singly-indirected arguments typically denote “in-place
update”—a value passesout of the call as well asin. Cake
will apply the appropriate value correspondences on both en-
try and exit. These semantics ensure that balanced operations
can be reliably expressed (e.g. to insert locking and unlock-
ing as an object traverses an interface).

A singly-indirected argument might also denote anoutput
parameter(typically passing an uninitialised location in the
caller’s stack frame). Since thein direction may perform a
(meaningless) conversion on contents of the stack location,
the argument can be annotated asout. Similarly, for objects
no longer validafter a call (e.g. if deallocated during the
call), we can annotate the pointer as anin ptr argument,
preventing any output value correspondence from running.

Commonly, output values flow into caller-allocated mem-
ory. However, some interfaces return callee-allocated results.
Given simple annotations, Cake can automatically adapt be-
tween mismatches in these caller-versus-callee allocation
semantics. Consider the C library functionsstrn
py() andstrndup() (shown in Fig. 11). In the first, a caller supplies
its own buffer for output data to be placed in. The second in-
stead returns a pointer to a new buffer, which the caller must
free when finished.

Thanks to the
aller_free annotation, Cake will adapt a
call to the first function so that it instead calls the second,
by post-copying the callee-provided buffer into the caller-
provided buffer and then freeing the former. Cake can also
adapt a call to the second function so that it calls the first, by
pre-allocating a buffer and returning it.

4.7 Arrays and lists

Pointers may also point to arrays; as seen in Fig. 11 with
har[℄, array syntax can be used to name a local field which
holds the length of the array. Cake usually detects the size
of arrays at run time and applies appropriate conversions
(§5.3).

Cake also has a style-dependent notion ofiterables;
in the default style this includes arrays (either statically-
sized, length-affixed, or explicitly terminated as with null-
terminated strings) and linked lists. These allow algorithms
(�nd seen in Section 4.2) to be applied uniformly to any
style-defined iterable.

4.8 Function pointers

Functions are just another kind of object. Although their in-
ternal structure is opaque to Cake, we already have a mech-
anism for describing correspondences between functions,
namely, event correspondences. Passing a function pointeris
equivalent to giving the recipient a capability to raise events
across the interface between a pair of components. There-
fore, Cake will handle flow of function pointers appropri-
ately provided there is some event correspondence defined
across that interface whose sink expression is a simple in-
vocation of the passed function (rather than, say, a multi-
expression stub). Consider the following example.

1
lient ←→ library
2 { register_
allba
k (f , arg) −→ add_handler(f, arg);
3 notify_user_
b(message, aux) ←− _(message, aux); }

Here the developer describes how a function pointer may
be passed from client to library byregister_
allba
k(). Line
2 adapts a mismatch in the callback registration interface:the
client requires a call namedregister_
allba
k whereas the
library provides only a similar function calledadd_handler.
For simplicity our rules assume that the callback interface
itself (e.g. the signature of functions passed as thef param-
eter) is well-matched between the two interfaces, but if ad-
ditional adaptations are required on the function, they can
be added as a lambda expression (e.g. wrapped aroundf inadd_handler above).

The event correspondence in line 3 is unusual because
it does not specify a name for the called function, but sim-
ply uses the “_” syntax, meaning “some call” . This is be-
cause the because the call-site in the library is an indirect
call, so does not statically name the function it is calling.
Without line 3, or some other rule callingnotify_user_
b
from library, the Cake compiler would not generate code to
interpose on the callback—e.g. to apply the value correspon-
dences appropriate for the two components. The presence of
this rule enables function pointers (such asnotify_user_
b)
to be correctly adapted as they are passed to the library, by
substituting a pointer to a Cake-generated wrapper which ap-
plies the relevant correspondences.

4.9 Completing the example

One hurdle remains in our running example, which is to
match up the decoder loops of the two interfaces use pat-
terns. This requires no new Cake language features, so for
space reasons we have left it to the Appendix, which con-
tains the example’s Cake code in full.

5. Implementation
We discuss the compiler implementation briefly, and the
Cake runtime in detail.

5.1 Compiler back-end

Cake models a program as a set of communicating object
files—or more properly, groups of objects files, which we
call components. Communication occurs along the control
path of the program; an “event” between two components’
interfaces occurs when control flows out of one component
and into another. Cake is implemented by interposing on
these events: Cake-generated code runs when events occur.
(The defining characteristic of a component is that it is inter-
nally well-matched with itself—no interposition is necessary
on communicationwithin the component.)

The current implementation of Cake assumes that inter-
component data flow occurs only through function calls,or
through shared objects whose sharing was established at run
time through function calls (e.g. by passing a pointer in an
earlier function call). This allows Cake to intervene at the
point where sharing is established. We discuss this furtherin
Section 5.4. The assumption might be violated by statically
allocated shared variables, since sharing is established at
link time. In practice, globals shared among components are
rare. Where they do exist, this interface is usually that of a
standard library (e.g. the C library’serrno) rather than one
suffering mismatch.

Our current Cake compiler’s back-end uses a specially
createddwarfhpp tool to generate C++ headers which re-
produce the ABIs described in DWARF information, us-
ing compiler-specific attributes to match alignment and en-
coding where necessary. The Cake compiler outputs wrap-
pers in the form of the C++ code consuming these head-
ers, and a POSIX makefile. Cake’s algorithms and lamb-
das map conveniently onto those provided by C++. Wrappers
are interposed using the linker’s�wrap option, and we have
prototyped a similar mechanism using the dynamic linker’sLD_PRELOAD setting for the dynamic linking case. To
perform string rewriting and occasional other symbol re-
binding, Cake’s back-end uses a specially modified version
of GNU obj
opy 8.

5.2 Compiler status

At the time of writing, our Cake implementation is not com-
plete, but is progressing fast. Code generation for is imple-
mented for the simpler kinds of correspondences and is a
work in progress for the remainder. The compiler back-end
machinery, includingdwarfhpp and the modifiedobj
opy,
is complete. The Cake runtime is also very usable and has
been used successfully in some earlier case studies involv-
ing script-generated wrapper code.9

5.3 Dynamic binding

When control passes from one component to another, Cake
behaves as if the program’s entire object graph is carried

8http://ww.gnu.org/software/binutils/
9 We encourage the reader to check for software releases at theCake web
page,http://www.
l.
am.a
.uk/%7esrk31/
ake/.

over and transformed according to the set of value corre-
spondences. Itsactual behaviour is subtler and less ineffi-
cient (§5.4.2).

Objects in native code are not self-describing at run time,
and the debugging information which describes them, much
like static types, is inherently imprecise. If debug informa-
tion says that a function returns a pointer to aWidget, andWindow is a subclass ofWidget, the function might actually
return aWindow pointer. Suppose we write some Cake rules
to adapt between two different implementations of a similar
windowing toolkit.widgets_A ←→widgets_B{ // an event
orresponden
e�nd_widget(des
r) −→ get_mat
hing_widget(des
r);values Widget ←→Widget{ /* ... */ };values Window ←→Window{ /* ... */ };}

Cake has dynamic matching semantics. If the pointed-
to object “is a”Window, thenWindow’s rules must apply.
We achieve this by defining an “is a” relationship between
DWARF types. In turn, this means assuming a certain “well-
behavedness” of the target code: DWARF information may
be imprecise, but not wilfully misleading. Arrays compound
this difficulty: does a pointer point to one object, or to (or
into) a block containing several? If Cake decides incorrectly,
it will not apply the correct conversions. In summary, the
Cake runtime must be able to decide two questions about
objects.

• Given a pointer to an object, whatbyte-scale reinterpre-
tationsmight a component reasonably make, to reveal a
pointer to a larger object?

• Given a pointer to an object, whatblock-scale adjust-
mentsmight a component make, to navigate among ob-
jects in the same array?

The two are not independent: to apply pointer arithmetic,
a component must know the element size, so we assume
that a component maynot do both byte- and block-scale
reinterpretations (unless the Cake programmer provides a
precise type by annotation).10

Cake’s rules about allowable byte-scale reinterpreta-
tions define what we calladmissible reinterpretations. They
are designed to separate out common-case “well-behaved”
pointer adjustments from uncommon cases requiring annota-
tion. We call these uncommon cases “abstraction violating”
after prior work [Neamtiu et al. 2006] which also provides
evidence that they are suitably rare.

10To do both would be to access an array through a pointer whose static
type did not reflect the true element size. In our experience this occurs only
when a function receives an array as avoid*, but accesses the array by
strengthening that type. Cake’s annotations handle this case conveniently.

For a pointer whose referent is statically typed with type
τ , admissible reinterpretations are as follows.

• If τ is primitive, no reinterpretations are admissible.

• If τ is structured, reinterpretations to anyzero-offset con-
taining typeare admissible. A zero-offset containing type
is one which contains a subobject of typeτ at offset zero.
We allow this to support the idiom often found in C-
language object systems11 which simulate inheritance by
zero-offset containment.

• If τ is structured, reinterpretations to any DWARF-
recorded inheriting type are admissible. This allows
for downcasts using DWARF’s special inheritance tag
(which supports single or multiple inheritance).

To discover themost preciseDWARF type for a given
pointer, we use knowledge of address space layout to de-
duce whether the object is in heap, stack or static storage.
For the latter two cases, a precise type is found in debugging
information (for the allocating stack frame or static variable
definition). This also reveals whether the object is part of an
array.12 In the heap-allocated case, we exploit our assump-
tion that the recipient might doeither byte-scaleor block-
scale adjustment (but not both) to derive a best-effort solu-
tion using linear programming, as follows.

1. Discover the size and start address of the object’s heap
block in bytes, using implementation-specific knowledge
of the heap. (This requires that custom allocators be in-
strumented to collaborate with the Cake runtime.) If the
start address and size match the pointer and its static type,
we have an answer.

2. Else test whether the heap block is an array (block-scale
adjustment): if its size is a multiple of this static type’s
size, and the pointer’s offset into the heap block is a
nonnegative integer multiple of that size, assume we have
a pointer into an array occupying the entire heap block.

3. Else test whether the heap block is a containing object
(byte-scale adjustment): compute what (admissible)con-
taining typeswould have sizes matching the heap block
sizeandconsistent offset. If there is a unique match, we
are finished: we assume that the adjusted static type pre-
cisely describes the object.

If this fails, we issue a run-time warning and proceed
with an imprecise type. This is often not a problem, depend-
ing on how the receiving component interprets the pointer.
We consider the unknowability of precise run-time types for
heap-allocated objects as a weakness in language runtime
design, which hinders not only Cake but also debuggers,
garbage collectors and other dynamic analyses. The omis-
sion is often deliberate—for example, the C language defi-

11A popular example is GObject,http://www.gtk.org/
12Note that we are now requiring that debugging information, or equivalent
annotation, be availableat run time.

nition explicitly disclaims the existence of a definitive inter-
pretation for any memory location. However, in reality, pro-
grammers nearly alwaysdo have such definitive interpreta-
tions in mind. Compile-time analyses could generate precise
heap metadata in most cases (e.g. by examining data flow
out ofmallo
()), and issue warnings in others.

A similar problem occurs with unions: which arm of the
union is the currently valid representation? Nontrivial use
of unions is sufficiently rare that we have left this to future
work. The best treatment is to re-encode union types as
Pascal-style variant types: these are supported by DWARF,
and the re-encoding can be expressed as annotations in a
Cakeexists block.

5.4 Adapting objects

We consider objects to be structured values withtwo key
additional properties: identity and lifetime.

5.4.1 Object identity

Cake understands objects’ addresses in memory as their
identities. At run time, it maintains a table called theco-
object relationwhich maps related identities to each other.
As pointers pass across an interface, Cake substitutes point-
ers to appropriateco-objects. Usually, for a given tuple in the
co-object relation, exactlyoneobject was allocated by user
code; the others were allocated by Cake when a pointer to the
first object, or some subseqent co-object, was passed.Asso-
ciations(§4.4) are implemented by mapping each object to
an Cake-generatedumbrella objectwhich contains pointers
to other objects in the association. At present this constrains
an object to be participating in at most one association at a
time, although we intend to relax this to one per correspon-
dence rule, by giving each association rule a run-time tag.

5.4.2 Object lifetime

When applying value correspondences to produce trans-
formed versions of objects, Cake must allocate memory.
This memory has a lifetimetied to the user-managed ob-
jects that caused its allocation. Implementing tying requires
interposing on object deallocation. In the case of heap deal-
location (withfree() or other heap-specific mechanism) this
is straightforward. For stack-allocated objects, Cake must
interpose on cleanup of the allocating stack frame. This is
implemented by replacing the on-stack return address for the
allocating frame with the address of a handler. This handler
uses the stack pointer to identify which frame is returning,
deallocates any tied objects, and jumps back to the intended
return address.

5.4.3 Sharing objects

As described so far, each component appears to have its
own heap, completely separate from other components’. In
fact, Cake allows sharing of objects between components,
subject to the invariant that each component can only reach
objects whose representation it understands. (We define this

more precisely below.) The effect is apartially split heap—
some objects are shared, and others are replicated (perhaps
in alternative representations).

Enforcing this invariant is nontrivial because of the tran-
sitivity of reachability. We start by partitioning the (infi-
nite) set of run-time objects into equivalence classes based
on their “most precise DWARF type” (§5.3). Our question
then becomes whether Cake can allow two components to
share an object of a given class. We only have space to out-
line the intuition behind our algorithm here. Firstly, consider
the DWARF types of all objects which arerelatedbetween
each pair of interfaces. We call this themaster type rela-
tion for that pair, and it is enumerated by the set of of value
correspondences established between the two components
(including those made by name-matching). Next, we define
a binary relationrepresentation compatibilityon DWARF
types, recursively as follows.

• For a structured type: if the two structures define identical
sets of field names at identical offsets, and for each like-
named field the field’s type is representation-compatible,
then the structures are representation compatible.

• For a pointer type: all pointers are representation compat-
ible. We account for reachability in a separate step (be-
low).

• For a primitive type, the types are representation compat-
ible if and only if size and encoding match exactly.13

The “possibly shareable” set is those pairs in the mas-
ter type relation that are representation compatible. Not all
of these are actually shareable, because they might contain
pointers to objects which are not shareable. We generate the
“definitely shareable” from the “possibly shareable” set by
removing (until a fixed point) pairs where, given a pointer
to some shared object, both components could reach some
piece of memory about which their expectations are not rep-
resentation compatible. We do this by considering thetype
reachability graphas the connected digraph(V, E) whereE
includes(v1, v2) iff a pointer to typev1 can yield a pointer to
typev2 by eithermember selectionor an admissible reinter-
pretation (§5.3). We must label each edge to identify which
member was selected or what interpretation was applied,
then remove any(α, β) if there exist somenon-shareable
α′ andβ′ reachable respectively fromα andβ by analogous
paths in each’s type reachability graph.

We conclude this discussion with a few notes.

Opaque and ignored pointers A technique complement-
ing this algorithm is to obtain more precise information
about the interpretationseach componentmakes of its ob-
jects. If a component always ignores some field in an ob-
ject, or treats a pointer opaquely, this can enable more shar-

13A subtlety here is enumerations, bitfields and other encodings layered
onto primitive types. We rely on programmer annotation to interpret these,
for example using thenames construct (Section 3.8).

ing. We are working on support for this using programmer-
suppliedopaque andignored annotations; future work could
infer these by analysis.

Update propagation and multithreading The “partially
split heap” is compatible with multithreaded programming,
but our current propagation policy is not. Specifically, we
currently use a policy of propagating updates betweenall
replicas whenever control passes between components; this
is correct in the single-threaded case, although slow (be-
cause of potentially high update volumes at each interface
crossing). To reduce the update volume, points-to analysis
could produce a tighter bound on which objects’ updates
may be needed during a given call. Our policy also risks
deadlock in multithreaded programs where more than one
component contains active threads at a given instant, since
depending on the program’s control flow, updates may never
be propagated. A periodic background sync thread could en-
sure liveness, but since this might activate mid-update, en-
suring safety is a problem: it could most likely be solved
like the analogous problem in dynamic software update
systems, using “quiescent update points” [Neamtiu et al.
2006] and programmmer-annotated “propagation points”
[Neamtiu and Hicks 2009]. A final problem in the multi-
threaded case is conflicting updates to separate replicas of
(logically) shared state. To solve this, shared-writeableob-
jects could be managed using an alternative replication-free
approach, using memory protection techniques to trap up-
dates.

6. Evaluation
Cake’s major advance is as a convenient, powerful adap-
tation tool which can be applied to real-world tasks. We
therefore evaluate it by identifying a series of example tasks
which havealreadybeen performed using conventional ap-
proaches, and comparing this code to the equivalent Cake
code. We discuss each task briefly and report aggregate mea-
surements for both versions (lines-of-code counts, token and
statement counts). Since we currently lack a complete imple-
mentation of Cake, reimplementing existing adapters in this
way is useful, because we can nevertheless gain reasonable
assurance that our Cake code is complete by checking that
all of the original logic is accounted for in the Cake version.

Measurements Although we use count-based measure-
ments, we appreciate their shortcomings. Cake’s lower
counts certainly originate partly in improved abstraction, but
perhaps also to incidental factors such as a reduction in boil-
erplate code. We have partially remedied this by providing
“adjusted” counts for C code, made after erasing common C
boilerplate (specifically, variable declarations and function
prototypes), but this is an ad-hoc adjustment which still does
not account for certain other areas where Cake’s syntax may
be more concise (e.g. error-path control flow). The “remain-
ing” column in our tables refers to C code that could not

be reimplemented in Cake and was left as-is (to be linked
alongside the Cake-generated code).

Limitations Even if Cake did little to simplify code (which
is far from true), there are inherent benefits in Cake’s black-
box, binary approach which are not substantially evalu-
ated here. Our goals with Cake are not simply to provide
a marginally better way of coding adapters, but rather to
enable a shift in development practices towards integration-
based approaches and away from reimplementation and in-
vasive editing. Clearly this cannot be achieved or evaluated
in small-scale studies.

6.1 Bridging related components:libp2k
Filesystems are a ubiquitous abstraction: filesystem-likein-
terfaces are implemented deep within operating system ker-
nels, but also in graphical desktop environments, in web
servers and elsewhere. The programming interfaces behind
which filesystems are implemented are invariablyabstractly
similar yet often concretely different, and conventionally
coded adapters exist between some of them. We took thelibp2k adapter [Kantee 2009] from NetBSD, which adapts
between NetBSD’s native user-space filesystem implemen-
tation (pu�s) and a special environment for running unmodi-
fied kernel code, including filesystems, in user-space (rump),
and reimplemented it using Cake.

Figure 12 shows a large portion of the Cake code for this
task. We were fortunate to have a one-to-one correspondence
between most calls in the two interfaces, with well-matched
naming conventions; this is captured neatly in twopattern
rules (labelled “hunk 1”).

There are some simple correspondences between objects
in the two interfaces (hunk 2). Somerump library calls
leave theirvnode target unlocked, so we need not applyRUMP_VOP_UNLOCK() in those cases (hunk 3). These
calls are exactly those which may modify the filesystem’s di-
rectory structure; such calls also require the reference count
of any modifiedvnode to be pre-incremented to avoid pre-
mature reclamation, as captured by thevnode_bump rules.

Somerump functions return output values through pa-
rameters (hunk 4a). Thepu�s interface requires these to be
passed through an opaque object,pu�s_newinfo, populated
using setter functions. We can express this firstly by describ-
ing which rump calls’ arguments are outputs, and secondly
by providing value correspondences betweenpu�s_newinfo
and the relevantrump structures.

Code in librump originated in the kernel, where client
reading and writing of file data requires address-space
traversal. The four relevant calls use a special interface
called uio for passing this data. To us, this is just a new
way of packaging parameters for input and/or output, and is
handled by a few more correspondences.

The rules shown generate complete implementations of
all but six of the 28p2k wrappers. The omissions are ex-
plained by special error-handling requirements, one-to-many

// hunk 1: basi
 event
orresponden
e patternspattern pu�s_fs_(.*) { names (mount: _) }
←→ rump_vfs_\1 { names (mount: _) };pattern pu�s_node_(.*) { names (mount: _,
ookie: _ asvnode_unlo
ked ptr) }
←→ RUMP_VOP_\U\1\E { names (
ookie: _) };// hunk 2: basi
 value
orresponden
esvalues pu�s_usermount (pu�s_getspe
i�
 (this))−→ mount;values pu�s_
red (
red_
reate(this))−→ kauth_
red;values pu�s_
red ←− (
red_destroy(this)) kauth_
red;// hunk 3: more value
orresps in
l. spe
ial unlo
ked- returnvalues vnode_unlo
ked −→({RUMP_VOP_LOCK(that, LK_EXCLUSIVE); that}) vnode;values vnode_unlo
ked ←−(RUMP_VOP_UNLOCK(that, 0)) vnode;values pu�s_
n (make
n(this))−→
omponent_name;values pu�s_
n ←−(free
n (this , 0))
omponent_name;values vnode_bump −→({RUMP_VOP_LOCK(that, LK_EXCLUSIVE);rump_vp_in
ref(that); that}) vnode;values vnode_bump ←−vnode; // unlo
k not requiredpu�s_node_
reate(mount, vn as vnode_bump, ni,
n, vap)

−→ RUMP_VOP_CREATE(vn, ni,
n, vap);pu�s_node_mknod(mount, vn as vnode_bump, ni,
n, vap)
−→ RUMP_VOP_MKNOD(vn, ni,
n, vap);// ... similar for remove, link , rename, ...// hunk 4a: how to output parameters by "newinfo"values pu�s_newinfo ({pu�s_newinfo_set
ookie(this , that); this })
←− (RUMP_VOP_UNLOCK(this, 0)) vnode;// Some
alls return a fuller set of newinfovalues pu�s_full_newinfo ({pu�s_newinfo_set
ookie(this , that);pu�s_newinfo_setvtype(this , vtype);pu�s_newinfo_setsize(this , vsize);pu�s_newinfo_setrdev(this , rdev); this }) ←−({ let (vtype, vsize , rdev) = rump_getvninfo(this); this }) vnode// hunk 4b: tell Cake whi
h
alls need " full " newinfo...exists elf_ar
hive (" pu�s.a ") pu�s ; // this hunk would appear atderive elf_ar
hive pu�s_inst = // ... the top of the .
ake �leinstantiate (pu�s , pu�s_ops, pops, "pu�s");pu�s_inst { de
lare {pu�s_fs_fhtonode : (_, _, _,out pu�s_newinfo as pu�s_full_newinfo) ⇒ _;pu�s_node_lookup : (_, _,out pu�s_newinfo as pu�s_full_newinfo , _) ⇒_; } };// hunk 5: shared lo
kingvalues vnode_lkshared
−→({RUMP_VOP_LOCK(that, LK_SHARED); that}) vnode;values vnode_lkshared ←−({RUMP_VOP_UNLOCK(that, 0); that}) vnode;// hunk 6: input/output by uiovalues uio_outbuf (buf: uint8_t [℄ ptr , resid : size_t ptr ,o� :
onst o�_t)−→ (rump_uio_setup(that→֒buf,*that→֒resid , that →֒o�set , RUMPUIO_READ)) uio;values uio_outresult ←− (rump_uio_free(this)) uio;values uio_outres_len_o� ←−({rump_uio_getresid(that→֒resid);rump_uio_geto�(&that→֒reado�);rump_uio_free(this)}) uio;pu�s_node_read(mount, vn as vnode_lkshared,uio as uio_outbuf(buf, resid , o�set),_, resid out_as uio_outresult,
r , io�ag)
−→ RUMP_VOP_READ(vn, uio, io�ag,
r);// similar : readlink , readdir , "uio_inbuf" and write

Figure 12. Selected rules from thep2k study

C adjusted Cake remaining C
LoC (nb nc) 605 523 133 54
tokens 3469 3137 1131 347
semicolons 358 277 69 33

Table 1. Comparingp2k implementations in Cake and C.

function mappings, and function correspondences which do
not follow the naming convention. They were easily handled
by a few more event correspondences (not shown).

In summary, Cake can express thep2k component in
a fraction of the code size, and in a way which localises
each concern of the two interfaces’ syntactic and seman-
tic differences far more clearly than the existingp2k code.
For example, treatment of unlocking and reference count-
ing is handled by discrete and localised rules, rather than
being scattered throughout the code. The only logic re-
quired which Cake couldn’t adequately express was about
40 lines of C code inp2k.
 which load the filesystem (thep2k_run_fs() function). This loader is necessary becausepu�s only calls intop2k indirectly, through a table of func-
tion pointers passed during initialization. We instantiate this
table using Cake’sinstantiate helper (§4.3).

Table 1 shows the aggregate comparison of Cake’sp2k
with the original implementation.

6.2 Migration between support libraries: ephy�webkit
Another area of continuing evolution is in web browsers. The
Epiphany web browser14 migrated during 2007–08 from a
Mozilla-based HTML display widget to supporting adition-
ally a Webkit-based one. We compare Epiphany’s internalWebKitEmbed adaptation layer with a Cake implementa-
tion.

Since the developers of Epiphany chose to strip out the
adaptation layer around July 2008, after Webkit migration
was completed, to target Webkit APIs directly, we used
Subversion revision 8300 (28 June 2008) and isolated the
adaptation logic in classWebKitEmbed for Cake reim-
plementation. (Although there is no relevant discussion in
the changelogs or mailing list archives, clearly the devel-
opers anticipated no future need to change the target API;
this strikes us as optimistic.) For simplicity, we left as-is
some additional adaptation code handling cookie manage-
ment, password management and certain other functionality,
since this contained only no-op implementations in our cho-
sen revision. Similarly, we retained the utility classesWe-bKitEmbedPrefs andWebKitEmbedHistoryItem for use by
our adaptation logic; these could be implemented in Cake,
but owing to their small size, their C code is dominated by
boilerplate, so would not give a useful measurements.

Epiphany uses subclassing (using the GObject library) to
connect anEmbed object with a Webkit instance: the sub-
class’s fields point to Webkit resources. In Cake we use an

14http://www.gnome.org/proje
ts/epiphany/

association: the Embed object is associated with the relevant
Webkit objects.values EphyEmbed ←→(web_view: WebKitWebView,s
rolled_window: GtkS
rolledWindow,load_state: WebKitEmbedLoadState,loading_uri :
har [℄);

Most of the calls between the two interfaces map very
directly. Some are left unimplemented by Epiphany; these
are mapped to empty stubs in Cake.ephy_load(embed, url as raw_url, �ags , preview_embed)
−→ { let embed...loading_url = url ;webkit_web_view_open(embed...web_view, url); };ephy_stop_load(embed) −→webkit_web_view_stop_loading(embed...web_view);ephy_
an_go_ba
k(embed) −→webkit_web_view_
an_go_ba
k(embed...web_view);ephy_
an_go_forward(embed) −→webkit_web_view_
an_go_forward(embed...web_view);ephy_
an_go_up(embed) −→{ false };
The two components exchange history item objects.

Value correspondences are provided. Note that in both cases
these are passed asGList objects, but with different payload
types. Our object-sharing analysis (§5.4.3) correctly catches
this: the list nodes are not shared. We rely on explicit spe-
cialisation of thevoid pointers in eachGList node. Without
this, the pointed-to objects would not be explored by the
Cake runtime.// in Epiphany "exists"ephy_get_forward_history: (_) ⇒GList_of_EphyHistoryItems;// in Webkit "exists"webkit_web_ba
k_forward_list_get_forward_list_with_limits:(_) ⇒GList_of_WebKitWebHistoryItems;// in " link "ephy_get_forward_history(embed)
−→ {let full_list =webkit_web_view_get_ba
k_forward_list(embed...web_view);let
opied_sublist =webkit_web_ba
k_forward_list_get_forward_list_with_limits(full_list , WEBKIT_BACK_FORWARD_LIMIT);
opied_sublist };
Epiphany provides code to manually walks and convert

the two history lists. Our code simply treats the list as an
object graph and applies the relevant value correspondences.
Pattern-matching on event correspondences also simplifies
the load and manager_do_
ommand functions. Finally,
a small benefit in the Cake implementation is a relative
lack of boilerplate: whereas Epiphany’s use of the GObject
library necessitates somewhat verbose C code to perform
downcasts and populate a dispatch table, by contrast Cake
can succinctly instantiate the table usinginstantiate. Since
associations are formed dynamically and navigated using
run-time metadata, downcasts are unnecessary.

This case study proves a fair demonstration of Cake.
However, since the data passed back and forth between the

C adjusted Cake remaining C
LoC (nb nc) 525 513 161 0
tokens 2529 2455 784 0
semicolons 175 163 70 0

Table 2. Comparison ofephy�webkit in Cake and C.

browser and its back-end are relatively simple, Cake’s pow-
erful rule-based value conversions do not pay off as heavily
as inp2k. Table 2 shows the aggregate comparison of the
original implementation and Cake’s.

6.3 Evolving interfaces in distributed systems:XCL
Codebases in long-lived distributed systems accumulate
complexity over time. Occasionally developers choose to
redesign the client interfaces to shed this complexity and
better serve current needs. Such an initiative began in the
X Window System around 2003, when a new client libraryXCB was proposed to replaceXlib. For clients ofXlib, an
adaptation layer calledXCL [Sharp and Massey 2002] was
devised. We took a small but representative subset of the
XCL source code (around 600 raw lines out of 6000) and
reimplemented it using Cake.

SinceXCB is designed to be more minimal thanXlib,
there is a small abstraction gap between the two. As a result,
some utility code fromXCL whose purpose was to bridge
that gap was retained unmodified for use with our Cake im-
plementation. Meanwhile, many data structures are shared
verbatim betweenXlib andXCL, so there was only limited
opportunity to exploit the expressiveness of value correspon-
dences.

This study exposed a flaw with the current Cake lan-
guage: it has no means to factor out cross-rule commonal-
ity which cannot be captured using value correspondences.
In XCL there is some such commonality. For example, sev-
eral Xlib calls for setting window properties map to theXCBChangeProperty call, which takes many arguments. InXCL, there is anXSetProperty function which abstracts
away most of these arguments, and series of otherXlib calls
are implemented using this function. In Cake we were forced
to implement each as a verbose call toXCBChangeProperty
instead, making the Cake version longer than the C version.// longhand in Cake, repeating the XCBChangeProperty
allXSetWMName(dpy, w, tp) −→XCBChangeProperty(dpy, PropModeRepla
e,w, XA_WM_NAME, tp→֒en
oding,tp→֒format, tp→֒nitems, tp→֒value);// shorthand in C, using XSetTextProperty
onvenien
evoid XSetWMName(Display *dpy, Window w, XTextProperty *tp){ XSetTextProperty(dpy, w, tp, XA_WM_NAME); }

Table 3 shows the aggregate comparison of the original
implementation and Cake’s. We were disappointed not to
make bigger savings in this study. The abstraction gap con-
tributed some additional complexity to the Cake code, as did

C adjusted Cake remaining C
LoC (nb nc) 380 315 189 42
tokens 2581 2328 1543 232
semicolons 187 148 107 19

Table 3. Comparison of anXCL subset in Cake and C.

the asynchronous style of dispatch in theXCB interface, and
the fact thatXlib’s return conventions, which return 1 on
success, do not match Cake’s default style of error report-
ing (§4.2). We hope that support for styles in Cake will be
able to abstract these more cleanly in the future. Had we
had the resources to implement the whole of XCL in Cake,
we would expect better figures, since greater commonality
would be extracted by value correspondences.

7. Discussion and future work
Performance Achievable performance using Cake de-
pends greatly on the “cut” of the interfaces being composed.
We have several reasons to believe that Cake’s generated
code can be efficient in many cases: it is often remarkably
similar to hand-written code (particularly thep2k study), and
link-time optimisations can be applied after Cake has done
its work. The relatively slow uptake of link-time optimisa-
tion suggests that cross-library calls are rarely performance-
critical (cf. intra-library calls). Finally, there is hugescope
for adding further annotations and analysis to allow genera-
tion of faster code.

Applicability Cake’s range of applicability can only be
discovered in the longer-term, but its underlying model is
highly general and certainly not limited to procedural inter-
action. Cake’s design might apply particularly well to dis-
tributed systems where storage is naturally replicated more
than it is shared.

White-box complement Cake only tackleswell-abstracted
tasks (§3). Binary instrumentation systems, such as Pin [Luk
et al. 2005] could make an extremely useful complement to
Cake for turning ill- into well-abstracted tasks, but we have
yet to investigate this.

Dynamic component structure Cake currently identifies
“components” by interfaces visible statically in object code.
Often, however, the same static set of functions and data-
types can realise logically quite different components at run
time. For example, twoFILE objects might each constitute a
logical component to which different adaptation rules should
be applied. A refined notion of component interfaces as
“slices” of a trace, identified by patterns much like event
sequences (§4.1), could support such use-cases.

Binaries and styles The programmer must understand two
versions of their interface: source-level and binary-level.
With C code (the “default style” target) these two views
are usually very similar, but can be obscured by use of the

preprocessor (e.g. to redirect function calls). Styles become
more indispensable when targetting components written in
other languages. For example, comfortable support for C++

and Java requires styles to interpret name-mangling conven-
tions, virtual function dispatch and exception handling. Our
immediate future work is to tackle these and related issues.

Scale Our evaluation case studies are relatively small.
However, we would expect interface size or “surface area”
to grow sublinearly with both component size and program
size (“volume”). A deeper study of this is warranted.

Bidirectionality Currently in Cake, only the simplest cor-
respondences may easily be made bidirectional. In future
work we hope to unify stubs and patterns somewhat, so that
more rules can be naturally bidirectional. For instance, a
stub which doesa(); b() can be treated as a pattern which
matches the sequencea(), b() in the reverse direction. Stubs
which restrict themselves to reversible programming con-
structs, much likelenses[Bohannon et al. 2008], could be
interchangeably rendered as patterns in this way.

Automation Cake’s correspondences are effectively a some-
what strengthenedspecificationsuch as might be fed to a
converter synthesis algorithm [Passerone et al. 2002]. Still
missing is a description of theprotocolsof the input compo-
nents, so that the trickier aspects of control structure canbe
inferred automatically. Recent work on object usage pattern
mining [Wasylkowski et al. 2007] extracts exactly this infor-
mation; this could be a basis for greater automation of Cake
coding.

8. Related work
Cake is primarily an adaptation tool, and combines many of
the techniques in foundational work on procedural adapta-
tion [Purtilo and Atlee 1991] and protocol adaptation [Yellin
and Strom 1997, Passerone et al. 2002, Bracciali et al. 2005].
Jigsaw [Bracha et al. 1993] is an early system proposing lim-
ited adaptation and composition abstractions for binaries.
None of this work has Cake’s support for complex object
structures (§5), nor many-to-many correspondences among
values (§4.4), nor Cake’s level of expressiveness in data-
dependent function correspondences. More generally, none
presents a complete and practical tool design nor experimen-
tal evaluation on realistic use-cases.

Cake’s interface correspondence rules are similar tocom-
position rulesfound in subject-oriented programming [Har-
rison and Ossher 1993], although the latter is neither a black-
box approach (since rules may range over all source arti-
facts) nor specialised for adaptation tasks. Cake’s notionof
value correspondences is somewhat similar to “typemaps”
in Swig [Beazley 1996]. Swig targets a strictly smaller prob-
lem (interoperation between C/C++ and scripting languages)
than Cake, and has a clear directional bias (the script inter-
face isgenerated fromthe C one) which constraints its order
of application. Cake’s treatment of pointers, being able to

translate entire object graphs at a time, is far more expres-
sive than Swig’s.

Recent work has furthered adaptation as a language fea-
ture in C++ code [Järvi et al. 2007], as a compatibility tech-
nique in cooperation with refactoring tools [Dig et al. 2008]
and as a source-to-source translation for Java code [Nita and
Notkin 2010]. The latter work, Nita and Notkin’s “twin-
ning”, shares many of its goals with Cake. While their
tool supports a strictly smaller set of adaptations than Cake
(which does not include the breadth of context-sensitive,
stateful or many-to-many mappings for which Cake was de-
signed), Cake lacks its “deep adaptation”, meaning the abil-
ity to factor two variant components into a single component
targeting a more abstract API.

Cake is also a component assembly language. It was in-
fluenced by Knit [Reid et al. 2000], but radically extends its
adaptation capabilities. It shares its deliberate computational
constraints with SuperGlue [McDirmid and Hsieh 2006], but
applies to a different programming problem. Other work
in component orchestration and coordination, such as Reo
[Arbab and Mavaddat 2002] or Orc [Misra and Cook 2006]
generally does not include adaptation as a primary goal, and
consequently lacks a full feature-set, but sometimes never-
theless caters to some adaptation use-cases in a black-box
style similar to Cake’s.

Flexible Packaging [DeLine 2001] is perhaps the work
with most closely aligned long-term goals to Cake, in seek-
ing to separate functionality from integration, but takes a
clean-slate approach. It also concerns only matters of “style”
(Cake’s analogy withpackaging) rather than detailed inter-
face mismatch (since it is envisaged that the packaging au-
thor would also write code to adapt the details).

9. Conclusions
We have presented the design and implementation of Cake,
a language designed to abstract the adaptation, composition
and integration of mismatched components by describing
abstractrelations between component interfaces. Our im-
plementation for native binaries finds novel use for debug-
ging information and applies novel techniques to enable dy-
namic behaviour and selective sharing of objects exchanged
by such code. We have demonstrated how Cake’s features
apply to real coding tasks, and our application of Cake to
three real case studies demonstrates its ability to yield sim-
pler, better modularised code.

Acknowledgments
The author is grateful for feedback and encouragement from
David Greaves. Amitabha Roy suggested using the on-stack
return address to interpose on stack frame cleanup, and pro-
vided code. Jamey Sharp provided valuable support for the
XCL case study. This version has benefited from helpful sug-
gestions from Michael Hicks, Jon Crowcroft, Tim Deegan,
Tim Harris, Orion Hodson, David Greaves, Alan Mycroft,

Dominic Orchard, Robin Message, Jukka Lehtosalo, Derek
Murray, Steven Hand, Chris Smowton, David Evans, Atanu
Ghosh and Alan Lawrence. This work was supported by an
EPSRC Doctoral Training grant.

References
F. Arbab and F. Mavaddat. Coordination through channel compo-

sition. InProc. Coordination, pages 21–38, 2002.

G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
Codesurfer/x86—a platform for analyzing x86 executables.In
Proc. 14th Intl. Conf. Compiler Construction, 2005.

D. Beazley. Swig: An easy to use tool for integrating scripting
languages with C and C++. InProceedings of the 4th USENIX
Tcl/Tk Workshop, pages 129–139, 1996.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt. Boomerang: resourceful lenses for string data.In
Proc. POPL ’08, pages 407–419. ACM, 2008.

A. Bracciali, A. Brogi, and C. Canal. A formal approach to com-
ponent adaptation.J. Syst. Softw., 74:45–54, 2005.

G. Bracha, C. Clark, G. Lindstrom, and D. Orr. Module manage-
ment as a system service. InOOPSLA Workshop on Object-
oriented Reflection and Metalevel Architectures, 1993.

R. DeLine. Avoiding packaging mismatch with flexible packaging.
IEEE Transactions on Software Engineering, 27:124–143, 2001.

D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA: a tool for
generating binary adapters for evolving java libraries. InProc.
30th Intl. Conf. Softw. Eng., pages 963–964. ACM, 2008.

DWARF Debugging Information Format version 3. Free Standards
Group, December 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1995.

W. Harrison and H. Ossher. Subject-oriented programming: a
critique of pure objects. ACM SIGPLAN Not., 28:411–428,
1993.

J. Järvi, M. Marcus, and J. Smith. Library composition and adapta-
tion using C++ concepts. InProc. 6th Intl. Conf. on Generative
Programming and Component Engineering, pages 73–82, 2007.

A. Kantee. Rump file systems: Kernel code reborn. InProceedings
of the 2009 USENIX Annual Technical Conference, Berkeley,
CA, USA, 2009. USENIX Association.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.
In Proc. PLDI. ACM, 2005.

S. McDirmid and W. Hsieh. SuperGlue: Component programming
with object-oriented signals. InECOOP 2006. Springer, 2006.

J. Misra and W. Cook. Computation orchestration: A basis for
wide-area computing.J. Softw. & Syst. Modeling, 6:83–110,
2006.

I. Neamtiu and M. Hicks. Safe and timely dynamic updates for
multi-threaded programs. InProc. PLDI ’09, pages 13–24, 2009.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for C. InProc. PLDI ’06. ACM, 2006.

M. Nita and D. Notkin. Using twinning to adapt programs to
alternative APIs. InProc. 32nd Intl. Conf. Softw. Eng.IEEE,
2010.

D. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, 15:1053–1058, 1972.

R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis:
Two faces of the same coin. InProc. Intl. Conf. Computer-Aided
Design, 2002.

J. Purtilo and J. Atlee. Module reuse by interface adaptation.
Software – Practice and Experience, 21:539–556, 1991.

A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. InProc. 4th
OSDI, pages 347–360. USENIX Association, 2000.

J. Sharp and B. Massey. XCL: An Xlib compatibility layer for
XCB. In Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference. USENIX Association, 2002.

A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. InProc. ESEC-FSE ’07, pages 35–44. ACM, 2007.

D. Yellin and R. Strom. Protocol specifications and component
adaptors.ACM TOPLAS, 19:292–333, 1997.

A. Complete exampleexists elf_relo
 ("libmpeg2play.o") mpeg2play;exists elf_external_sharedlib ("av
ode
") av
ode
;exists elf_external_sharedlib ("avformat") avformat;exists elf_external_sharedlib (" avutil ") avutil ;alias any [av
ode
, avformat, avutil ℄ �mpeg;derive elf_relo
 ("mpeg2play2�mpeg.o") program = link[mpeg2play, �mpeg℄ {mpeg2play ←→�mpeg{fopen (fname, "rb")[0℄ −→ av_open_input_�le(out _, fname);values FILE ←→ AVFormatContext /* {} * /;mpeg2_init() −→ { av
ode
_init ();av_register_all () }
←−{new mpeg2_de
_s};let f = fopen(fname, "rb"), ...,let de
 = mpeg2_init(), ...,mpeg2_get_info(de
) −→{av_�nd_stream_info(f) // in - place update to f;& let de
...vid_idx = �nd(// standard algorithmf →֒streams,fn x ⇒ x→֒
ode
→֒
ode
_type // lambda!== CODEC_TYPE_VIDEO);& let
ode
_
txt = f→֒streams[de
...vid_idx℄;& let
ode
 = av
ode
_�nd_de
oder(
ode
_
txt→֒
ode
_id);& av
ode
_open(
ode
_
txt,
ode
);&
ode
_
txt };values (de
: mpeg2_de
_s, info: mpeg2_info_s,sequen
e: mpeg2_sequen
e_s, fbuf: mpeg2_fbuf_s)

←→ (
txt : AVCode
Context, vid_idx: int,p: AVPa
ket, s: AVStream,
ode
: AVCode
){
// ensure an AVPacket exists , on any flow L- to -Rvoid −→?(new AVPa
ket tie
txt) p;
// picture dimensions are in sequence and ctxtsequen
e ←→
txt {
// width and height done automaticallydisplay_width ←− width;display_height ←− height ; // here we assume a

hroma_width ←−width / 2; // 4:2:2 pixel format
hroma_height ←− height / 2; };
// info.sequence always points to sequence objectinfo.sequen
e (&sequen
e)←−? void ;
// special conversion required for buffersfbuf ←→ frame {buf [0℄ as pa
ked_luma_line[height℄ ptr
←→ data [0℄ as padded_line[
txt.height ℄ ptr ;buf [1℄ as pa
ked_
hroma_line[
hroma_height℄ ptr
←→ data [1℄ as padded_line[
txt.height / 2℄ ptr ;buf [2℄ as pa
ked_
hroma_line[
hroma_height℄ ptr
←→ data [2℄ as padded_line[
txt.height / 2℄ ptr ;};};values pa
ked_luma_line ←−padded_line {void (mem
py(this, that, display_width))←− void ; };values pa
ked_
hroma_line ←−padded_line {void (mem
py(this, that,
hroma_width))←− void; };

/* The loop in ffmpeg proceeds frame -by- frame , whereas in libmpeg2
* each iteration might yield zero frames (in the STATE_BUFFER
* case) * or* one or more frames (in the STATE_SLICE case). Solve
* this by ensuring that each iteration yields exactly one frame - - -
* a case supported by both library and client.* /mpeg2_parse(de
)[0℄ −→ { void }

←−STATE_BUFFER;
/* Notice use of [0]: " the first call to mpeg2_parse ()
* * on a given dec , for all dec* returns STATE_BUFFER*/

/* Reading from the input file handle must also be mapped to an
* ffmpeg library call. Since success of fread () entails a return
* value of nmemb, we must return this , irrespective of the size
* of the frame actually read. This is a rare example where error-
* - reporting conventions must be explicitly satisfied in stubs. * /let f = fopen (fname, "rb")[0℄, ...,let de
 = mpeg2_init(), ...,fread(_, _, nmemb, f) −→{ { av_read_frame(de
...pa
ket, f) ;& nmemb } ;| 0; };

/* Since ffmpeg handles input buffering for us , no
* action is required on a call to mpeg2_buffer ().* /mpeg2_bu�er(_, /*buf* /_, /* buf + siz* /_) −→ { void };

/* The client calls mpeg2_parse () to request decoded frames. This
* translates to a call to avcodec_decode_video (). Since our earlier
* call to av_read_frame () may have returned a frame from a
* different stream (e.g. an audio stream in the same file), we have
* two cases to consider. These map directly to the libmpeg2 constants
* STATE_BUFFER ("must read more data ") and STATE_SLICE ("oneor more
* decoded frames available "), distinguished by an if - - then -- else. * /f ⇐ fopen (fname, "rb")[0℄, ...,de
 ⇐ mpeg2_init(), ...,size ⇐ fread(_, _, nmemb, f),mpeg2_parse(de
) −→{ let frame_avail = (if de
...pa
ket.stream_index == de
...vid_idxthen { av_free(de
...frame); // this is null - safelet de
...frame = av
ode
_allo
_frame();av
ode
_de
ode_video2(de
...
ode
_
txt,frame, out got_pi
ture, de
...pa
ket);true }else false)}--
←−- -{ if frame_avail then STATE_SLICEelse STATE_BUFFER };

/* Notice the special reverse - arrow syntax for returning. Moreover ,
* the special " - - {" (" continuing ") syntax retains all name bindings
* from the preceding stub.* /

/* Finally , we relate the state tear -down calls of the two interfaces. * /mpeg2_
lose(de
) −→ { av_free(de
...pi
ture);av
ode
_
lose(de
...
ode
);av_
lose_input_�le(de
...i
); }
←−{ delete de
 };} // end mpeg2play←→ ffmpeg}; // end derive

