lisignature (version 0.22)

Jeremy Reizenstein, Centre for Complexity Science*
Ben Graham, Department of Statistics and Centre for Complexity Science
University of Warwick

August 2017

Abstract

The iisignature Python package is designed to provide an easy-to-use reasonably efficient im-
plementation of iterated-integral signatures and log-signatures of piecewise linear paths. Some mo-
tivation as to the usefulness of these things in machine learning may be found in [3].

1 Installation into Python|

2 Quick example

B Usage
3.1 Signatures|.
[3.2 Log signatures|

N R NMNNN =

4 Implementation notes|

5 Example code, Theano, Tensortlow, Torch and
[Keras]

|6 Version history|

Index of functionsl| 9

3

Qo

1 Installation into Python

First ensure you have numpy installed and available, version 1.7 (from 2013) or later, and also that you
can build C++ python extensions. Then pip install iisignature will install it from PyPI. This is
working in Python 3.5 and 3.6 on Windows (where you might need to be in an Administrator command
prompt), and Pythons 3.4, 3.5 and 2.7 on Linux.

(You can also run pip install --user iisignature to install for your user only. On Windows, this doesn’t
need administrator rights, but you can’t install for both 64 bit and 32 bit builds of the same version of Python
in this way as doing one breaks the other.)

For Python 2.7 and older on Windows, the build is not working perfectly and you might want to get in
touch if you want to use this combination]

On a mac, you will need to have installed Xcode and the Xcode command line tools first.

*Supported by the Engineering and Physical Sciences Research Council

T find it basically works building with python setup.py build -c¢ mingw32, where the compiler is (MinGW from
https://nuwen.net/mingw.html for 64 bit Python and standard MinGW for 32 bit Python). However, there are problems
with running the tests, at least when you have no debugger attached.

https://nuwen.net/mingw.html

2 Quick example

To generate a random 3 dimensional path made up of 20 points and get its signature and log signature
up to level 4 do this:

import iisignature
import numpy as np

path = np.random.uniform(size=(20,3))
signature = iisignature.sig(path,4)

s = iisignature.prepare(3,4)

logsignature = iisignature.logsig(path,s)

3 Usage

Many of the functions require a path as input. A path in d dimensions which is specified as a series of
n points should be given as a numpy array of either float32 or (preferably) float64 with shape (n,d),
or anything (like a list) which can be converted to one.

Batching: Many of the functions which accept arrays can do the same operation multiple times in a
single call by stacking the inputs, i.e. adding extra initial dimensions. This is supported on any of the
functions where this document shows an ellipsis (.. .) in a shape. If there are multiple array inputs to a
function, their extra dimensions must match each other (broadcasting is not done). The result will have
all the initial dimensions in it. Having any of these extra dimensions is always optional. A few of the
functions are assumed to be most useful in the case where batching is in use.

version()

Return the version number of iisignature.

3.1 Signatures
For the purposes of iisignature, a signature up to level m is the concatenation of levels 1 to m as a
single one dimensional array. The constant 1 which is always level 0 of a signature is never included.
siglength(d, m)
The length of the signature up to level m of a d-dimensional path. This has the value
; d—1
i=1
sig(path, m, format=0)

The signature of the d-dimensional path path up to level m is returned. The output is a numpy
array of shape (...,siglength(d,m)). (If format is supplied as 1, then the output for a single
path is given as a list of numpy arrays, one for each level, for the moment.)

sigjacobian(path, m)

This function provides the Jacobian matrix of the sig function with respect to path. If path has
shape (n,d) then an array of shape (n,d,siglength(d,m)) is returned.

0 (sig(path,m) [c])
0 (path[a,b])

sigjacobian(path,m) [a,b,c] =~

sigbackprop(s, path, m)

This function does the basic calculation necessary to backpropagate derivatives through the sig
function. If path has shape (...,n,d) and we are trying to calculate the derivatives of a scalar
function F', and we have its derivatives with respect to sig(X,m) stored in an array s of shape
(...,siglength(d,m)), then this function returns its derivatives with respect to path as an array
of shape (...,n,d).

sigbackprop(s,path,m) ~ numpy.dot(sigjacobian(path,m),s)

oF),path,m) [a,b] = oF

sighac pr()I‘)(array(asig(path,m) Opathl[a,b]

sigjoin(sigs, segments, m, fixedLast=float("nan"))

Given the signatures of paths in dimension d up to level m in a shape (...,siglength(d,m))
array and an extra displacement for each path, stored as an array of shape (...,d), returns the
signatures of each of the paths concatenated with the extra displacement as an array of shape
(...,siglength(d,m)). If the optional last argument fixedLast is provided, then it provides a
common value for the last element of each of the displacements, and segments should have shape
(...,d-1) —this is a way to create a time dimension automatically.

sigjoinbackprop(derivs, sigs, segments, m, fixedLast=float("nan"))

Returns the derivatives of some scalar function F' with respect to both sigs and segments as
a tuple, given the derivatives of F' with respect to sigjoin(sigs, segments, m, fixedLast).
Returns both an array of the same shape as sigs and an array of the same shape as segments. If
fixedLast is provided, also returns the derivative with respect to it in the same tuple.

sigscale(sigs, scales, m)

Given the signatures of paths in dimension d up to level m in a shape (...,siglength(d,m))
array and a scaling factor for each dimension for each path, stored as an array of shape (...,d),
returns the signatures of each of the paths scaled in each dimension by the relevant scaling factor
as an array of shape (...,siglength(d,m)).

sigscalebackprop(derivs, sigs, segments, m)

Returns the derivatives of some scalar function F’ with respect to both sigs and scales as a tuple,
given the derivatives of F' with respect to sigscale(sigs, scales, m, fixedLast). Returns
both an array of the same shape as sigs and an array of the same shape as scales.

3.2 Log signatures

Quick summary: To get the log signature of a d-dimensional path p up
to level m, there are two steps, as follows.

s=iisignature.prepare(d,m)
logsignature=iisignature.logsig(p,s)

The rest of this section gives more details.

The algebra for calculating log signatures is explained in [6]. Several methods are available for calculating
the log signature, which are identified by a letter.

D The default method, which is one of the methods C or S below, chosen automatically
depending on the dimension and level requested.

C The compiled method, under which machine code is generated to calculate the BCH
formula explicitly. Currently, the generated code is designed for both x86 and x86-64
on both Linux (System V, Mac etc.) and Windows systems. I don’t know anyone using
other systems, but the result is likely to be a crash.

0] The BCH formula is expanded explicitly, but stored simply as a normal object. The
object’s instructions are followed to calculate the log signature. No code is written.
This is simpler and potentially slower than the default method. It makes no particular
assumptions about the platform, and so may be more broadly applicable.

S The log signature is calculated by first calculating the signature of the path, then ex-
plicitly evaluating its logarithm, and then projecting on to the basis.This is observed to
be faster than using the BCH formula when the log signature is large (for example level
10 with dimension 3 or higher dimension). It may be more generally faster when the
path has very many steps.

X The log signature is calculated by first calculating the signature of the path, then ex-
plicitly evaluating its logarithm. This logarithm is returned expanded in tensor space.
This is used for testing purposes.

Log signatures are by default reported in the Lyndon basis in ascending order of level, with alphabetical
ordering of Lyndon words within each level. A version of the standard or classical Hall basis is available
instead by requesting it in the prepare function.

logsiglength(d, m)

The length of the log signature up to level m of a d-dimensional path. This value can be calculated
using Witt’s formula (see [7]). It is

Lize()e

x|l
where p is the Mobius function.
prepare(d, m, methods=None)

This does preliminary calculations and produces an object which is used for calculating log signa-
tures of d-dimensional paths up to level m. The object produced is opaque. It is only used as an
input to the basis, info and logsig functions.

It is a capsule or, on old versions of Python, a CObject. It cannot be pickled. This means that if
you are using multiprocessing, you cannot pass it between “threads”. You can run the function
before creating the “threads”, and use it in any thread - this works because it is fork-safe on
non Windows platforms. On Windows, the function will be run separately in each background
“thread”.

The calculation can take a long time when d or m is large. The Global Interpreter Lock is not held
during most of the calculation, so you can profitably do it in the background of a slow unrelated
part of the initialization of your program. For example:

import iisignature, threading
def £():
global s
s=iisignature.prepare(2,10,"CS")
t = threading.Thread (target=f)

t.run()

#slow activity: theano. function, another prepare(),
keras compile,

t.join ()

This function by default prepares to use only the default method. You can change this by supplying
a string containing the letters of the methods you wish to use. For example, for d = 3 and m = 10,
if you really wanted all methods to be available, you might run prepare (3,10, "C0SX") — this takes
a long time, because the BCH calculation is big.

If you want results in the standard Hall basis instead of in the Lyndon word basis, add an H
anywhere into the method string you would have provide. For example prepare(2,4,"DH").
When this is done, the result should be directly comparable to the output from the CoRoPa
library [3].

The object returned never changes once it is created, except that logsigbackprop can add the
preparation for the S method later.
logsig(path, s, methods=None)

The log signature of the d-dimensional path path up to level m, returned as a numpy array of
shape (...,logsiglength(d,m)), where s is the result of calling prepare(d,m[,...]).

By default, this uses the calculation method (C, O or S) which is supported by s and comes first
in the table above. You can restrict this by supplying as the final argument a string containing
the letters of the methods you wish to be considered, this will probably be a one-letter string.

If you wish to use the X method, you have to ask for it here, and the output will have shape
(...,siglength(d,m)).

logsigbackprop(derivs, path, s, methods=None)

Returns the derivatives of some scalar function F' with respect to path, given the derivatives of F
with respect to logsig(path, s, methods). Returns an array of the same shape as path. The
only methods supported are S (the default) and X (which is only used if methods is ’X?). If the
’X’ method is not requested and s does not support the S method, then s is modified so it does
support the S method.

basis(s)

The basis of bracketed expressions given as a tuple of unicode strings, for words of length no more
than m on d letters, where s is the result of calling prepare(d,m[, ...]). These are the bracketed
expressions which the coefficients returned by logsig refer to.

If d > 9, the output of this function is not yet fixed. An example of how to parse the output of
this function can be seen in the tests.

info(s)

If s is the result of calling prepare(d,m[,...]), then this returns a dictionary of properties of s,
including a list of methods which it supports. This may be a useful diagnostic.

3.3 Linear rotational invariants

Quick summary: To get all the linear rotational invariants of a two
dimensional path p up to level m, there are two steps, as follows.

s=iisignature.rotinv2dprepare(m,"a"
invariants=iisignature.rotinv2d(p,s)

The rest of this section gives more details.

The paper [4] explains how to find the linear subspace of signature space of two dimensional paths which
is invariant under rotations of the path. The subspace is spanned by a set of vectors each of which lives
in a single signature level, and all those levels are even. The functions in this section calculate them,
and are a bit experimental. You may need to rescale them in a deep learning context.

rotinv2dprepare (m,type)

This prepares the way to find linear rotational invariants of signatures up to level m of 2d paths.
The returned opaque object is used (but not modified) by the other functions in this section. m
should be a small even number. type should be "a" if you want to return all the invariants.

Some invariants do not add information, because their values are products of other invariants.
Set type to "s" if you want to exclude them. Internally, at each level, a basis for the invariant
subspace with the known elements quotiented out is found using singular value decomposition
from numpy. The exact result in this case is not guaranteed to be stable between versions. (An
alternative, potentially faster, method of doing the same calculation uses the QR decomposition
as provided by scipy. You can get this by setting type to "q". This will only work if you have
scipy available, and may generate a strange but harmless warning messageEI) (In addition, setting
type to "k" means that only the invariants which are already known based on lower levels will be
returned. This is used for testing.)

If m exceeds 10 this function can take a lot of time and memory.
rotinv2d(path, s)

The rotational invariants of the signature of the 2-dimensional path path up to level m, where
s comes from rotinv2dprepare(m,...). The result is returned as a numpy array of shape
(...,rotinv2dlength(s)).

rotinv2dlength(s)

The number of rotational invariants which are found by the calculation defined by s, where s is
the result of calling rotinv2dprepare (m,type). When the type is "a", this is just

w2 9
> (%)

In common cases, the result is given in this table:

"a" "s" "k"
2 2 0

8 5 3
28 15 15
98 46 76
350 154 336
12 | 1274 522 1470
14 | 4706 1838 6230

—
O o OB

rotinv2dcoeffs(s)

2T have observed this only on Python 3.6 on Windows, and do not understand it.https://stackoverflow.com/
questions/45054949/calling-scipy-from-c-extension

https://stackoverflow.com/questions/45054949/calling-scipy-from-c-extension
https://stackoverflow.com/questions/45054949/calling-scipy-from-c-extension

The basis of rotational invariants which are found by the calculation defined by s, where s is the
result of calling rotinv2dprepare(...). The result is given as a tuple of 2d numpy arrays, where
each row of element i is an element of the basis within level (2i + 2) of the signature.

4 TImplementation notes

The source code is easily found at https://github.com/bottler/iisignaturel The extension mod-
ule is defined in a single translation unit, src/pythonsigs.cpp. Here I explain the structure of the
implementation which is located in various header files in the same directory. If you want to use the
functionality of the library from C++, it should be easy just to include these header files.

calcSignature.hpp implements the functions sig, sigbackprop, sigjacobian, sigjoin and
sigjoinbackprop, and sigscale and sigscalebackprop.

logSiglength.hpp implements the function siglength and logsiglength.

iisignature_data/bchLyndon20.dat is the file of Baker-Campbell-Hausdorff coefficients from Fer-
nando Casas and Ander Murua available from [I]. It was calculated using their method described
in [2]. You need to open this file and point the global variable g_bchLyndon20_dat to its entire
contents.

readBCHCoeffs.hpp has facilities for reading the coefficients in bchLyndon20.dat.

bch.hpp implements calculations which manipulate elements of the Free Lie Algebra with generic co-
efficient objects. This uses readBCHCoeffs.hpp. The procedures are as explained in [6], and the
design is similar to the python code logsignature.py.

makeCompiledFunction.hpp defines a structure FunctionData which describes a function which does
some arithmetic on two arrays which is generic enough to concatenate log signatures. It has
the ability to run such a function (slowExplicitFunction) and the ability to create an object
FunctionRunner which represents a compiled version of the function. Currently no particular
recent CPU capability is assumed - SSE2 is being used.

logsig.hpp uses bch.hpp and makeCompiledFunction.hpp to implement the prepare function.

The code required to solve the linear systems to convert a signature to a log signature (for the S
method) is not provided. The addin relies on numpy to do this.

If you want to call this from your own C++ code, you will need to provide a value for interrupt.
A function which does nothing is fine. The idea is that it should be a function which returns if the
calculation should continue and throws an exception if it wants the calculation to abort. None of
these header files catch any exceptions - you can safely catch it in the calling code.

rotationallnvariants.hpp has functions to identify linear rotational invariants and their shuffle prod-
ucts.

5 Example code, Theano, Tensorflow, Torch and Keras

Simple examples of using many of the functions are in the test file at https://github.com/bottler/
iisignature/blob/master/tests/test_sig.py.

Theano and tensorflow are Python frameworks for constructing calculation graphs, of the sort which
is useful for deep learning. Keras is a Python framework for deep learning which uses either of them for
its calculations. iisignature does not depend on these libraries. Pure Python code using iisignature
inside tensorflow, Theano and Keras can be found in the source repository at https://github.com/
bottler/iisignature/tree/master/examples!

https://github.com/bottler/iisignature
https://github.com/bottler/iisignature/blob/master/tests/test_sig.py
https://github.com/bottler/iisignature/blob/master/tests/test_sig.py
https://github.com/bottler/iisignature/tree/master/examples
https://github.com/bottler/iisignature/tree/master/examples

e The modules iisignature_theano, iisignature_tensorflow and iisignature_torch provide
operations Sig, LogSig, SigJoin and SigScale in Theano, tensorflow and PyTorch respectively
which mirror the functions sig, logsig, sigjoin and sigscale in iisignature. The calculations
are done via iisignature, and therefore always on the CPU.

e iisignature_recurrent_keras is a module which provides a recurrent layer in Keras using the
Theano and tensorflow operations. There are variants of this file for compatibility with older
versions of Keras. A similar module for PyTorch is given in iisignature_recurrent_torch.

Other files with names beginning with demo in the same directory provide demonstrations of this func-

tionality.

6 Version history

Revision

0.22
0.21
0.20

0.19
0.18

0.17
0.16
0.15

Date

2017-10-02
2017-09-20
2017-08-09

2017-06-27
2017-03-28

2017-01-22
2016-08-23
2016-06-20

Highlights

mac installation fix, fix issues with 0.21 release

logsigbackprop, speedups: Horner method for *S?, store BasisElt in order
Batching, triangle optimised ’S’, Mac install fix, sigjoinbackprop to
fixedLast, logsig bug for paths of one point, QR method

Rotational invariants, 32bit linux *C’, inputs don’t have to be numpy arrays
Hall basis, info, fix memory leak in sigjoinbackprop and
sigscalebackprop, fix sigscalebackprop

sigscale, fix sigjoinbackprop on Windows (code was miscompiled)
Derivatives of signature

Windows build

Improvements to the example code are not listed here, they can be seen on github.

References

[1] Fernando Casas and Ander Murua. The BCH formula and the symmetric BCH formula up to terms
of degree 20.

[2] Fernando Casas and Ander Murua. An efficient algorithm for computing the Baker-Campbell-
Hausdorff series and some of its applications. Journal of Mathematical Physics, 50(3):033513, March

2009.

[3] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. 2016.

[4] Joscha Diehl. Rotation invariants of two dimensional curves based on iterated integrals. 2013.

[5] Terry Lyons, Stephen Buckley, Djalil Chafai, Greg Gyurko, and Arend Janssen. Coropa computa-
tional rough paths (software library), 2010.

[6] Jeremy Reizenstein. Calculation of iterated-integral signatures and log signatures. 2015.

[7] Wikipedia. Necklace polynomial, 2015. [Online; accessed 28-May-2015].

Index of functions

basis, o] rotinv2dprepare, [
info, 9] sig, [
logsig, [sigbackprop, [

logsigbackprop, [f sigjacobian,]

: sigjoin, [3]
logsiglength, [sigjoinbackprop, [3]
prepare, [s%glength, B

sigscale,[J]
rotinv2d, [sigscalebackprop, [3]
rotinv2dcoeffs, 0]
rotinv2dlength, [f] version, 7]

	Installation into Python
	Quick example
	Usage
	Signatures
	Log signatures
	Linear rotational invariants

	Implementation notes
	Example code, Theano, Tensorflow, Torch and Keras
	Version history
	Index of functions

