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Example 1. Let : IR? — IR and o > 0 be fixed but unknown. Let

P = {P(;;z) = Normal (u(z),0?) | z € RP}

and let -
T(P) :/_ wP(dw).
Then -
f@) =T (Pl2) = [ wPldosa) = p(o)

as desired. One cannot evaluate p(z), but one can draw a random sample (3) and
use it to estimate u(x), e.g., by computing the sample mean,

wn(z) = %sz(a@)
i=1

In fact, because
Vi [@n(z) — pu(z)] ~ Normal(0, o%),

one can estimate u(x) as accurately as one pleases by choosing n sufficiently large.
Notice that T is a classic example of a statistical functional:

o] n

T (Pn(,:v)) = / WP, (dw; ) = S Zwi(:v) = wp ().

n
- i=1

Example 2. There is special interest in stochastic optimization problems that arise
when estimating the parameters of a stochastic process that is easily simulated but
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analytically intractable. For example, Atkinson, Bartoszynski, Brown, and Thomp-
son [1983] modeled two possible mechanisms for tumor recurrence, metastasis (tu-
mors that grow from cells that break off from a primary tumor and lodge elsewhere
in the body) and a systemic mechanism that generates multiple primary tumors.
Assume the following:

1. Each tumor originates from a single cell and grows exponentially at rate ;.

2. Occurrence of systemic tumors is a Poisson process with rate 65.

3. Detection of tumor j is a nonhomogeneous Poisson process with rate 5Y;(¢),
where Y;(¢) is the size of tumor j at time ¢.

4. Until the removal of the primary tumor, metastasis is a nonhomogeneous Poisson
process with rate 0,Yy(t).

Let Time ~ P(-;6) denote the time from detection of the first tumor to detection
of the second tumor, where 6 = (91, 02, O3, 94). P(+;0) is (nearly) intractable, but
easily sampled by stochastic simulation. The random variable Time was observed for
116 breast cancer patients. Let Q denote the empirical distribution of these times
and let A denote a measure of discrepancy between two probability measures, e.g.,
the Kolmogorov-Smirnov criterion or the Cramér-von-Mises criterion. One would
like to estimate 6 by minimum distance estimation, i.e., by minimizing

but evaluation of f is intractable. Instead, estimate f(6) with
Ja0) =T (Pu:0)) = A (Pu(50),Q) |

where P, is the empirical distribution of a simulated sample. With this substitu-
tion, the problem of minimum distance estimation becomes a problem of stochastic
optimization. Furthermore—and this is the very point that motivated Atkinson et
al.—the objective function is sufficiently complicated that it is best treated as a
black box.

Example 3. Engineers increasingly rely on computer simulation to develop new
products and to understand emerging technologies. In practice, this process is per-
meated with uncertainty: manufactured products deviate from designed products;
actual products must perform under a variety of operating conditions. Most of
the computational tools developed for design optimization ignore or abuse the is-
sue of uncertainty, whereas traditional methods for managing uncertainty are often
prohibitively expensive.

Robust design optimization (RDO) requires the simultaneous manipulation of
design variables and noise variables. Using ideas from statistical decision theory, the
problem of robust design can be formulated as an optimization problem. Consider
loss functions of the form L : Ax B — R, where a € A represents decision variables,
inputs (designs) controlled by the engineer; b € B represents uncertainty, inputs
not controlled by the engineer; and L(a;b) quantifies the loss that accrues from
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design a when conditions b obtain. The (unattainable) goal is to find a* € A such
that, for every b € B,
L (a*;b) < L(a;b) Vae A

The unsolvable problem of finding a* € A that simultaneously minimizes L(a;b)
for each b € B is the central problem of statistical decision theory: find a decision
rule that simultaneously minimizes risk for every possible state of nature. A stan-
dard way of negotiating this problem is to replace each L(a;-) with a real valued
attribute of it. Thus, Bayes principle results in the optimization problem

min f(a) = /BL(a;b)p(b) db, (3.1)

acA

where p denotes a probability density function on B. If f is evaluated by Monte
Carlo integration, then (3.1) becomes a stochastic optimization problem. In pre-
vious work, Kugele, Trosset, and Watson [2008] attempted to solve (3.1) using
traditional algorithms for numerical optimization and concluded that they were
ineffective. This RDO example has directly available gradient information, which
would be used in lieu of the gradient estimation algorithm built into QNSTOP.
Thus QNSTOP would have to be modified slightly for problems where gradient
information is directly available.



