
Accurate Coverage Metrics for Compiler-Generated
Debugging Information

J. Ryan Stinnett
King’s College London

London, United Kingdom
jryans@gmail.com

Stephen Kell
King’s College London

London, United Kingdom
stephen.kell@kcl.ac.uk

Abstract
Many debugging tools rely on compiler-produced metadata
to present a source-language view of program states, such
as variable values and source line numbers. While this tends
to work for unoptimised programs, current compilers often
generate only partial debugging information in optimised
programs. Current approaches for measuring the extent of
coverage of local variables are based on crude assumptions
(for example, assuming variables could cover their whole
parent scope) and are not comparable from one compilation
to another. In this work, we propose some new metrics, com-
putable by our tools, which could serve as motivation for
language implementations to improve debugging quality.

CCS Concepts: • Software and its engineering → Soft-
ware testing and debugging; Compilers; Correctness.

Keywords: debug information, optimisation
ACM Reference Format:
J. Ryan Stinnett and Stephen Kell. 2024. Accurate Coverage Metrics
for Compiler-Generated Debugging Information. In Proceedings
of the 33rd ACM SIGPLAN International Conference on Compiler
Construction (CC ’24), March 2–3, 2024, Edinburgh, United Kingdom.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3640537.
3641578

1 Introduction
Compilers emit debugging metadata, or “debug info”, to en-
able the mapping of machine program states back to source
program states. This information is consumed not only by
interactive debuggers, but also by profilers, tracers (e.g. Sys-
temTap [9]), coverage tools, etc. Toolchains have developed
standard formats for it, such as Dwarf [8], which decouple
tools from compilers. Unfortunately, compiler optimisations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC ’24, March 2–3, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0507-6/24/03
https://doi.org/10.1145/3640537.3641578

interact poorly with debug info: the information produced
by production-grade compilers is often incorrect or missing
after optimisation [1, 4, 5, 7, 11, 13, 16, 28, 30, 32].

When this happens, the tool is unable to identify correctly
the source-level program state of interest. In debuggers, a
common failure of this kind is the message “variable op-
timised out” when attempting to print or evaluate a local
variable. This message often occurs even when a variable
remains represented in the program; it is triggered when the
debug info, not the variable, is missing. When coverage is
lacking like this, the effectiveness of the tooling is degraded.

Debugging information for optimised code matters. Some
codebases cannot be built without optimisation (e.g. the
Linux kernel), and others cannot meaningfully be run with-
out it (e.g. resource-heavy programs such as games which are
unusable without optimisation). Some bugs occur only on op-
timised “full speed” code, and some tools are only useful on
the same (e.g. profilers). Programmers are used to deploying
partial workarounds when facing difficulties debugging op-
timised code—notably, rebuilding without optimisation—but
this brings costs to developers (e.g. rebuilding takes time) and
does not help in-the-field bug reporting by end users (being
optimised, deployed binaries are frequently undebuggable).
Whereas compiler benchmarks provide a basis for evalu-

ating the optimisation benefit achieved for a program, there
is no equivalent way to measure (or show absence of) the
incurred debuggability disbenefit in the generated “program
plus debug info”. Certain crude metrics do exist but, as we
will survey, they have various flaws and, most notably, are
not comparable across compilers. One reason for this is that
althoughmissing debug info is usually regarded as a compiler
bug, it is currently not clear what it means for debug info
to be fully complete and correct. Historically, a “best effort”
approach has prevailed, pursuing specific improvements [3]
but placing no strong correctness criterion on compilers.

In this paper we develop the first robust approach to mea-
suring the coverage of local variable information in Dwarf
debugging information. Our contributions are the following:

• a model of optimisation under debugging as “residual-
ising” computation, with an analysis of local variables
and their life-cycle within a debuggable program (§3);

• a discussion of a series of candidate local variable cov-
erage metrics (§4), with experience of applying them
to complex cases found in real debug info, culminating

https://orcid.org/0000-0002-3101-1189
https://orcid.org/0000-0002-2702-5983
https://doi.org/10.1145/3640537.3641578
https://doi.org/10.1145/3640537.3641578
https://doi.org/10.1145/3640537.3641578

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom J. Ryan Stinnett and Stephen Kell

in an implemented coverage tool which improves on
earlier metrics by obtaining an accurate and achievable
“complete coverage” baseline (§5);

• experimental evidence showing that our metric reli-
ably reflects changes in debuggability across compiler
versions (§6.1), can explain the debuggability effects
of compiler changes (§6.2) and can reproduce with
expected differences findings of a prior study (§6.3).

Our experiments and implemented tools are available in a
deposited artifact [29] (not peer-reviewed).

2 Understanding Debug Coverage
What kinds of coverage could we measure, and what distin-
guishes coverage from correctness? We discuss these here.

2.1 Distinguishing Coverage from Correctness
Given “full” debug info known to be complete and correct,
we would expect it to satisfy the following properties:

Control coverage It is possible to stop at all reachable
points in the source program’s control flow. Put differ-
ently, if code actually executes, then it also appears to
execute as observed from the debugger.1

Variable coverage At any such point, it is possible to ex-
amine all named values that the source program deems
to be in scope at that point and also taking awell-defined
value—roughly, it is not uninitialized. (From here we
use “variable” to refer to named values even if the value
happens to be immutable, such as a const local in C.)

Semantic consistency When examining a variable at
such a point, its observed value should be (somehow)
consistent with the source program’s semantics.

Whereas the first two properties (coverage) are reason-
ably precise, semantic consistency can be seen as a spectrum
of possible correctness conditions: exactly how consistent
one should expect observations to be might be answered in
strong terms (“as if executing the source program unopti-
mised”) or relatively weaker terms, e.g. permitting optimisers
to reorder code. (An analogy exists here with memory mod-
els, whose consistency properties may be stronger or weaker.
Prior work [33] has given names to two polar-opposite prop-
erties: “expected” means that even when optimisations are
enabled, the debug-time view appears identical to unopti-
mised execution, while “truthful” means that the debugger
shows whatever states are actually inhabited by the opti-
mised program, translating them into source terms as best it
can but applying no particular correctness criterion.)
In this work we focus on measuring the extent of local

variable debug info (coverage) but not its semantic consis-
tency (correctness). Although this means a compiler could
game our metric by adding spurious debug info, developers
1From here on we assume an imperative source language, i.e. one with
explicit control flow, although we believe this could be generalised—perhaps
in terms of a partial order on active program constructs.

are unlikely to add this intentionally since it would offer an
especially bad user experience for end developers.

0xb90..0xbb3: (reg RDX)

0xbb3..0xbdb: (value (div (- (reg RAX) (reg RDI)) 4))

0xbdb..0xc0e: (reg RDX)

0xc0e..0xc1a: (frame_offset -24)

Figure 1. How Dwarf might describe a local variable over
four distinct address ranges within a function. Most expres-
sions compute where it is located: in a register or (later) on
the stack. Over the second range, however, it is not repre-
sented explicitly; its value is computed as a scaled difference
of two registers. (The textual syntax is for illustration only.)

2.2 Debug Info as Residualised Code
Compilers may optimise code so that a variable is no longer
explicitly represented. Such variables remain coverable at
debug time in modern debug info formats like Dwarf [8],
which describe them as functions to be computed by the
debugger. In Dwarf these are expressions in an interpreted
stack machine language. Expressions can compute a vari-
able’s location in memory or the register file—perhaps a
simple offset from the stack pointer, but sometimes complex
(e.g. in a nested function, traversing a static-link pointer to
reach locals in the lexically enclosing scope)—or they can
compute a variable’s value directly. Fig. 1 shows an example.

Compilers may also optimise code so that an intermediate
control-flow position of the source program is elided, having
no corresponding program counter position in the object
code. Again, full variable coverage over these positions often
remains feasible, as debug info can represent intermediate
states to be synthesised by the debugger, effectively existing
in between the instructions of the object program. Fig. 2
shows an example. This facility is less well established but
is implemented in (at least) extensions to Dwarf that are
proposed for the next standard and already used by GCC
[25–27]. Currently, eliminated branching control flow cannot
be represented in Dwarf or any proposed extension.
Both of these can be thought of as a kind of “residual

computation”: code eliminated from the program is in effect
reinstated in the debug info.We view compilers as outputting
two artifacts: the object program proper, and its debug info.
Elimination from one does not imply elimination from the
other, and in fact the opposite is true: the more thoroughly a
variable is “eliminated” from the emitted program, the more
it needs to be described in the debug info. Any notion of full
coverage needs to reflect the potential for residualisation:
it is a loss of coverage if the compiler did not take the op-
portunity to residualise a local variable over some reachable
range of positions in the source program. Given adequate
residualisation features, optimisations and debugging need
not be mutually excluding.

Accurate Coverage Metrics for Compiler-Generated Debugging Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

source

1: int x = 1;
2: x++;
3: x++;

4: x = f(x);

5: ...

instructions

0xd06: mov $3, %rdi
0xd0d: callq f
0xd12: mov %rax, %rdi
0xd15: ...

view 1: ln 1, x: (value 1)
view 2: ln 2, x: (value 1)
view 3: ln 3, x: (value 2)
view 4: ln 4, x: (value 3)
 ln 4, x: (value 3)
 ln 4, x: (reg RAX)
 ln 5, x: (reg RDI)

location views, value exprs

Figure 2. How Dwarf can conceptually residualise control-
flow positions that were eliminated during optimisation,
using the “location views” extension of Oliva [25]. A single
program counter value (here 0xd06) can have a numbered
sequence of “views” such that a single local variable is de-
scribed differently for each view. At debug time, control
appears to pass through each view in sequence, even though
the program counter does not advance.

2.3 Research Questions
Using this perspective of debug info residualising otherwise
eliminated or simplified computation, we can now state the
specific research questions to be answered in this paper.

RQ1. For measuring coverage, what is a viable con-
ceptual basis? Clearly coverage can be measured as a frac-
tion of what is covered relative to what is coverable, but
how to determine these is unclear. More specifically: given
a program and its debug info, what configurations may a
variable v inhabit at a program point p? We will develop a
case analysis to answer this question (§3).

RQ2. For measuring coverage, what are the neces-
sary practical steps? How can we measure the extent of
local variable coverage in debug info, in a way that fairly
represents the effective debug-time availability of the pro-
gram’s local variables? To answer this, we need to define an
accurate baseline for when a variable should be present, i.e.
one that accounts for residualisation opportunities. This is
complicated by the sometimes unpredictable and counterin-
tuitive behaviour of compilers and the partial information
they generate. We define a measure of coverage with respect
to a given local variable, capturing over how much of the

InScopeUndefined

LiveDef

initialize

DefNoLongerUsed

unused
initialization

OutOfScope

unused
var

last use
of def

new def

unused
assignment

end of scope

Figure 3. Classical view of the life cycle of a local variable.

program the debugger is able to show a value for it, relative
to the achievable baseline. We improve on previous metrics
by ensuring the baseline is achievable, using both conceptual
insights (§4) and experiences during implementation (§5).

RQ3. In aggregate, how does our metric’s picture of
debuggability depart from those computed by naïve
variations and/or previously proposedmetrics?Wewill
answer this open question both by applying our metric to
both real and synthetic programs and exploring the results in
plots, and by a replication study in which we use our metrics
to reproduce an experiment from recent literature.

RQ4. In detail, does our metric explain debuggabil-
ity gaps in a way consistent with how these are under-
stood by real compiler developers?We expect low scores
in our metric to be indicative of compiler bugs, and higher
scores to be indicative of their absence. We study two real
fixed compiler bugs before and after their fixes and explore
how these are reflected by our metric.

3 A Conceptual Basis for Coverage Metrics
At a high level, measuring coverage means computing the
following:

coverage =
#covered
#coverable

This demands answers to three questions: what counts as
“covered”, what counts as “coverable”, and in what unit these
are counted. In this section we answer the first two of these,
by proposing definitions for when a local variable is cov-
ered and coverable, made by analogy with a familiar liveness
analysis using the data-flow method.

3.1 Liveness as a State Space
Traditional liveness analysis deems a variable to be live at a
point if a definition reaches that point and has at least one
later use. We can model each variable in such a scenario
by two unary predicates: whether it has been initialized
(“Defined” or D) and whether the current definition will be
used again (“Live” or L). Although these two predicates are
orthogonal, a reduction applies since conventionally “Live”
is assumed to imply “Defined” (i.e. uninitialized reads are
not considered), leaving three in-scope states. The resulting
machine is shown in Fig. 3; for readability, an additional “out
of scope” exit node is added.

3.2 A More Realistic Life Cycle
In a debugging scenario, the situation is more complex in a
few ways.

Multiple deaths. As before, a variable may be defined
(initialized) or not, but “dead” is a less clear concept. An
in-scope variable that is deemed dead by the optimiser may
still be requested by the debugger’s user, even though the
program does not need it. From here we qualify “dead” as
“program-dead”, to highlight this. Consider the straight-line

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom J. Ryan Stinnett and Stephen Kell

Table 1. Case analysis of in-scope variables, which at any point may (A) be allocated to a storage location, (D) take a defined
value according to source semantics, (L) hold a program-live value, and (K) be possibly knowable given the right debug info.

A D K L short name example/notes
0 0 0 0 InScopeOnly just come into scope; neither allocated nor defined
0 1 0 0 Unknowable no storage, value not program-live, no longer recoverable from other state
0 1 1 0 KnowablePDead not program-live nor allocated, but recoverable as a function of other state
0 1 1 1 UnallocatedPLive normal case of non-allocated live variable
1 0 0 0 AllocatedUninit uninitialized reg or stack slot
1 1 0 0 AllocatedStale program-dead store eliminated; storage still allocated
1 1 1 0 AllocatedPDead program-dead variable but correct value still stored
1 1 1 1 NormalPLive normal case: program-live, allocated variable

program shown in Fig. 4. On the right is the source code,
and on the left is a flow chart of significant events in the
variable’s lifecycle, showing its two additional deaths: when
it is unrecoverable (unknowable), and when it is no longer
in scope.

Allocated vs residual. Unlike a traditional data-flow anal-
ysis we care to distinguish whether optimisation passes have
residualised a source variable into a debug info expression
or simply represented it directly in some allocated storage
(a register or stack slot).

Actual versus potential. Variables are routinely residu-
alised into expressions, but imperfect debug info may miss
opportunities to do so. It matters whether a source variable
can be expressed in this way or not. (This links back to “mul-
tiple deaths”: one of the two “later deaths” is when there is
no such function of program state.)
To account for all these distinctions, we can identify the

following largely orthogonal predicates of an in-scope vari-
able:

• Is it “allocated” to any storage location (A)? (If not, it
might still be computed by an expression.)

• Is it initialized i.e. ever-defined (D), according to source
semantics?

• Is its current definition [program-]live (L)?
• Does it have a value that is knowable (K) from the
current object program state, i.e. as any expression
over it?

These four elements are again somewhat non-orthogonal.
To be knowable and to be live both require being defined.
(We regard uninitialized values as meaningless and therefore
trivially unknowable.) To be allocated and program-live is
also to be knowable (simply by loading from the allocated
storage; a Dwarf “location expression” denotes this). Af-
ter applying these reductions, eight states of a possible 16
remain; the state space is shown in Tab. 1.

“Knowable” here means that reading from storage and/or
evaluating some debug info expression could obtain the vari-
able’s value. This subsumes three sub-cases: the allocated

case (“knowable” simply by loading from storage), the “recov-
erable” case when a variable is computable as a function of
other (redundant) state (as the “scaled difference of pointers”
in Fig. 1), but also the “literal value” case e.g. in

int i = 0; ... i = ...;
. . . where from the initialization, the debug info simply records
the literal zero, no storage needs to be allocated, and no “func-
tion” of program state per se is required.

The restriction of K to functions of the current object pro-
gram state reflects how under current tools, when state is to
be dropped from the object program, there is no mechanism
that can cause it to be remembered e.g. by an attached debug-
ger. Dropped state is not residualised. Whether there exists
any such function appears undecidable in general, posing a
problem for our metric—which seeks to determine whether
each variable is possibly coverable. For now, we assume that
all local variables are coverable at all points where they are
defined, but with optional special handling for the positions
after their last use (i.e. when they are finally program-dead).
This can avoid penalising compilers for discarding state as a
usual register allocator would, with the rationale that this
could still be covered by a debugger using a technique we
describe later (§6.4).

Finally we define two further predicates:
• S(p) is true iff a variable is in scope at p;
• B(p) is true iff the debugging information describes a
variable at p.

Note that B is true when the debug info actually does de-
scribe the variable, either in its allocation or as a residualised
expression—as distinct from whether it potentially could
(K). As in Fig. 3, when a variable is out of scope, the other
predicates are no longer of interest.
From here, for notational convenience we will identify

a predicate with the set of program points where it is true.
We can write Bv (p), say, to refer to whether variable v is
described at a point p, or we can write simply Bv to refer
to the subset of program points p ∈ P where Bv (p) is true.
Here P is the set of all program points as somehow defined;
exactly what should constitute a “program point” will be
discussed in the next section.

Accurate Coverage Metrics for Compiler-Generated Debugging Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

Def

Last Use

Decl

defined
live

undefined

undeclared

Dealloc

defined
dead

allocated

Unrecov

defined
dead

unallocated
recoverable

defined
dead

unallocated
unknowable

int example(int n) {
// p0: before x enters scope (undeclared)
int x;
// p1: before live range of x (undefined)
x = 1;
// p2: within live range of x (defined, live)
int b = x + 2;
// p3: after live range of x (defined, program−dead, allocated)
...
// p4: later, once x's storage is re−used (defined, p−dead...
f(b); // ... , unallocated, but x is recoverable as b − 2)
// p5: later still, x is no longer recoverable...
// (defined, program−dead, unallocated, unknowable)
return 0;

}

Figure 4. Variable x is in different states across a range of program points p. The right-hand C source function is annotated
with these points. The left-hand flow chart illustrates x ’s lifecycle in a hypothetical compilation, from before x ’s introduction
(Decl), across its definition (Def), last use (Last Use) and the subsequent reclamation of its stack or register storage (Dealloc). A
final Unrecov event models the point from which there is no longer enough state to reconstruct the value.

4 Defining a Coverage Metric
In this section we begin with metrics already found in the
literature, progressively identifying and eliminating issues
with them, culminating in our proposed metric.

4.1 Naïve Instruction-Based Metrics
A naïve but easily computed metric simply counts the num-
ber of instruction bytes over which the value is described
(B) by debug info, as a fraction of a total possible number of
instruction bytes over which it is in scope (S).

Cv =

�� Bv ���� Sv �� for P the program’s set of instruction bytes

This is what is computed by existing tools such as
llvm-dwarfdump [18] and debuginfo-quality [23]. Unfor-
tunately this results in four problems.
Firstly, measurements are not comparable across com-

pilers, or even across differently configured runs of the same
compiler. Instruction counts reflect details of the compila-
tion, such as how many instructions were used to realise a
particular feature of the source program, which vary inde-
pendently of how debuggable the result is. Essentially this
metric places a varying, compilation-specific weighting on
the coverage available across parts of the program, according
to how many instructions the compiler used to realise them.
Secondly, in the presence of location views, as shown in

Fig. 2, it simply omits to count some coverage. Location
views can cover a source variable over a range of zero in-
structions, which by definition will not be counted.
Thirdly, in practice it accidentally favours some com-

pilations, specifically unoptimised compilations which put
local variables in a stack slot for their whole lifetime. Con-
versely it penalises optimised compilations using a register

allocator. This is because a variable described as being lo-
cated in a stack slot will be in B (it is described) over all
program points in S , even those where the variable is not
yet defined (points not in D). Conversely, a variable that is
stored only in registers will be in B only where it is also in
D because registers are allocated not over a whole function
but over specific ranges of instructions—live ranges, which
always start at a definition, so naturally exclude program
points not in D. Put differently, it overestimates coverage
by counting as covered a variable in a described stack slot
that holds only garbage (uninitialized) data (B ⊃ D). (Usu-
ally a “variable not defined” message would be preferable
in these cases!) This overestimation means full coverage
becomes impossible to achieve when using register allo-
cation, since the denominator counts program points over
which the variable will have no described value so cannot
be counted in the numerator (B ⊂ S). Fig. 5 reveals the un-
achievable coverage which other tools suggest exists but is
ultimately unattainable after accounting for each variable’s
defined region.

4.2 Counting Source Lines, not Instructions
To address the first two problems—incomparability across
compilers, and omitting “source-only” coverage—we can
count source lines, not instructions. This applies to both the
numerator and the denominator.

Cv =

�� Bv ���� Sv �� for P the program’s set of source lines

The debug info includes a line table, supplying a mapping
such that any set of source lines can be projected to a set
of instructions or vice-versa. By performing this projection,

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom J. Ryan Stinnett and Stephen Kell

we obtain a set of source positions (e.g. pairs of (filename,
line number)) that should be embodied by any compilation
of the same code. When P is defined in this way, the number
of instructions embodying any particular source location
may vary arbitrarily without affecting the metric. This is
intentional: we deem instruction counts not relevant to the
experience of a developer debugging at source level.2
Line tables’ mappings are not one-to-one: inlining leads

to source lines mapping to many program counters, while
various code-folding transformations do the converse. While
we may still calculate sets of source lines or instruction bytes,
a local variable may be covered or not covered at each. The
simplest scheme (which is what we implement) calculates a
variable’s coverage as an unweightedmean across all realised
instances of a source line, e.g. inlined copies plus the out-
of-line copy. Each source line continues to contribute at
most 1 to the metric’s numerator, so in the case of such
“multiply instantiated” lines, a contributionmay be fractional
rather than just 0 or 1.3 (One could also argue for unequal
weighting among these instances, e.g. supposing the out-of-
line copy is called more often than each inlined copy. Making
a meaningful choice would require profile information.)

2 The focus on lines does mean that very long source lines, e.g. as produced
by some macro expansions, suffer limited resolution. However, our metric
could work with any notion of program points that is reflected in the com-
piler’s line table. For example, source features could be correlated to Dwarf
column information, but compiler support for this information is patchy.
3For exposition we continue to use the set cardinality notation, in spite
of this generalisation to fractional contributions. Another fractional case
might be where only certain bytes of a value are available, as common
with locals of struct or other composite type. Our tool does not currently
account for this, but could easily be extended to do so.

Figure 5. Coverage achievability in the Git codebase. The
gap between the lines represents “artificial” coverage that
other tools suggest exists but cannot be achieved as it is
outside the variable’s defined ranges. The “other tools” line
is always 1.0 by definition and included only to emphasise
the difference between approaches.

4.3 Correcting Accidents, Permitting Full Coverage
To correct the accidental favouring of stack allocation and
unachievability of full coverage, the obvious evolution is to
apply a “definedness filter” to both numerator and denomina-
tor. We call this “scope shrinking”. (This can be done while
counting either source lines or instruction bytes; we use
only the former from here on.) We simply omit to count, in
either numerator or denominator, those program positions
for which the variable has no defined value.

Cv =

�� Bv ∩ Dv
���� Sv ∩ Dv
�� for P the program’s set of source lines

Unlike the earlier metrics, this is challenging to implement.
How should we calculate Dv , the set of source lines in the
defined range of variablev? A form of binary liveness analysis
could be used, but would require control-flow reconstruction
on the binary, and would be assuming correctness of the
compiler-generated line table.

5 Implementation
This section outlines how our implementation avoids a com-
plex binary analysis and avoids assuming correctness of the
compiler’s line table, by adopting an external baseline.

Heuristic attempts. To avoid the complexity of control-
flow reconstruction the LLVM tool’s developers trialled a
modification where, essentially, an approximation of |S ∩D |

was used. If S consists of a set of instruction bytes, as offsets
within a function, the denominator is |S \[0,n)| where byte n
is the first over which any Dwarf expression for the variable
is defined. However, this is circular: it uses what is covered
(the instructions covered by definedDwarf expressions) as a
proxy for what is coverable (the instructions over which the
variable should be covered), undermining the intention of a
coverage metric to capture the gap between these. Indeed
the heuristic was found to be unreliable and removed [2].

Need for an external baseline. To avoid this circularity
and answer more authoritatively which source positions
should be covered, we can use an external reference, in the
form of some unoptimised version of the program. This could
be either source code or unoptimised intermediate represen-
tation. We use this unoptimised version to calculate the sets
of source positions S and D needed for the denominator.

mem2reg as a baseline. To approximate D by excluding
those lines which precede the variable’s point(s) of first defi-
nition, one method is to use the compiler itself. Although a
fully unoptimised build does not help (because the compiler
usually just places all variables on the stack for their entire
scope), adding just LLVM’s mem2reg pass to the unoptimised
O0 build largely has the right effect: it moves variables into
registers and describes them only from their point(s) of defi-
nition. Essentially, this exploits mem2reg’s liveness analysis

Accurate Coverage Metrics for Compiler-Generated Debugging Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

instructions, source positions, source code source variables
pos p x y i

push %r12
push %rbp
push %rbx
mov %rdi,%rbp
call g
test %eax,%eax
jle 39
mov %rbp,%rbx
lea -0x1(%rax),%eax
lea 0x4(%rbp,%rax,4),%r12
mov $0x0,%ebp
mov (%rbx),%edi
call h
add %eax,%ebp
add $0x4,%rbx
cmp %r12,%rbx
jne 20
mov %ebp,%eax
pop %rbx
pop %rbp
pop %r12
retq
mov $0x0,%ebp
jmp 32

1 int f(int *p)
2 {
3 int x;
4 int y = g(p); 1○
5 x = 0;
6 for (int i=0; i<y; ++i)
7 {
8 x += h(p[i]);
9 }

10 return x;
11 }

coverage 5/6 4/4 4/5 2/2

Figure 6. An annotated view of how our coverage metric might view a simple compiled function. Circles denote source
positions identified in the debug info. Square boxes mark those source positions for which a variable is in-scope and undefined
() or defined (). Triangles mark those for which the given source variable is covered by debug info () or not (); the markers
shown are typical for a lightly optimised version of the code. 1○ marks a location where variable x is not yet initialized but, if
allocated storage e.g. on the stack, would be erroneously counted as covered by a naive metric.

to approximate S ∩D. Since this pass works on virtual regis-
ters, it is not limited by the supply of physical registers, so
is applied to any non-address-taken scalar local. We call this
baseline O0-mem2reg. Unfortunately, various uncontrollable
effects make O0-mem2reg unsuitable as a baseline. At differ-
ent optimisation levels, we found that the line number tables
map the same code to slightly different source ranges and
that O0-mem2reg tends to yield a slight subset of the true
D. Some O1 compilations report source lines absent from
the O0-mem2reg baseline set, leading to coverage over 100%,
which is clearly neither accurate nor acceptable.

Source analysis. Instead of mem2reg, we use a source-
level analysis to calculate S and D as sets of source line
numbers. These sets are constructed by a series of “filters”
over the source line number space. We classify AST nodes
according to whether they perform computation—for exam-
ple, declaration-only nodes do not perform computation, but
nodes using variables and invoking operators do. (Note that
this computation may later be residualised into debug info;
there is no obligation for this computation to be embodied
by instructions in the eventual binary.) We use the parser’s
retained source coordinates to map nodes to lines. Any non-
computational lines that appear in the Dwarf line table are
ignored when calculating the measured binary’s set of de-
scribed lines (B), sidestepping the O0 and O1 variability seen
with mem2reg. The source analysis similarly computes S and
D as subsets of the file’s computational lines. Since S and D
are determined by source analysis, our denominator remains
valid even when compilers’ line tables are incomplete.

Static versus dynamic analysis. The approach we have
described is a static analysis examining all code; it does not

rely on collecting execution traces. However, in the pres-
ence of unreachable code it may be fairer to filter out lines
that are not executed across some collection of test inputs.
Our method is adaptable straightforwardly to this approach,
simply by an additional filter on the sets of lines in the nu-
merator and denominator. We describe an experiment using
this approach in the next section.

6 Evaluation
Of our four research questions, RQ1 and RQ2 have been
addressed by construction in the preceding sections. In this
section we first outline some practical experience with our
metric across a range of codebases and compilers/versions,
then consider the remaining questions RQ3 and RQ4.

6.1 Experience with Our Metrics
Fig. 7 shows coverage achieved for the Git codebase as com-
piled by Clang 15 and GCC 13, as measured using our metric.
Coverage is computed per variable and plotted after sorting
the variables by coverage. Each compiler is run at multiple
optimisation levels. As one might expect, when comparing
coverage across optimisation levels, we see that any optimi-
sation beyond O0 significantly degrades coverage. GCC’s Og
optimisation level (which is a variant of O1 tuned for better
debugging) offers the best coverage of the optimised runs.
Clang does not currently offer a meaningful Og (it is merely
an alias for O1), but the LLVM community is working on
[17] adding this in the near future. Recent versions of Clang
enable almost all optimisations at O1, so the higher levels
show only minor differences. The difference between O0 and
O0-mem2reg (which moves most variables off the stack and
into registers) is intriguing, since it shows a sizeable amount

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom J. Ryan Stinnett and Stephen Kell

Figure 7. Variable value source line coverage for Git code-
base. For each optimisation level, variables are sorted by
coverage (variable’s index may be different for each line).

Figure 8. Variable value source line coverage across several
packages. Variables are sorted by coverage.

of coverage lost even after little optimisation. GCC fully cov-
ers more variables than Clang at the same setting, but its
coverage then drops more rapidly.
Fig. 8 shows coverage across 6 analysed packages. These

packages were chosen to explore coverage across different
application domains. The list includes Dash (shell), FFmpeg
(media), Git (VCS), libbz2 (compression), FLINT (numerical),
and tar (archive). Compiled with Clang 15 at O2, we see a
similar profile across all packages.

Figure 9. Coverage before and after resolving LLVM issues
38163 (left) and 39974 (right). Each measured program is
the (very small) bug reproduction example attached to the
corresponding issue, with only 2 and 5 variables respectively.

We compared our coverage metric approach with that of
other tools (llvm-dwarfdump, debuginfo-quality) for the
Git codebase using Clang 15 at O2 by computing the correla-
tion between the two. The Pearson correlation coefficient is
0.656, which suggests only a moderately correlated positive
relationship. Indeed, our approach often computes quite dif-
ferent coverage values than past approaches [18, 23]. Several
factors explain this. As highlighted earlier (§4), we lift from
bytes to lines, restrict to computational lines, and include
only the defined region as covered and coverable. These im-
provements affect both numerator and denominator, and
manifest differently for each variable depending on whether
each line of its defined region is covered or uncovered.

6.2 Case Studies
RQ4 asked: in detail, does our metric explain debuggability
gaps in a way consistent with how these are understood by
real compiler developers? We examine this through two case
studies. Compiler changes can go both ways: even when
an issue is resolved, coverage may go up or down. This is
because compiler authors generally take the (quite reason-
able) perspective that incorrect debug info is worse than
none at all [19], so may sometimes remove coverage to avoid
incorrectness. We study one case of each kind.

Debug info repaired. LLVM issue 38163 (“Loop strength
reduction preserves little debug info”) involves the
LoopStrengthReduce pass which transforms loop induction
variables into more efficient forms. Debug info describing
these induction variables was being dropped. The issue was
resolved via a change which residualises the variable in some
cases. As seen in Fig. 9, our metric shows that source variable
value coverage improved as a result.

Debug info dropped. LLVM issue 39974 (“Salvaged mem-
ory loads can observe subsequent memory writes”) concerns
a function that loads from memory into an unused local vari-
able. The EarlyCSE pass eliminates the load but correctly
residualises this as a dereference operation in debug info.

Accurate Coverage Metrics for Compiler-Generated Debugging Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

However, after a later store to the pointer this expression
yields an incorrect value: the newly stored value, not the
value that would have been loaded earlier (which has become
potentially unknowable). The compiler authors chose to re-
move the debug info for this variable. Fig. 9 shows that our
metric confirms that several source variables lost all value
coverage as expected for this compiler change.

6.3 Aggregate Comparisons: A Replication Study
RQ3 asked: in aggregate, how does our metric’s picture of de-
buggability depart from those computed by naïve variations
and/or previously proposed metrics? We answer this by a
replication study in which we adapt our metrics to reproduce
an experiment from recent literature. The similarities we
find serve as validation of definitional and implementational
correctness but we also find certain expected differences that
we can explain in terms of our metric’s definition. The study
reproduces the experiments of Assaiante et al. [1] which gen-
erated the data plotted in Fig. 10. The metrics presented have
been computed across the same 5,000 Csmith-generated pro-
grams from their published artifact. Their metrics examine
local variables only, not formal parameters, so we created a
similarly adapted version of ours.
While we have defined our own metric in a per-variable

fashion, aggregating across lines, Assaiante et al. did the
converse, defining a metric per line and aggregating over
that line’s variables. They first compute “line coverage” as a
ratio of the lines present in the Dwarf line table for a given
compilation relative to the lines present in their O0 baseline.
Next, they compute “availability of variables” by attempting
to stop in the debugger on each such line, and recording
the number of variables accessible relative to O0. The over-
all availability score is the arithmetic mean. Fortunately,
our method is straightforwardly adapted to a line-oriented
approach, simply by enumerating at each line the familiar
denominator |S∩D | (the variables that are both in-scope and
defined) and numerator |B ∩ D | (the variables that are both
described and defined). Our approach is able to compute the
metric for O0, since we use our familiar source analysis as a
baseline, whereas Assaiante et al. use O0 as the baseline; we
noted in §5 why this is unreliable.
Their work relies on a dynamic analysis and thus will

not encounter unreachable lines, which these generated pro-
grams do contain. For this replication experiment, we added
a binary analysis step using a simple custom Valgrind [22]
tool to enumerate executed lines, as anticipated earlier (§5).
This allowed us to obtain similar line coverage.

Similar trends appear in both our metric and theirs when
looking across compiler versions and optimisation levels.
Our line coverage is slightly lower owing to the different
baseline. Since our metric can measure line coverage even
at O0, we can additionally see that if their On coverage is
multiplied by the O0 value (which is their baseline), we in-
deed arrive at (approximately) our own On line coverage.

Meanwhile, our availability of variables is somewhat higher.
This reflects the expected improvement of our approach: by
limiting coverable lines to the defined region, we avoid the
problem of the over-counting stack-based O0 baseline, which
artificially prevents reaching 100% coverage (§4.1).
6.4 Experimenting with End-Of-Scope Treatments
Scope shrinking (§4.3) disregards a variable’s region of unde-
finedness at the beginning of its scope, i.e. until it is defined.
A near-dual scenario exists at the end of its scope: a de-
fined variable may have a period of unknowability when
its last value, although well-defined in source terms, is no
longer recoverable from the object program state (seen in
Fig. 4). Since Dwarf expressions residualise computation,
but not state, even the most sophisticated Dwarf expres-
sion could not reconstruct the variable in this case. However,
a hypothetical debugger could be implemented today that
performs this knowledge extension, by saving a variable’s
value at its last moment of knowability (computed from the
instruction ranges of debug info). Fig. 11 shows a simulation
of the potential coverage gains after applying end-of-scope
knowledge extension. We do not know of any such debugger,
although Dwarf version 5 alludes to such possibilities (in
the specification of DW_OP_entry_value, the operation to
obtain somehow a value as it existed on entry to the function)
and omniscient debuggers (e.g. Pernosco) take the extreme
position of ensuring full knowability at all times.

7 Related Work
To our knowledge, relatively little work has addressed
the problem of measuring debug info coverage. As cov-
ered earlier (§4.1) two existing tools llvm-dwarfdump [18]
and debuginfo-quality [23] compute essentially the same
instruction-based metric, whose problems we surveyed. As-
saiante et al. [1] used a differential approach which tracks
how many variables can be accessed in the debugger on each
source line relative to the unoptimised version. Our metric
offers more precision via our source analysis baseline and
by considering only each variable’s defined region.

Rather more work has addressed other aspects of source-
level debugging of optimised code. Research into debugging
optimised programs made some progress in the 1980s [11],
mainly focused on tracking the location of source variable
values in optimised program state during execution. DOC [5]
stores debug info tracking locations of values from memory
through to registers, resembling an early form of today’s
debug info. Zellweger [33] describes how to compare unopti-
mised and optimised program data-flow and control-flow to
untangle state changes of specific optimisations and recover
values. OPTVIEW [30] avoids attempting to map between
source and binary, but instead lifts the optimised program
back up to a modified source view. Still other systems achieve
source-level (“expected”) behaviour by temporarily switch-
ing to an unoptimised version of function(s) while a debugger

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom J. Ryan Stinnett and Stephen Kell

Figure 10. Comparison of our metric approach (using static source analysis as baseline) with Assaiante et al. [1] (using O0 as
baseline). Metrics computed using the same 5,000 Csmith-generated [31] programs as used by Assaiante et al. Of the two,
only our metric is capable of measuring coverage at O0. The two metrics show the same trends across optimisation levels and
versions but a markedly different absolute value, reflecting our fairer “scope shrinking” baseline (§4.3).

Figure 11. Coverage for the Git codebase before and after
end-of-scope “knowledge extension” (KE).

is attached [12, 34], including also performing the switch
mid-function using on-stack replacement [6, 10, 12]. These
systems sidestep the issues motivating our work, but rely on
just-in-time compilers, and also constrain the compiler to
retain specific program points where it is safe to jump from
optimised to unoptimised mode for debugging. By contrast,
ahead-of-time toolchain compilers are traditionally imple-
mented without such constraints, motivating our work.

We also discussed earlier (§6.4) how a debugger could cur-
rently perform “knowledge extension” and thereby improve
the debugging illusion for any given metadata. Although we
know no debugger doing this per se, omniscient debuggers
such as Pernosco, built on record/replay systems such as rr
[24], offer an extreme case: knowledge is kept indefinitely.
Recording must be enabled at the start of execution, and
on current hardware it must also narrow the envelope of
executions e.g. by serialization of multithreaded code.

8 Conclusions and Future Work
We have defined various properties of correct debug info,
characterising debug info as a “residualisation” of the
optimised-away parts of the original program. We have elab-
orated these properties into coverage criteria that we have
embodied in an implemented tool and found useful in finding
and explaining real debuggability problems.

The viewpoint of “residualisation” is onewe find especially
useful. It suggests two specific areas of future work: designing
for state retention and designing for residualisation.

The first is to allow a conventional debugger to “residualise
state”, i.e. to preserve local variables over ranges when they
would otherwise be unknowable, as we developed in §6.4.
Although today’s debug info already makes this possible,
doing it reliably would require control-flow reconstruction
in the debugger (since the numerically “last” instruction in
an address range might not be the last to execute) and ideally
a faster breakpoint mechanism (such as that of Kessler [14]),
to avoid the slowdown of frequent traps.
The second goal is open-ended, beginning by observing

how compilers have not been engineered from the viewpoint
of “optimisation as residualisation” but rather “optimisation
as elimination”. The generation of debug info is an additional
manual task for the author of an optimisation pass. Could it
instead be an automatic side-effect of the primitive IR trans-
formations provided by a compiler framework? This stands
to align debug info generation with verified compilation [15]
and translation validation [20, 21].

Acknowledgments
We thank Maxine Champion, Al Grant, Robert O’Callahan,
and the anonymous reviewers for their helpful feedback.
This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) via grant EP/W012308/1.

Accurate Coverage Metrics for Compiler-Generated Debugging Information CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

References
[1] Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna,

and Leonardo Querzoni. 2023. Where Did My Variable Go? Poking
Holes in Incomplete Debug Information. In Proc. of ASPLOS ’23. https:
//doi.org/10.1145/3575693.3575720

[2] Kristina Bessonova. 2019. [llvm-dwarfdump][Statistics] Unify Cover-
age Statistic Computation. https://reviews.llvm.org/D70548

[3] Ronald F. Brender, Jeffrey E. Nelson, and Mark E. Arsenault. 1998. De-
bugging Optimized Code: Concepts and Implementation on DIGITAL
Alpha Systems. Digital Technical Journal 10, 1 (1998), 81–99.

[4] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. 1992. A New
Approach to Debugging Optimized Code. In Proc. of PLDI ’92. https:
//doi.org/10.1145/143095.143108

[5] Deborah S. Coutant, Sue Meloy, and Michelle Ruscetta. 1988. DOC: A
Practical Approach to Source-Level Debugging of Globally Optimized
Code. In Proc. of PLDI ’88. https://doi.org/10.1145/53990.54003

[6] Daniele Cono D’Elia and Camil Demetrescu. 2018. On-Stack Replace-
ment, Distilled. In Proc. of PLDI ’18. https://doi.org/10.1145/3192366.
3192396

[7] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian
Österlund, Cristiano Giuffrida, and Leonardo Querzoni. 2021. Who’s
Debugging the Debuggers? Exposing Debug Information Bugs in Opti-
mized Binaries. In Proc. of ASPLOS ’21. https://doi.org/10.1145/3445814.
3446695

[8] DWARF Debugging Information Format Committee. 2017. DWARF
Debugging Information Format: Version 5. https://dwarfstd.org/doc/
DWARF5.pdf

[9] Frank Ch. Eigler. 2006. Problem Solving With SystemTap. In Proceed-
ings of the Linux Symposium (Ottawa, Canada).

[10] Shu-Yu Guo. 2014. Debugging in the Time of JITs. https://rfrn.org/
~shu/2014/05/14/debugging-in-the-time-of-jits.html

[11] John Hennessy. 1982. Symbolic Debugging of Optimized Code.
TOPLAS 4, 3 (July 1982), 323–344. https://doi.org/10.1145/357172.
357173

[12] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proc. of PLDI ’92.
https://doi.org/10.1145/143095.143114

[13] Jakub Jelínek. 2010. Improving Debug Info for Optimized Away Param-
eters. In GCC Summit. https://gcc.gnu.org/wiki/summit2010?action=
AttachFile&do=view&target=jelinek.pdf

[14] Peter B. Kessler. 1990. Fast Breakpoints: Design and Implementation.
In Proc. of PLDI ’90. https://doi.org/10.1145/93542.93555

[15] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[16] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. Debug
Information Validation for Optimized Code. In Proc. of PLDI ’20. https:
//doi.org/10.1145/3385412.3386020

[17] Stephen Livermore-Tozer. 2023. [RFC] Redefine Og/O1 and Add a New
Level of Og. https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-
a-new-level-of-og/72850

[18] LLVM Project. 2020. llvm-dwarfdump - Dump and Verify DWARF
Debug Information. https://llvm.org/docs/CommandGuide/llvm-
dwarfdump.html

[19] LLVM Project. 2022. Source Level Debugging with LLVM. https:
//llvm.org/docs/SourceLevelDebugging.html

[20] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.
In Proc. of PLDI ’21. https://doi.org/10.1145/3453483.3454030

[21] George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proc. of PLDI ’00. https://doi.org/10.1145/349299.349314

[22] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proc. of PLDI
’08. https://doi.org/10.1145/1250734.1250746

[23] Robert O’Callahan. 2018. Comparing the Quality of Debug Information
Produced by Clang and GCC. https://robert.ocallahan.org/2018/11/
comparing-quality-of-debug-information.html

[24] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering Record and Replay for
Deployability. In Proc. of USENIX ATC ’17. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/ocallahan

[25] Alexandre Oliva. 2010. Consistent Views at Recommended Break-
points. In Proc. of GCC Summit. 6. https://www.fsfla.org/~lxoliva/
papers/sfn/gcc2010.pdf

[26] Alexandre Oliva. 2017. Location View Numbering. https://dwarfstd.
org/ShowIssue.php?issue=170427.1

[27] Alexandre Oliva. 2017. Statement Frontier Notes and Location
Views. https://developers.redhat.com/blog/2017/07/11/statement-
frontier-notes-and-location-views

[28] Alexandre Oliva. 2019. GCC gOlogy: Studying the Impact of Optimiza-
tions on Debugging. https://www.fsfla.org/~lxoliva/writeups/gOlogy/
gOlogy.html

[29] J. Ryan Stinnett and Stephen Kell. 2024. Accurate Coverage Metrics
for Compiler-Generated Debugging Information (artifact). https:
//doi.org/10.5281/zenodo.10568392

[30] Caroline Tice and Susan L. Graham. 1998. OPTVIEW: ANewApproach
for Examining Optimized Code. In Proc. of PASTE ’98. https://doi.org/
10.1145/277631.277636

[31] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. In Proc. of PLDI ’11. https:
//doi.org/10.1145/1993498.1993532

[32] Polle T. Zellweger. 1983. An Interactive High-Level Debugger for
Control-Flow Optimized Programs. In Proc. of SIGSOFT ’83. https:
//doi.org/10.1145/1006147.1006183

[33] Polle T. Zellweger. 1984. Interactive Source-Level Debugging of Op-
timized Programs. Ph. D. Dissertation. University of California,
Berkeley. https://search.library.berkeley.edu/permalink/01UCS_BER/
1thfj9n/alma991002570669706532

[34] Lawrence W Zurawski and Ralph E Johnson. 1991. Debugging Opti-
mized Code with Expected Behavior. Unpublished draft.

Received 2023-11-13; accepted 2023-12-23

https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3575693.3575720
https://reviews.llvm.org/D70548
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/53990.54003
https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/3445814.3446695
https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://rfrn.org/~shu/2014/05/14/debugging-in-the-time-of-jits.html
https://rfrn.org/~shu/2014/05/14/debugging-in-the-time-of-jits.html
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/143095.143114
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=jelinek.pdf
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=jelinek.pdf
https://doi.org/10.1145/93542.93555
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-a-new-level-of-og/72850
https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-a-new-level-of-og/72850
https://llvm.org/docs/CommandGuide/llvm-dwarfdump.html
https://llvm.org/docs/CommandGuide/llvm-dwarfdump.html
https://llvm.org/docs/SourceLevelDebugging.html
https://llvm.org/docs/SourceLevelDebugging.html
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/1250734.1250746
https://robert.ocallahan.org/2018/11/comparing-quality-of-debug-information.html
https://robert.ocallahan.org/2018/11/comparing-quality-of-debug-information.html
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.fsfla.org/~lxoliva/papers/sfn/gcc2010.pdf
https://www.fsfla.org/~lxoliva/papers/sfn/gcc2010.pdf
https://dwarfstd.org/ShowIssue.php?issue=170427.1
https://dwarfstd.org/ShowIssue.php?issue=170427.1
https://developers.redhat.com/blog/2017/07/11/statement-frontier-notes-and-location-views
https://developers.redhat.com/blog/2017/07/11/statement-frontier-notes-and-location-views
https://www.fsfla.org/~lxoliva/writeups/gOlogy/gOlogy.html
https://www.fsfla.org/~lxoliva/writeups/gOlogy/gOlogy.html
https://doi.org/10.5281/zenodo.10568392
https://doi.org/10.5281/zenodo.10568392
https://doi.org/10.1145/277631.277636
https://doi.org/10.1145/277631.277636
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1006147.1006183
https://doi.org/10.1145/1006147.1006183
https://search.library.berkeley.edu/permalink/01UCS_BER/1thfj9n/alma991002570669706532
https://search.library.berkeley.edu/permalink/01UCS_BER/1thfj9n/alma991002570669706532

	Abstract
	1 Introduction
	2 Understanding Debug Coverage
	2.1 Distinguishing Coverage from Correctness
	2.2 Debug Info as Residualised Code
	2.3 Research Questions

	3 A Conceptual Basis for Coverage Metrics
	3.1 Liveness as a State Space
	3.2 A More Realistic Life Cycle

	4 Defining a Coverage Metric
	4.1 Naïve Instruction-Based Metrics
	4.2 Counting Source Lines, not Instructions
	4.3 Correcting Accidents, Permitting Full Coverage

	5 Implementation
	6 Evaluation
	6.1 Experience with Our Metrics
	6.2 Case Studies
	6.3 Aggregate Comparisons: A Replication Study
	6.4 Experimenting with End-Of-Scope Treatments

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

