
Mongoose User Guide, Version 2.0.4

Scott Kolodziej, Nuri Yeralan, Tim Davis, William W. Hager

May 25, 2019

Contents

1 Overview 3

1.1 Coarsening and Refinement Framework . 3

1.2 Quadratic Programming and Optimization . 4

1.3 Fiduccia-Mattheyses Algorithm . 4

2 Availability 5

2.1 Getting the Code . 5

2.2 Prerequisites . 5

2.3 Compilation . 5

3 Using Mongoose as an Executable 7

3.1 License . 9

4 Using Mongoose in C++ 9

4.1 Sample C++ Program . 9

4.2 Creating a Graph . 10

4.2.1 Creating a Graph Manually . 10

4.2.2 Creating a Graph from a Sparse Matrix . 11

4.2.3 Creating a Graph from a Matrix Market File . 12

4.3 C++ API . 12

4.4 A Note on Memory Management . 14

5 Using Mongoose in MATLAB 14

5.1 To Install the MATLAB Interface . 14

5.2 Sample MATLAB Program . 14

5.3 MATLAB API . 16

1

6 Options 17

6.1 Coarsening Options . 17

6.2 Initial Guess/Partitioning Options . 18

6.3 Waterdance Options . 19

6.4 Fiduccia-Mattheyes Options . 19

6.5 Quadratic Programming Options . 20

6.6 Final Partition Target Options . 20

6.7 Other Options . 21

7 References 21

2

1 Overview

Mongoose is a graph partitioning library that can quickly compute edge cuts in arbitrary graphs [2]. Given a graph

with a vertex set V and edge set E, an edge cut is a partitioning of the graph into two subgraphs that are balanced

(contain the same number of vertices) and the connectivity between the subgraphs is minimized (few edges are in

the cut).

Finding high quality edge cuts quickly is an important part of circuit simulation, parallel and distributed computing,

and sparse matrix algorithms.

1.1 Coarsening and Refinement Framework

Mongoose uses a coarsening and refinement framework (sometimes referred to as a multilevel framework [5, 6]).

Rather than attempt to compute an edge cut on the input graph directly, Mongoose first coarsens the graph by

computing a vertex matching and contracting the graph to form a smaller, but structurally similar, graph.

Coarsening

Initial Partition

Refinement

Figure 1: Coarsening and Refinement

Mongoose uses a variety of methods to coarsen the input graph, including random matching and heavy-edge

matching. Additionally, Mongoose offers stall-reducing vertex matching strategies called Brotherly (or two-hop)

matching and Community matching. Brotherly matching allows vertices who share a neighbor to be matched,

even if they have no edge directly connecting them, and community matching allows two vertices whose neighbors

are matched together to be matched together. These methods are advantageous in efficiently coarsening certain

3

classes of graphs, notably social networking graphs, where the vertex degree can vary greatly.

Heavy Edge
Match

Brotherly Matches

Adoption Match
(3-Way)

Coarsen

Figure 2: Brotherly Matching

Brotherly Matches

Community Match

Heavy-Edge
Match

Coarsen

Figure 3: Community Matching

Another matching strategy used in Mongoose is known as Adoption matching. If an unmatched vertex has

no unmatched neighbors, it can be grouped into a 3-way matching with a neighboring matched vertex. These

strategies allow the graph to be coarsened quickly even when the graph is highly irregular, which in turn decreases

memory requirements and overall computational time.

1.2 Quadratic Programming and Optimization

Mongoose is known as a hybrid graph partitioner, as it uses multiple methods in tandem to find higher quality

cuts efficiently. The first such method Mongoose employs is quadratic programming (QP). The edge cut problem

was formatted as a continuous quadratic programming problem by Hager and Krylyuk [4]. This formulation is

solved (rather, improved) using a gradient projection algorithm and a modified version of NAPHEAP, a quadratic

knapsack solver [1].

The quadratic program used is shown below. Hager and Krylyuk have proven that the global optimum to this

quadratic program yields the solution to the graph partitioning problem (but note that both are NP-hard problems

to solve).

min
x∈Rn

(1− x)T(A+ I)x subject to 0 ≤ x ≤ 1, ` ≤ 1Tx ≤ u,

` and u are lower and upper bounds on the desired size of one partition, and A is the adjacency matrix of the

graph.

1.3 Fiduccia-Mattheyses Algorithm

In addition to the quadratic programming approach for refining an edge cut, a standard implementation of the

Fiduccia-Mattheyses algorithm [3] is also provided. This involves swapping vertices from one part to the other in

an effort to improve the edge cut quality. Some vertices are swapped even if no immediate improvement is found

in an attempt to escape a locally optimal solution. However, if no improvement is found after a number of swaps,

the change is reverted.

The Fiduccia-Mattheyses (FM) implementation in Mongoose utilizes heaps for high efficiency.

4

2 Availability

2.1 Getting the Code

Mongoose is available on GitHub at https://github.com/ScottKolo/Mongoose. The code can be

downloaded using git using the following command:

git clone https://github.com/ScottKolo/Mongoose

Alternatively, Mongoose can be downloaded as a zip archive from the following URL:

https://github.com/ScottKolo/Mongoose/archive/edgesep.zip

Mongoose also appears as a component package of SuiteSparse, http://suitesparse.com.

2.2 Prerequisites

Mongoose requires CMake 2.8 and any ISO/IEC 14882:1998 compliant C++ compiler. Mongoose has been tested

to work with GNU GCC 4.4+ and LLVM Clang 3.5+ on Linux, and Apple Xcode 6.4+ on macOS.

2.3 Compilation

Once downloaded, Mongoose can be compiled using the following commands:

cd Mongoose

make

After compilation, the Mongoose demo can be run using ./bin/demo:

. / b i n /demo

∗∗
Mongoose Graph P a r t i t i o n i n g L i b r a r y , Ve r s i on 2 . 0 . 2 Ju l y 5 , 2018

Copy r i gh t (C) 2017−2018
Sco t t P . Ko l od z i e j , Nur i S . Yera lan , Timothy A. Davis , Wi l l i am W. Hager

Mongoose i s l i c e n s e d under Ve r s i on 3 o f the GNU Gene ra l Pub l i c L i c e n s e .

Mongoose i s a l s o a v a i l a b l e under o t h e r l i c e n s e s ; c on t a c t au tho r s f o r

d e t a i l s .

∗∗
Computing an edge cut f o r Erdos971 . mtx . . .

Cut Cost : 1 . 1 e+02

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 1 . 9ms

∗∗
Computing an edge cut f o r G51 . mtx . . .

5

https://github.com/ScottKolo/Mongoose
https://github.com/ScottKolo/Mongoose/archive/edgesep.zip
http://suitesparse.com

Cut Cost : 1 . 5 e+03

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 8 . 4ms

∗∗
Computing an edge cut f o r GD97 b . mtx . . .

Cut Cost : 2 . 6 e+03

Cut Imba lance : 1.1%

T r i a l Time : 0 .19ms

∗∗
Computing an edge cut f o r Pd . mtx . . .

Cut Cost : 1

Cut Imba lance : 0.0062%

T r i a l Time : 12ms

∗∗
Computing an edge cut f o r bcspwr01 . mtx . . .

Cut Cost : 3

Cut Imba lance : 1.3%

T r i a l Time : 0 .18ms

∗∗
Computing an edge cut f o r bcspwr02 . mtx . . .

Cut Cost : 5

Cut Imba lance : 1%

T r i a l Time : 0 .17ms

∗∗
Computing an edge cut f o r bcspwr03 . mtx . . .

Cut Cost : 11

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 0 .34ms

∗∗
Computing an edge cut f o r bcspwr04 . mtx . . .

Cut Cost : 25

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 0 .75ms

∗∗
Computing an edge cut f o r bcspwr05 . mtx . . .

Cut Cost : 12

Cut Imba lance : 0.11%

T r i a l Time : 0 .91ms

∗∗
Computing an edge cut f o r bcspwr06 . mtx . . .

Cut Cost : 7

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 2 . 4ms

∗∗
Computing an edge cut f o r bcspwr07 . mtx . . .

Cut Cost : 7

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 2 . 6ms

∗∗
Computing an edge cut f o r bcspwr08 . mtx . . .

Cut Cost : 25

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

6

T r i a l Time : 2 . 2ms

∗∗
Computing an edge cut f o r bcspwr09 . mtx . . .

Cut Cost : 11

Cut Imba lance : 0.029%

T r i a l Time : 5 . 4ms

∗∗
Computing an edge cut f o r bcspwr10 . mtx . . .

Cut Cost : 25

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 8 . 6ms

∗∗
Computing an edge cut f o r dwt 992 . mtx . . .

Cut Cost : 1 . 9 e+02

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 4 . 7ms

∗∗
Computing an edge cut f o r jagmesh7 . mtx . . .

Cut Cost : 27

Cut Imba lance : z e r o (a p e r f e c t ba l ance)

T r i a l Time : 2 . 8ms

∗∗
Computing an edge cut f o r NotreDame www . mtx . . .

Cut Cost : 1 . 9 e+02

Cut Imba lance : 0.00015%

T r i a l Time : 6 . 2 e+02ms

∗∗
Tota l Demo Time : 0 .67 s

Demo complete ; a l l t e s t s pas sed

To run the complete test suite, the command make test can be used. Note that Python 2.7+ must be installed.

Additionally, this user guide can be generated from source with the command make userguide. XeLaTeX

(commonly included in LaTeX distributions) must be installed.

3 Using Mongoose as an Executable

In addition to the demo executable, the mongoose executable is built at ./bin/mongoose. This executable

can be used to partition a graph given a Matrix Market file:

mongoose <MM-input-file.mtx> [output-file]

The mongoose executable generates a text file with two blocks: a JSON-formatted information block with timing

and cut quality metrics, and the partitioning information itself. The partitioning information is listed with one

vertex per line, with the vertex number followed by the part (0 for part A, 1 for part B).

For example, the following can be used to partition the NotreDame www.mtx matrix:

7

cd b u i l d

. / b i n /mongoose . . / Mat r i x /NotreDame www . mtx NotreDame www out . mtx

∗∗
Mongoose Graph P a r t i t i o n i n g L i b r a r y , Ve r s i on 2 . 0 . 2 Ju l y 5 , 2018

Copy r i gh t (C) 2017−2018
Sco t t P . Ko l od z i e j , Nur i S . Yera lan , Timothy A. Davis , Wi l l i am W. Hager

Mongoose i s l i c e n s e d under Ve r s i on 3 o f the GNU Gene ra l Pub l i c L i c e n s e .

Mongoose i s a l s o a v a i l a b l e under o t h e r l i c e n s e s ; c on t a c t au tho r s f o r

d e t a i l s .

∗∗
Tota l Edge Sepa r a t o r Time : 0 .256587 s

Matching : 0 .03576 s

Coa r s en i ng : 0 .05597 s

Ref inement : 0 .01149 s

FM: 0.002221 s

QP: 0 .1448 s

IO : 0 .3147 s

Cut P r o p e r t i e s :

Cut S i z e : 320

Cut Cost : 165

Imba lance : 1 .535 e−06

The output file name is optional. If omitted, the default is mongoose out.txt. For this matrix, the output file

looks like the following:

{
” I n p u t F i l e ” : ” . . / Mat r i x /NotreDame www . mtx” ,

”Timing” : {
”Tota l ” : 0 .256587 ,

”Matching ” : 0 .035762 ,

” Coa r s en i ng ” : 0 .055973 ,

” Ref inement ” : 0 .011487 ,

”FM” : 0 .002221 ,

”QP” : 0 .144759 ,

” IO” : 0 .314704

} ,
” CutS i z e ” : 320 ,

”CutCost ” : 165 ,

” Imba lance ” : 1 .53502 e−06
}

0 0

1 0

2 0

3 0

. . .

218 1

219 0

. . .

8

325660 1

325661 1

325662 1

325664 0

325665 0

. . .

325727 0

325728 0

3.1 License

Mongoose is licensed under the GNU Public License version 3 (GPLv3). Full text of the license can be found

int Mongoose/Doc/License.txt. For a commercial license, please contact Dr. Timothy A. Davis at

davis@tamu.edu.

4 Using Mongoose in C++

4.1 Sample C++ Program

1 #i n c l u d e ”Mongoose . hpp”

2 #i n c l u d e <i o s t r eam>

3 #i n c l u d e <iomanip>

4 #i n c l u d e <math . h>

5

6 u s i n g namespace Mongoose ;

7 u s i n g namespace s td ;

8

9 i n t main (i n t argn , con s t cha r ∗∗ a rgv)
10 {
11 EdgeCut Opt ions ∗ op t i o n s = EdgeCut Opt ions : : c r e a t e () ;

12 i f (! o p t i o n s) r e t u r n EXIT FAILURE ; // Return an e r r o r i f we f a i l e d .

13

14 op t i on s−>mat ch i n g s t r a t e g y = HEMSRdeg ;

15 op t i on s−> i n i t i a l c u t t y p e = In i t i a l Edg eCu t QP ;

16

17 Graph ∗ graph = read g r aph (a rgv [1]) ;

18 i f (! graph)

19 {
20 op t i on s−>˜EdgeCut Opt ions () ;

21 r e t u r n EXIT FAILURE ;

22 }
23

24 // C a l l Mongoose to compute an edge s e p a r a t o r

25 EdgeCut ∗ r e s u l t = edge cu t (graph , o p t i o n s) ;

26

27 cout << ” P a r t i t i o n i n g Complete ! ” << end l ;

9

28 cout << ”Cut Cost : ” << s e t p r e c i s i o n (2) << r e s u l t −>c u t c o s t << end l ;

29 cout << ”Cut Imba lance : ” << s e t p r e c i s i o n (2) << f a b s (100∗ r e s u l t −>imba lance) << ”%” <<

end l ;

30

31 op t i on s−>˜EdgeCut Opt ions () ;

32 graph−>˜Graph () ;

33 r e s u l t −>˜EdgeCut () ;

34

35 /∗ Return s u c c e s s ∗/
36 r e t u r n EXIT SUCCESS ;

37 }

4.2 Creating a Graph

There are several different ways to create a Graph class instance for use in Mongoose.

The input graph to Mongoose is undirected, and can optionally be a weighted graph. The graph is held

in compressed-sparse column form, or equivalently compressed-sparse row form since the adjacency matrix is

symmetric. The graph is represented by the following components:

• Int n: the number of vertices in the graph.

• Int nz: the number of nonzero entries in the adjacency matrix, which is twice the number edges.

• Int p [n+1]: the column pointer vector of size n+1.

• Int i [nz]: the adjacency lists held in a single array. The adjacency list of vertex j is held in i [p [j]

... p [j+1]-1]. Self-edges must not appear. The graph must be undirected, and so the adjacency

matrix must be symmetric.

• double x [nz]: an optional array of edge weights, where x [p [j] ... p [j+1]-1] are the

edge weights of the corresponding edges in the adjacency list of vertex j. If x is NULL, then the edges all

have weight 1.

• double w [n]: an optional array of vertex weights, where vertex j has weight w [j]. If w is NULL,

then the vertices all have weight 1.

Note that the Int type is generally a 64-bit (long) integer type. It is defined as typedef SuiteSparse long

Int; which is further defined as #define SuiteSparse long long in SuiteSparse config.

4.2.1 Creating a Graph Manually

To create a graph manually, the following constructor is used:

static Graph *create(const Int n,
const Int nz,

10

Int * p = NULL,
Int * i = NULL,
double * x = NULL,
double * w = NULL);

Using the manual constructor, the number of vertices (or dimension of the matrix, Int n) and the num-

ber of edges (or nonzero entries in the matrix, Int nz) must both be specified. The column pointer vector

Int * p and row index vector Int * i must either be specified by the user, or, if left NULL, they will

be allocated such that p = (Int *)SuiteSparse calloc(n + 1, sizeof(Int)); and i = (Int

*)SuiteSparse malloc(nz, sizeof(Int));. The edge weights double * x and the vertex weights

double * w can either be specified, or, if left NULL, will be assumed to be one for all edges and vertices,

respectively.

Here are some examples:

• Graph::create(20, 50); creates a Graph with 20 vertices and 50 edges, but no data. Graph->p

and Graph->i are allocated by Mongoose to store exactly 20 columns (vertices) and 50 nonzero elements

(edges). This allows the user to populate Graph->p and Graph->i manually. All edge and vertex weights

are assumed to be one.

• Graph::create(20, 50, p, i); creates a Graph with 20 vertices and 50 edges with the pattern

specified. Graph->p and Graph->i are shallow copies of the arguments p and i and will not be freed

upon calling the destructor. All edge and vertex weights are assumed to be one.

• Graph::create(20, 50, p, i, x); creates a Graph with 20 vertices and 50 edges with the

pattern and edge weights specified. Graph->p, Graph->i, and Graph->x are shallow copies of the

arguments p, i, and x, and will not be freed upon calling the destructor. Edge weights are specified by

x, but vertex weights are assumed to be one.

• Graph::create(20, 50, p, i, x, w); creates a Graph with 20 vertices and 50 edges with

edge and vertex weights specified. Graph->p, Graph->i, Graph->x, and Graph->w are shallow copies

of the arguments p, i, x, and w, and will not be freed upon calling the destructor. Edge weights are

specified by x, and vertex weights are specified by w.

4.2.2 Creating a Graph from a Sparse Matrix

Another way to create a Mongoose::Graph is from a pre-existing CSparse matrix struct.

static Graph *Create(cs *matrix);

Using this constructor, a CSparse matrix struct can be passed directly, with shallow copies made of cs->p,

cs->i, and cs->x. Note that this constructor is equivalent to calling the following for a CSparse matrix cs *A:

Graph::create(const Int A->n, A->p[A->n], A->p, A->i, A->x, NULL);

11

4.2.3 Creating a Graph from a Matrix Market File

Perhaps the easiest way to create a Graph instance is from a file. Mongoose provides easy file input helpers to

read, sanitize, and format a Matrix Market file. The matrix contained in the file must be sparse, real, and square.

If the matrix is not symmetric, it will be made symmetric by computing 1
2 (A+AT). If a diagonal is present, it

will be removed.

Graph *read graph(const std::string &filename);
Graph *read graph(const char *filename);

For example, to read in the Matrix Market file jagmesh7.mtx located in the Mongoose sample matrix directory,

the following code can be used:

Mongoose::read graph(‘‘../Matrix/jagmesh7.mtx");

4.3 C++ API

The following functions are available in the C++ API. After Mongoose is compiled, a static library version of

Mongoose is built at Mongoose/build/Lib/libmongoose.a. Include the Mongoose.hpp header file

located in Mongoose/Include and link with the static library to enable the following API functions. Both

the static and dynamic libraries, and the include file can then be installed for system-wide use with sudo make

install in the top-level Mongoose directory.

• Graph *read graph(const std::string &filename);

• Graph *read graph(const char *filename);

Mongoose::read graph will attempt to read a Matrix Market file with the given filename and convert

it to a Mongoose Graph instance. The matrix contained in the file must be sparse, real, and square. If the

matrix is not symmetric, it will be made symmetric by computing 1
2 (A+AT). If a diagonal is present, it

will be removed.

Mongoose::read graph(const std::string &filename) accepts a C++-style std::string, while

Mongoose::read graph(const char *filename) accepts a C-style null-terminated string.

• EdgeCut edge cut(const Graph *);

• EdgeCut edge cut(const Graph *, const EdgeCut Options *);

Mongoose::edge cut will attempt to compute an edge cut of the provided Mongoose::Graph object.

An EdgeCut Options struct can also be supplied to modify how the edge cut is computed – otherwise, the

default options are used (see Section 6). The resulting partitioning information is returned as an EdgeCut

struct.

The EdgeCut struct is shown below.

1 s t r u c t EdgeCut

2 {

12

3 boo l ∗ p a r t i t i o n ; /∗∗ T/F deno t i ng p a r t i t i o n s i d e ∗/
4 I n t n ; /∗∗ # v e r t i c e s ∗/
5

6 /∗∗ Cut Cost Me t r i c s ∗∗ ∗/
7 doub l e c u t c o s t ; /∗∗ Sum of edge we i gh t s i n cut s e t ∗/
8 I n t c u t s i z e ; /∗∗ Number o f edges i n cut s e t ∗/
9 doub l e w0 ; /∗∗ Sum of p a r t i t i o n 0 v e r t e x we i gh t s ∗/

10 doub l e w1 ; /∗∗ Sum of p a r t i t i o n 1 v e r t e x we i gh t s ∗/
11 doub l e imba lance ; /∗∗ Degree to which the p a r t i t i o n i n g

12 i s imbalanced , and t h i s i s

13 computed as (0 . 5 − w0/W) . ∗/
14

15 // De s t r u c t o r

16 ˜EdgeCut () ;

17 } ;

• static EdgeCut Options *create();

Mongoose::EdgeCut Options::create will return an EdgeCut Options struct with default state

(see Section 6 for details about option fields and defaults). To run Mongoose with specific options, call

EdgeCut Options::create and modify the struct as needed.

• static Graph *create(const Int n,
const Int nz,
Int * p = NULL,
Int * i = NULL,
double * x = NULL,
double * w = NULL);

• static Graph *create(cs *matrix);

Mongoose::Graph::create is the primary constructor for the Graph class. There are two versions:

one to manually specify attributes of the Graph, and one to form a Graph from a CSparse struct.

Using the manual constructor, the number of vertices (or dimension of the matrix, Int n) and the

number of edges (or nonzero entries in the matrix, Int nz) must both be specified. The column pointer

vector Int * p and row index vector Int * i must either be specified by the user, or, if left NULL, they

will be allocated such that p = (Int *)SuiteSparse calloc(n + 1, sizeof(Int)); and i

= (Int *)SuiteSparse malloc(nz, sizeof(Int));. The edge weights double * x and the

vertex weights double * w can either be specified, or, if left NULL, will be assumed to be one for all edges

and vertices, respectively.

Note that Mongoose will NOT free pointers passed to it, and that all pointers are shallow copies (i.e.

Mongoose does not make a copy of any data passed into it).

13

• ∼EdgeCut Options(); is the destructor for the EdgeCut Options struct. If the user creates an

EdgeCut Options struct using EdgeCut Options::create, the user is also responsible for destruct-

ing it.

• ∼Graph(); is the destructor for the Graph class. If the user creates a Graph class instance using

Graph::create, the user is also responsible for destructing it.

• ∼EdgeCut(); is the destructor for the EdgeCut struct. After calling edge cut(), the returned struct

must be destructed when the user is finished reading data from it.

4.4 A Note on Memory Management

Mongoose uses three primary data structures to pass information: the Graph class, the EdgeCut struct, and the

EdgeCut Options struct. They are all dynamically allocated and must be destructed.

• For each Graph::create, there should be a matching Graph::∼Graph().

• For each EdgeCut Options::create, there should be a matching EdgeCut Options::∼EdgeCut Options();

• For each call to edge cut, there should be a matching EdgeCut::∼EdgeCut();

Lastly, Mongoose will NOT free pointers passed to it, and that all pointers are shallow copies (i.e. Mongoose

does not make a copy of any data passed into it). Freeing memory referenced by Mongoose prior to Mongoose

completing will result in a segmentation fault.

5 Using Mongoose in MATLAB

5.1 To Install the MATLAB Interface

To compile Mongoose for MATLAB, go to the MATLAB directory and type mongoose make in the MATLAB

command window. Be sure to use a compiler supported by MATLAB. Type doc mex in MATLAB, or visit

https://www.mathworks.com/support/compilers.html for details. For example, GCC 5.5.0 on Linux

is not supported by MATLAB R2017A, and it will not successfully compile Mongoose for that version of MATLAB.

MATLAB R2018b supports GCC 6.3.x on Linux.

5.2 Sample MATLAB Program

Below is a sample MATLAB program using the Mongoose MATLAB API. First, it loads in a matrix, sanitizes it,

and then partitions it using edge and vertex weights, then only edge weights, and the no weights.

1 % A s imp l e demo to demonst ra te Mongoose . Reads i n a matr ix , s a n i t i z e s i t ,

2 % and p a r t i t i o n s i t s e v e r a l d i f f e r e n t ways .

3 f u n c t i o n mongoose demo

4

5 % Obtain the ad j a c ency mat r i x

6 ma t f i l e d a t a = ma t f i l e (’ 494 bus . mat ’) ;

14

https://www.mathworks.com/support/compilers.html

7 Prob = ma t f i l e d a t a . Problem ;

8 A = Prob .A ;

9 [m ˜] = s i z e (A) ;

10

11 % Sa n i t i z e the ad j a c ency mat r i x : remove d i a g on a l e l ements , make edge we i gh t s

12 % po s i t i v e , and make s u r e i t i s symmetr ic . I f the mat r i x i s not symmetr ic

13 % or square , a symmetr ic mat r i x (A+A’) /2 i s b u i l t .

14 A = s a n i t i z e (A) ;

15

16 % Create a v e r t e x we ight v e c t o r and c r e a t e a heavy v e r t e x

17 V = ones (1 ,m) ;

18 V(10) = 300 ;

19

20 % Create a s e t o f d e f a u l t o p t i o n s and modi fy the t a r g e t ba l ance

21 O = edg e c u t o p t i o n s () ;

22 O. t a r g e t s p l i t = 0 . 3 ;

23

24 % Run Mongoose to p a r t i t i o n the graph wi th edge and v e r t e x we i gh t s .

25 pa r tVe r t = edgecut (A, O, V) ;

26

27 f p r i n t f (’ \n\ nP a r t i t i o n i n g graph wi th edge and v e r t e x we i gh t s \n\n ’) ;

28 f p r i n t f (’=== Cut I n f o ===\n ’) ;

29 f p r i n t f (’ Cut S i z e : %d\n ’ , f u l l (sum(pa r tVe r t .∗ sum(s i g n (A))))) ;

30 f p r i n t f (’ Cut Weight : %d\n\n ’ , f u l l (sum(pa r tVe r t .∗ sum(A)))) ;

31 f p r i n t f (’=== Balance I n f o ===\n ’) ;

32 f p r i n t f (’ Target S p l i t : 0 .3\ n ’) ;

33 f p r i n t f (’ Ac tua l S p l i t : %1.4 f \n ’ , sum(pa r tVe r t .∗ V) / sum(V)) ;

34 f p r i n t f (’ Unweighted S p l i t : %1.4 f \n ’ , sum(pa r tVe r t) / m) ;

35

36 % Run Mongoose to p a r t i t i o n the graph wi th no v e r t e x we i gh t s .

37

38 partEdge = edgecut (A, O) ;

39

40 f p r i n t f (’ \n\ nP a r t i t i o n i n g graph wi th on l y edge we i gh t s \n\n ’) ;

41 f p r i n t f (’=== Cut I n f o ===\n ’) ;

42 f p r i n t f (’ Cut S i z e : %d\n ’ , f u l l (sum(partEdge .∗ sum(s i g n (A))))) ;

43 f p r i n t f (’ Cut Weight : %d\n\n ’ , f u l l (sum(partEdge .∗ sum(A)))) ;

44 f p r i n t f (’=== Balance I n f o ===\n ’) ;

45 f p r i n t f (’ Target S p l i t : 0 .5\ n ’) ;

46 f p r i n t f (’ Ac tua l S p l i t : %1.4 f \n ’ , sum(partEdge) / m) ;

47

48 % Remove edge we i gh t s

49 A = s a n i t i z e (A, 1) ;

50

51 % Run Mongoose to p a r t i t i o n the graph wi th no edge we i gh t s .

52 % Note tha t on l y the graph i s pas sed as an argument , so d e f a u l t

53 % op t i o n s a r e assumed .

54 pa r tPa t t e r n = edgecut (A) ;

55

56 f p r i n t f (’ \n\ nP a r t i t i o n i n g graph wi th on l y edge we i gh t s \n\n ’) ;

57 f p r i n t f (’=== Cut I n f o ===\n ’) ;

58 f p r i n t f (’ Cut S i z e : %d\n ’ , f u l l (sum(pa r tPa t t e r n .∗ sum(s i g n (A))))) ;

15

59 f p r i n t f (’ Cut Weight : %d\n\n ’ , f u l l (sum(pa r tPa t t e r n .∗ sum(A)))) ;

60 f p r i n t f (’=== Balance I n f o ===\n ’) ;

61 f p r i n t f (’ Target S p l i t : 0 .5\ n ’) ;

62 f p r i n t f (’ Ac tua l S p l i t : %1.4 f \n ’ , sum(pa r tPa t t e r n) / m) ;

63

64 f i g u r e (’ P o s i t i o n ’ , [100 , 100 , 1000 , 400]) ;

65

66 % Plo t the o r i g i n a l mat r i x b e f o r e pe rmuta t i on

67 s u bp l o t (1 , 2 , 1) ;

68 spy (A)

69 t i t l e (’ Be fo r e P a r t i t i o n i n g ’)

70

71 % Plo t the mat r i x a f t e r the pe rmuta t i on

72 s u bp l o t (1 , 2 , 2) ;

73 perm = [f i n d (par tEdge) f i n d (1−partEdge)] ;

74 A perm = A(perm , perm) ; % Permute the mat r i x

75 spy (A perm)

76 t i t l e (’ A f t e r P a r t i t i o n i n g ’)

77

78 % Set o v e r a l l t i t l e

79 s u p t i t l e (’HB/494\ bus ’)

80

81 end

5.3 MATLAB API

• function [G coarse, A coarse, map] = coarsen (G, Opts, A)
coarsen is used to coarsen an adjacency matrix (G) one level (one round of matching). An optional

edgecut options struct (Opts) can be specified, as well as vertex weights (A).

• function options = edgecut options()
edgecut options() returns an options struct with defaults set. If modifications to the default options

are needed, call edgecut options() and modify the struct as needed. See section 6 for details on

available option fields.

• function partition = edgecut (G, Opts, A)
edgecut computes an edge cut of the graph G with edgecut options Opts and vertex weights A, such

that A(i) = weight(vi). The returned array, partition, is a 1× n binary array such that

partition(i) =

{
0 if vi ∈ part A

1 if vi ∈ part B

• function [G coarse, A coarse, map] = safe coarsen (G, Opts, A)
safe coarsen attempts to coarsen a graph G with edgecut options Opts and vertex weights A. Prior to

16

coarsening, safe coarsen first calls sanitize(G) to ensure that the graph is able to be coarsened.

• function partition = safe edgecut(G, Opts, A)
safe edgecut attempts to compute and edge cut for a graph G with edgecut options Opts and vertex

weights A. Note that both Opts and A are optional arguments. safe edgecut first calls sanitize(G)

to ensure that the graph is formatted correctly.

• function A safe = sanitize (A, make binary)
sanitize attempts to take an adjacency matrix A and convert it to one that Mongoose can read and

convert to an undirected graph. Note that make binary is optional, with the default being false.

sanitize does the following as needed:

– If the matrix is unsymmetric, it forms 1
2 (A

T +A).

– The diagonal is removed (set to zero).

– Edge weights are forced to be positive (w = |w|) if make binary = false.

– Edge weights are forced to be binary (w = sign(w)) if make binary = true.

6 Options

When calling Mongoose, an optional EdgeCut Options struct can be provided to specify how Mongoose should

behave.

6.1 Coarsening Options

Name coarsen limit

Type Int

Default 50

Prior to computing a cut, the input graph is repeatedly coarsened until a sufficiently small number of vertices exist

in the graph. This limit is specified by coarsen limit. Larger values will result in less time being spent on

the coarsening process, but may yield poor initial cuts or may require more time in computing such an initial cut.

Smaller values may result in more time spent coarsening, as well as a resulting coarsened graph which is a poor

structural representation of the input graph.

Name matching strategy

Type MatchingStrategy (enum)

Default HEMSR

During coarsening, a matching of vertices is computed using one of several strategies determined by the

matching strategy option field. The possible values for this field are described below:

17

• Random, random matching. Randomly matches unmatched vertices with each other until no more than one

unmatched vertex exists.

• HEM, heavy edge matching. Matches a given vertex with an unmatched neighbor with the largest weighted

edge between them.

• HEMSR, heavy edge matching with stall-reducing matching. A pass of heavy edge matching is followed by a

brotherly, adoption, and community (if enabled) matching where vertices that have been left unmatched by

heavy edge matching are paired with vertices that share a neighbor, but may not be directly connected.

• HEMSRdeg, heavy edge matching with stall-reducing matching subject to a degree threshold. Same as

HEMSR, but the stall-reducing step is only attempted on unmatched vertices whose degree is above a

threshold, described by EdgeCut Options::high degree threshold ∗ (average degree of graph).

high degree threshold is set to 2.0 by default, meaning only unmatched vertices with degree greater

than or equal to two times the average degree of the graph are considered for stall-reducing matching.

Name do community matching

Type bool

Default false

Community matching is a matching option to aggressively match vertices whose neighbors have already been

matched. This can help in cases where coarsening easily stalls (e.g. social networking graphs), but incurs a slight

performance overhead during coarsening.

Name high degree threshold

Type double

Default 2.0

When using the HEMSRdeg matching strategy, only vertices satisfying the following inequality are considered for

brotherly, adoption, and community matching:

degree(v) ≥ b(high degree threshold) ·
(nz
n

)
c

Note that nz
n is the average degree of the vertices in the graph.

6.2 Initial Guess/Partitioning Options

Name initial cut type

Type InitialEdgeCutType (enum)

Default InitialEdgeCut QP

After coarsening, an initial partitioning is computed. This initial guess can be computed several ways:

• InitialEdgeCut QP. This method uses the quadratic programming solver to compute an initial parti-

tioning.

18

• InitialEdgeCut Random. This method randomly assigns vertices to a part.

• InitialEdgeCut NaturalOrder. This method assigns the first bn/2c vertices listed to one part, and

the remainder to the other part.

6.3 Waterdance Options

Name num dances

Type Int

Default 1

At each level of graph refinement, both the Fiduccia-Mattheyses refinement algorithm and the quadratic program-

ming algorithm are used to refine the graph. This combination of algorithms, run back-to-back, is informally

referred to as a waterdance. num dances is used to specify the number of waterdances.

For example, if num dances = 2, at each refinement level, the FM refinement will be done, then QP re-

finement, then FM and QP again.

6.4 Fiduccia-Mattheyes Options

Name use FM

Type bool

Default true

useFM can be used to enable or disable the use of the Fiduccia-Mattheyses refinement algorithm. If useFM is

false, then the FM refinement is skipped.

Name FM search depth

Type Int

Default 50

The Fiduccia-Mattheyses algorithm attempts to make positive gain moves whenever possible. However, to better

explore the non-convex search space, the FM algorithm will make unfavorable moves in an attempt to locate

another more favorable solution. The FM search depth limits the number of these unfavorable moves before

the algorithm stops.

Name FM consider count

Type Int

Default 3

During the Fiduccia-Mattheyses algorithm, a heap is maintained of the vertices sorted by their gains. Vertices

that have fewer neighbors in the same part relative to neighbors in the opposite part are prioritized higher in the

heap (with higher gains), and are generally more likely to yield better quality cuts when swapped to the opposite

part. FM consider count defines the number of vertices at the top of the heap to consider swapping to the

19

opposite part before terminating. When a vertex swap being considered does not yield a better cut after moving

FM search depth vertices, that iteration terminates, and the next vertex in the heap is considered.

Name FM max num refinements

Type Int

Default 20

FM max num refinements specifies the number of passes the Fiduccia-Mattheyses algorithm takes over the

graph. During each pass, suboptimal moves may be attempted to escape local optima.

6.5 Quadratic Programming Options

Name use QP gradproj

Type bool

Default true

use QP gradproj can be used to enable or disable the use of the quadratic programming refinement algorithm.

If use QP gradproj is false, then the QP refinement is skipped. This may provide faster solutions at the

cost of cut quality.

Name gradproj tolerance

Type double

Default 0.001

Convergence tolerance for the projected gradient algorithm in the quadratic programming refinement approach.

Decreasing the tolerance may improve solution quality at the cost of additional computation time. It may also be

advisable to increase gradproj iteration limit, as a decreased tolerance may require additional iterations

to converge.

Name gradproj iteration limit

Type Int

Default 50

Maximum number of iterations for the gradient projection algorithm in the quadratic programming refinement

approach. More iterations may allow the gradient projection algorithm to find a better solution at the cost of

additional computation time.

6.6 Final Partition Target Options

Name target split

Type double

Default 0.5

20

target split specifies the desired balance of the edge cut. The default is a balanced cut (0.5). Note that the

target split takes into account weighted vertices.

Name soft split tolerance

Type double

Default 0

Cuts within target split ± soft split tolerance are treated equally. For example, if any cut within

0.4 and 0.6 balance is acceptable, the user may specify target split = 0.5 and soft split tolerance

= 0.1.

6.7 Other Options

Name random seed

Type Int

Default 0

Random number generation is used primarily in random matching strategies (matching strategy = Random)

and random initial guesses (initial cut type = InitialEdgeCut Random). random seed can be used

to seed the random number generator with a specific value.

7 References

References

[1] Davis, T. A., Hager, W. W., and Hungerford, J. T. An efficient hybrid algorithm for the separable

convex quadratic knapsack problem. ACM Trans. Math. Softw. 42, 3 (May 2016), 22:1–22:25.

[2] Davis, T. A., Hager, W. W., Kolodziej, S. P., and Yeralan, N. S. Algorithm XXX: Mongoose, a

graph coarsening and partitioning library. ACM Trans. Math. Softw.. Submitted.

[3] Fiduccia, C. M., and Mattheyses, R. M. A linear-time heuristic for improving network partitions. In

19th Conference on Design Automation, 1982. (June 1982), pp. 175–181.

[4] Hager, W. W., and Krylyuk, Y. Graph partitioning and continuous quadratic programming. SIAM

Journal on Discrete Mathematics 12, 4 (1999), 500–523.

[5] Hendrickson, B., and Leland, R. A multi-level algorithm for partitioning graphs. SC Conference 0

(1995), 28.

[6] Karypis, G., and Kumar, V. Analysis of multilevel graph partitioning. In Proceedings of the 1995

ACM/IEEE Conference on Supercomputing (New York, NY, USA, 1995), Supercomputing ’95, ACM.

21

	Overview
	Coarsening and Refinement Framework
	Quadratic Programming and Optimization
	Fiduccia-Mattheyses Algorithm

	Availability
	Getting the Code
	Prerequisites
	Compilation

	Using Mongoose as an Executable
	License

	Using Mongoose in C++
	Sample C++ Program
	Creating a Graph
	Creating a Graph Manually
	Creating a Graph from a Sparse Matrix
	Creating a Graph from a Matrix Market File

	C++ API
	A Note on Memory Management

	Using Mongoose in MATLAB
	To Install the MATLAB Interface
	Sample MATLAB Program
	MATLAB API

	Options
	Coarsening Options
	Initial Guess/Partitioning Options
	Waterdance Options
	Fiduccia-Mattheyes Options
	Quadratic Programming Options
	Final Partition Target Options
	Other Options

	References

