CPPR Manual

1 Description

cppr is an implementation of the colored parallel push-relabel algorithm. There
is also a sequential fifo push-relabel algorithm implemented mostly using same
routines. Two different graph representations are implemented, adjacency list
and star graph representations.

This code is structured as a library but it also contains a standalone tool to use
as a solver for DIMACS maximum flow problem files. Solution is then given as
a DIMACS maximum flow solution file with optional flow value assignments.
See the provided samples as an example for these file formats.

This documentation assumes a UNIX based operating system with essential
build tools installed and a POSIX compatible shell for commands. You may
need to adjust these to your setup for other combinations.

This same content can be read from both README and doc/manual.pdf files.

2 Building

Run make to compile the tool.
Run make run to run with the sample input.
Run make test to compile and run unit tests.

See Makefile for compile time options and their default values.

3 Installation

If you want to install the standalone tool, you can simply copy the binary to a
directory in PATH variable:

cp bin/cppr /usr/local/bin

If you want to install the library, you can copy header files in include directory
to a system include directory:

mkdir -p /usr/local/include/cppr
cp include/* /usr/local/include/cppr

You can then include these files with the corresponding prefix in your source
code:

#include <cppr/dimacs.hpp>
#include <cppr/push_relabel.hpp>

You may need to elevate permission to use these commands (e.g. sudo).

4 Compiler

You need a compiler with at least C++11 and OpenMP 3.1 support for compila-
tion. This roughly corresponds to version 4.8 onwards for GCC and version 3.9
onwards for Clang. Detailed feature support information for GCC and Clang
can be found in following pages if you need to use older versions:

e https://gcc.gnu.org/projects/cxx-status.html
e https://gcc.gnu.org/wiki/openmp
e https://clang.llvm.org/cxx_status.html

e https://openmp.llvm.org/

Note: Although Clang 3.8 supports the necessary specifications, there is a bug
crashing the frontend when references are used in OpenMP reduction clauses
which seems to be fixed in 3.9 onwards.

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/wiki/openmp
https://clang.llvm.org/cxx_status.html
https://openmp.llvm.org/

5 Usage

cppr tool can read the input either from a file given as the first argument or
from stdin when an argument is not provided. Output is given to stdout by
default which can instead be written to a file either using -o option with a file
name or using shell redirections.

An example DIMACS input file and the corresponding DIMACS output file are
provided in test/sample directory. DIMACS file format for the maximum flow
problem is described here:

e http://lpsolve.sourceforge.net/5.5/DIMACS _maxf.htm
The example input file is as follows:

cat test/sample/inp.max

This is a simple example file to demonstrate the DIMACS
input file format for maximum flow problems. The solution
vector is [5,10,5,0,5,5,10,5] with cost at 15.

Problem line (nodes, links)

max 6 8

source

1s

sink

6t

Arc descriptor lines (from, to, capacity)

5

15

5

5

5

5

15

5

DO OO WN

O 0 P P PP EPOB 0B 0T o000 e
GO W WNNE~ =

g3
[=]
Q.

of file

This can be run with cppr tool as follows:

$ bin/cppr test/sample/inp.max
c
c cppr v1.0.0

http://lpsolve.sourceforge.net/5.5/DIMACS_maxf.htm

nodes : 6

arcs : 8

graph : star
problem : maximum flow

algorithm : colored parallel push-relabel (8 threads)

pushes :7+1=28
relabels :1+0 1
discharges :1+0 1
global relabels : 1 + 1 =2
colors : 2

color ticks :2+1=3

solution is not checked

15

total measured time .000802795

- init time .0107e-05
- read time .7393e-05
- convert residual time .714e-06

- solve time .000747983 + 1.4705e-05 = 0.000762688
- color graph time .432e-06

.8084e-05 + 4.134e-06 = 4.2218e-05
.000705467 + 1.0571e-05 = 0.000716038

- discharge time (par)

- global relabel time (par)
- report time

- check solution time

- write time

O 0O 0 00000000 0n o000 000O0000O00000ao0

O O OO WPk ONWPMO

There are also some small examples generated with the tools used in DIMACS
challenge in test/dimacs directory. Output from cppr tool for these examples
can be found in the same directory.

Run bin/cppr -h to see all runtime options along with the usage.

6 OpenMP Options

You can use OMP_NUM_THREADS variable to set the number of threads used for
the parallel algorithm:

OMP_NUM_THREADS=2 bin/cppr test/sample/inp.max

You can use OMP_PROC_BIND variable to set processor affinities to prevent thread
migrations (recommended):

OMP_PROC_BIND="TRUE’ bin/cppr test/sample/inp.max

When these variables are not set, default values of these options are implemen-
tation dependent.

7 Intel TBB Allocator

You can replace the standard memory allocator with scalable memory allocator
from Intel TBB library to avoid false sharing (recommended). You can either
do this at compile time by setting LDLIBS while compiling:

LDLIBS=-1tbbmalloc_proxy make && bin/cppr test/sample/inp.max
Or at load time using LD_PRELOAD trick:
make && LD_PRELOAD=libtbbmalloc_proxy.so.2 bin/cppr test/sample/inp.max

If TBB is installed in a non-standard location, you may need to add -1tbbmalloc
to LDLIBS and the path to TBB library to LIBRARY_PATH and LD_LIBRARY PATH
beforehand:

LIBRARY_PATH="/path/to/tbb:$LIBRARY_PATH" \
LDLIBS=’-1tbbmalloc -ltbbmalloc_proxy’ \

make && \
LD_LIBRARY_PATH="/path/to/tbb:$LD_LIBRARY_PATH" \
bin/cppr test/sample/inp.max

Or if you want to use the second method, then you only need to add the path
to LD_LIBRARY_PATH before running;:

make && \
LD_LIBRARY_PATH="/path/to/tbb:$LD_LIBRARY_PATH" \
LD_PRELOAD=1ibtbbmalloc_proxy.so.2 \

bin/cppr test/sample/inp.max

See the related section in TBB documentation for more information:

e https://software.intel.com/en-us/node/506096

https://software.intel.com/en-us/node/506096

8 Files

The code is structured as a header only C++ library and also includes a stan-
dalone tool. If you want to use it as a library, you only need to include appropri-
ate header files in your source. You can use the standalone tool as an example
for this purpose. Also, if you create a new source file under tool directory, it
will automatically be compiled as a separate tool.

Brief descriptions of subdirectories are as follows:

|-- bin/ -- tool binaries (after building)
| ‘== cpprx
|-- build/ -- build files (after building)
| |-- dep/ -- dependency files (after building)
| |-- color_queue_test.d
|-- cppr.d

|

| |-— multi_queue_test.d

| ‘~- push_relabel_test.d

‘—- test/ -- test binaries (after building)
|-- color_queue_testx*
|-- multi_queue_testx*

‘-- push_relabel_test*

-- doc —-- documentation
‘-- manual.tex
-- include/ -- header files

| -— color_queue.hpp
| -— common.hpp
| -- dimacs.hpp
| -- greedy_coloring.hpp
|-- list_graph.hpp
|-- multi_queue.hpp
| -— push_relabel.hpp
| ‘-- star_graph.hpp
| -- Makefile
| -— README
|-- test/ -- source files for tests
I |-- color_queue_test.cpp
|-— multi_queue_test.cpp
|-— push_relabel_test.cpp

|
|
|
|
|
|
|
|
|
| | -— manual.pdf
|
|
|
|
|
|
|
|
|

|

|

| ‘-- sample/ -- sample DIMACS input/solution
| |-- inp.max

| ‘-—- sol.max

‘== tool/ -- source files for tools

[4

—— Cppr.cpp

9 directories, 26 files

