
User Manual for the MDTB-Spline Toolbox in MATLAB

HENDRIK SPELEERS

University of Rome Tor Vergata

1. INTRODUCTION

This guide explains the usage and functionality of the Matlab toolbox on multi-degree
Tchebycheffian B-splines (MDTB-splines) accompanying the article

Hendrik Speleers. Algorithm 1020: Computation of Multi-Degree Tchebycheffian
B-Splines. ACM Trans. Math. Softw. 48, 1, Article 12 (2022), 31 pages.

The toolbox has been developed in Matlab R2018a but should work with other Matlab
versions as well. It can be downloaded from the ACM Collected Algorithms (CALGO).
For its installation, just place the toolbox in any directory on your drive, and then add
it to the Matlab path.

It is a redesigned and object-oriented extension of the MDB-spline toolbox accompa-
nying the article

Hendrik Speleers. Algorithm 999: Computation of Multi-Degree B-Splines.
ACM Trans. Math. Softw. 45, 4, Article 43 (2019), 15 pages.

The syntax of the new MDTB-spline toolbox is (almost fully) compatible with the one of
the original toolbox and all the original function calls are still available (under the minor
restriction that the names start now with “(MD)TB *” instead of “(MD)B *”, so as to
emphasize the Tchebycheffian nature of the extension). The user manual is also organized
with this in mind, following the same style for describing the Matlab functions.

The toolbox assumes that the input parameters specified by the user lead to valid ex-
tended complete Tchebycheff spaces (ECT-spaces) and valid multi-degree Tchebycheffian
spline (MDT-spline) spaces, i.e., there exists a valid Tchebycheffian Bernstein basis and
a valid MDTB-spline basis, respectively.

2. MATLAB CLASS DIAGRAM

The internal class diagram of the MDTB-spline toolbox is shown in Figure 1. The central
class in the toolbox is the class MDTB patch, which provides functionality for computing
the MDTB-spline extraction matrix, both in the periodic and non-periodic spline setting.
Furthermore, it allows for evaluating, differentiating, and visualizing the obtained MDTB-
spline basis functions and any MDT-spline function represented in such basis.

The class MDTB patch is built upon the class TB patch, which mainly identifies a local
ECT-space. Each object of type MDTB patch contains a (heterogeneous) array of objects
of type TB patch. In order to reflect the heterogeneous nature of ECT-spaces, the class
TB patch is abstract. The functionality of evaluation and differentiation of the Tcheby-
cheffian Bernstein basis functions is delegated to (specialized) child classes, as well as the
option to provide a separate implementation for end-point derivatives because of their
importance in the MDTB-spline framework. Manipulation of functions represented in
the Bernstein basis and their visualization is handled in the class TB patch itself.

As indicated in Figure 1, there are several child classes of the class TB patch available
in the toolbox. They provide functionality to work with general ECT-spaces based on



2 · Hendrik Speleers

MDTB-spline toolbox

MDTB patch poly

MDTB patch ppoly

MDTB patch tcheb

MDTB patch gpoly

MDTB patch

TB patchTB patch multi

TB patch spline TB patch poly

TB patch pexp

TB patch ptrig

TB patch tcheb

TB patch gexp

TB patch gtrig

Fig. 1. Class diagram of the MDTB-spline toolbox in Matlab.

constant-coefficient linear differential operators (class TB patch tcheb), algebraic polyno-
mial spaces (classes TB patch poly and TB patch spline), other polynomial-type spaces
(classes TB patch pexp and TB patch ptrig), and generalized polynomial spaces (classes
TB patch gexp and TB patch gtrig). Thanks to the object-oriented structure of the
toolbox, other ECT-spaces and/or specialized implementations can be easily incorpo-
rated by adding new child classes of TB patch. Such child class must provide at least
an implementation for the methods TB evaluation all, TB differentiation all, and
TB diffend all.

The purpose of the class TB patch multi is to encapsulate an object of the class
MDTB patch and a non-periodic extraction matrix such that the corresponding multi-
degree spline space can be treated as if it is an instance of type TB patch. In this way,
already constructed multi-degree spline spaces can be embedded into larger multi-degree
spline spaces without the need for recomputing them.

Finally, the classes MDTB patch tcheb, MDTB patch poly, MDTB patch ppoly, and
MDTB patch gpoly are factory classes for MDTB patch. They provide simplified func-
tionality to initialize objects of type MDTB patch consisting of local ECT-spaces based
on constant-coefficient linear differential operators, algebraic polynomial spaces, other
polynomial-type spaces, and generalized polynomial spaces, respectively.

In the following two sections, we discuss all the functions available in the MDTB-spline
toolbox, divided into two groups: functions dealing with TB-spline patches and functions
dealing with MDTB-spline multi-patches.



User Manual for the MDTB-Spline Toolbox in MATLAB · 3

3. TB-SPLINE PATCHES

The main single-patch data-structure is called TB-spline patch, and it identifies either
an ECT-space equipped with a Tchebycheffian Bernstein basis or a Tchebycheffian spline
space equipped with a B-spline basis. It contains the TB-spline degree, space dimension,
interval vector, and possibly also some local parameters for the specification of the basis
computation. The term TB-spline means either a Tchebycheffian Bernstein function or
a Tchebycheffian B-spline function, depending on the context.

The following Matlab functions are provided for constructing TB-spline patches.
These functions are actually the constructor methods of the classes having the same
name (see Figure 1).

• TB patch: abstract construction of a TB-spline patch, and has no stand-alone usage;

• TB patch tcheb: construction of a TB-spline patch based on constant-coefficient linear
differential operators;

• TB patch poly: construction of a TB-spline patch based on algebraic polynomials;

• TB patch spline: construction of a TB-spline patch based on algebraic polynomial
splines;

• TB patch pexp: construction of a TB-spline patch based on polynomials of exponential
type;

• TB patch ptrig: construction of a TB-spline patch based on polynomials of trigono-
metric type;

• TB patch gexp: construction of a TB-spline patch based on generalized polynomials of
exponential type;

• TB patch gtrig: construction of a TB-spline patch based on generalized polynomials
of trigonometric type;

• TB patch multi: construction of a TB-spline patch based on an MDTB-spline patch.

The following Matlab functions are provided for working with TB-spline patches.

• TB domain: computation of the end points of the domain related to a patch;

• TB greville: computation of the Greville points;

• TB evaluation all: evaluation of all TB-spline basis functions in given points;

• TB evaluation spline: evaluation of a spline in given points;

• TB evaluation curve: evaluation of a spline curve in given points;

• TB diffend all: full differentiation of all TB-spline basis functions at one end point
up to a given order;

• TB differentiation all: differentiation of all TB-spline basis functions in given points;

• TB differentiation spline: differentiation of a spline in given points;

• TB differentiation curve: differentiation of a spline curve in given points;

• TB visualization all: visualization of all TB-spline basis functions;

• TB visualization spline: visualization of a spline;

• TB visualization curve: visualization of a spline curve;

• TB conversion: conversion from source to destination TB-spline form.



4 · Hendrik Speleers

3.1 TB patch

This abstract function prepares the data-structure for a general TB-spline patch. The
TB-spline patch stores the TB-spline degree p, space dimension n, and interval vector U.

Syntax:

P = TB patch(p, xx)

Input parameters:

p : TB-spline degree

xx : vector of end points

Output parameters:

P : TB-spline patch

Discussion:

This function has no stand-alone usage.

3.2 TB patch tcheb

This function prepares the data-structure for a TB-spline patch where the corresponding
ECT-space is the null-space of a constant-coefficient linear differential operator. Such
null-space is identified by the roots of its characteristic polynomial. Let the interval
[x0, x1] be the domain of the ECT-space. A given root ω = α+ iβ of order µ gives rise to
the following internal basis functions for i = 0, . . . , µ− 1:

• if β = 0, then

φi(x) =
(x− x0)i

i!
eα(x−x0);

• if β 6= 0, then the complex conjugate of ω is also a root of order µ, and

φ2i(x) =
(x− x0)i

i!
eα(x−x0) cos(β(x− x0)),

φ2i+1(x) =
(x− x0)i

i!
eα(x−x0) sin(β(x− x0)).

The TB-spline patch stores the TB-spline degree p, space dimension n (n = p+1), and
interval vector U. Besides these general parameters, it also contains a four-column matrix
W where each row represents a different root of the characteristic polynomial of the null-
space. Complex conjugate roots are excluded from this matrix. The first column is the
type of the root, the second and third columns are the real and imaginary parts of the
root, and the fourth column is its multiplicity. There are four types of roots:

• type 0: α = 0 and β = 0;

• type 1: α 6= 0 and β = 0;

• type 2: α = 0 and β 6= 0;

• type 3: α 6= 0 and β 6= 0.



User Manual for the MDTB-Spline Toolbox in MATLAB · 5

Finally, the TB-spline patch stores the cumulative dimension mu of the spaces related to
the roots, and the internal basis conversion matrix C.

Syntax:

P = TB patch tcheb(p, xx, ww, mm)

Input parameters:

p : TB-spline degree

xx : vector of end points

ww : TB-spline roots (optional)

mm : TB-spline multiplicities (optional)

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a non-negative integer scalar, the parameter xx is a vector of two
strictly increasing real values (indicating the end points of the domain), the parameter ww
is a vector of complex values, and the parameter mm can be a scalar or vector of positive
integers. If mm is a scalar, each root ww(i) has multiplicity mm, and if mm is a vector,
root ww(i) has multiplicity mm(i), for i = 1:length(ww). Hence, length(mm) should
be equal to 1 or length(ww). When no multiplicity is specified, mm = 1 is assumed. For
each non-real root, its complex conjugate is automatically inserted as root with the same
multiplicity. When the same complex value appears more than once in the vector ww,
the corresponding multiplicities are added up. If necessary, zero is added as root (or its
multiplicity is increased) to match a total of exactly p+1 roots. It is assumed that zero is
at least a first-order root.

Example:

Create a TB-spline patch of degree 4 on the domain [0, 1] identified by the roots (0, i,−i, 3)
with multiplicities (1, 1, 1, 2), respectively:

>> ww = complex([0, 3], [1, 0]);

>> P = TB patch tcheb(4, [0, 1], ww, [1, 2])

P =

W: [3x4 double]

mu: [0 1 3 5]

C: [5x5 double]

p: 4

n: 5

U: [0 1]

>> W = P.W



6 · Hendrik Speleers

W =

0 0 0 1

2 0 1 1

1 3 0 2

Now, create a polynomial TB-spline patch of degree 4 on the domain [0, 1]:

>> P = TB patch tcheb(4, [0, 1])

P =

W: [0 0 0 5]

mu: [0 5]

C: [5x5 double]

p: 4

n: 5

U: [0 1]

3.3 TB patch poly

This function prepares the data-structure for a TB-spline patch where the corresponding
ECT-space is an algebraic polynomial space, i.e., 〈1, x, . . . , xp〉. The TB-spline patch
stores the polynomial degree p, space dimension n (n = p+1), and interval vector U.

Syntax:

P = TB patch poly(p, xx)

Input parameters:

p : polynomial degree

xx : vector of end points

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a non-negative integer scalar and the parameter xx is a vector of two
strictly increasing real values (indicating the end points of the domain).

Example:

Create a polynomial TB-spline patch of degree 4 on the domain [0, 1]:

>> P = TB patch poly(4, [0, 1])

P =

p: 4

n: 5

U: [0 1]



User Manual for the MDTB-Spline Toolbox in MATLAB · 7

3.4 TB patch spline

This function prepares the data-structure for a TB-spline patch, starting from a sequence
of algebraic polynomial segments of fixed degree and smoothness relations. The TB-spline
patch stores the spline degree p, space dimension n, and open knot vector U.

Syntax:

P = TB patch spline(p, xx, kk)

Input parameters:

p : B-spline degree

xx : vector of break points

kk : smoothness vector (optional)

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a non-negative integer scalar, the parameter xx is a vector consisting
of a strictly increasing sequence of real values (indicating the different segments), and
the parameter kk can be a scalar or a vector whose elements are non-negative integers
less than the value of p. If kk is a scalar, smoothness kk is imposed at the break point
xx(i+1), and if kk is a vector, smoothness kk(i) is imposed at the break point xx(i+1),
for i = 1:length(xx)-2. Hence, length(kk) should be equal to 1 or length(xx)-2.
When no smoothness is specified, kk = 0 is assumed.

Example:

Create a polynomial TB-spline patch of degree 4 and smoothness C2 defined on a domain
partitioned in the two intervals [0, 3] and [3, 4]:

>> P = TB patch spline(4, [0, 3, 4], 2)

P =

p: 4

n: 7

U: [0 0 0 0 0 3 3 4 4 4 4 4]

3.5 TB patch pexp

This function prepares the data-structure for a TB-spline patch where the corresponding
ECT-space is a polynomial space of exponential type, i.e., 〈1, eωx, e−ωx, . . . , eqωx, e−qωx〉.
The TB-spline patch stores the even TB-spline degree p, space dimension n (n = p+1),
and interval vector U. Besides these general parameters, it also contains the TB-spline
parameter w and an internal vector ss of scaling coefficients.

Syntax:

P = TB patch pexp(p, xx, w)



8 · Hendrik Speleers

Input parameters:

p : TB-spline degree

xx : vector of end points

w : TB-spline parameter (optional)

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a non-negative integer scalar; it is assumed that p is even. The
parameter xx is a vector of two strictly increasing real values (indicating the end points
of the domain). The parameter w is a real scalar. When no value is specified, w = 1 is
assumed.

Example:

Create an exponential TB-spline patch of degree 4 with shape parameter ω = 5 on the
domain [0, 1]:

>> P = TB patch pexp(4, [0, 1], 5)

P =

w: 5

ss: [5x1 double]

p: 4

n: 5

U: [0 1]

3.6 TB patch ptrig

This function prepares the data-structure for a TB-spline patch where the correspond-
ing ECT-space is a polynomial space of trigonometric type, i.e., 〈1, cos(ωx), sin(ωx), . . . ,
cos(qωx), sin(qωx)〉. The TB-spline patch stores the even TB-spline degree p, space di-
mension n (n = p+1), and interval vector U. Besides these general parameters, it also
contains the TB-spline parameter w and an internal vector ss of scaling coefficients.

Syntax:

P = TB patch ptrig(p, xx, w)

Input parameters:

p : TB-spline degree

xx : vector of end points

w : TB-spline parameter (optional)

Output parameters:

P : TB-spline patch



User Manual for the MDTB-Spline Toolbox in MATLAB · 9

Discussion:

The parameter p is a non-negative integer scalar; it is assumed that p is even. The
parameter xx is a vector of two strictly increasing real values (indicating the end points
of the domain). The parameter w is a real scalar. When no value is specified, w = 1 is
assumed.

Example:

Create a trigonometric TB-spline patch of degree 4 with shape parameter ω = 2 on the
domain [0, 1]:

>> P = TB patch ptrig(4, [0, 1], 2)

P =

w: 2

ss: [5x1 double]

p: 4

n: 5

U: [0 1]

3.7 TB patch gexp

This function prepares the data-structure for a TB-spline patch where the corresponding
ECT-space is a generalized polynomial space with exponential functions (eωx and e−ωx).
Let the interval [x0, x1] be the domain of the ECT-space, and denote the TB-spline degree
with p. The internal basis functions are taken to be (if t = 1)

φi(x) = ωi
(x− x0)i

i!
, i = 0, . . . , p− 2,

φp−1(x) = eω(x−x0), φp(x) = e−ω(x−x0),

or (if t = 0)

φi(x) =
(x− x0)i

i!
, i = 0, . . . , p− 2,

φi(x) =

m∑
j=0

ω2j (x− x0)i+2j

(i+ 2j)!
, i = p− 1, p,

for some representation parameter m > 0. The latter basis should be employed when the
TB-spline shape parameter ω is close to zero. The TB-spline patch stores the TB-spline
degree p, space dimension n (n = p+1), and interval vector U. Besides these general pa-
rameters, it also contains the TB-spline parameter w, representation type t, representation
parameter m (if t = 0), and the internal basis conversion matrix C.

Syntax:

P = TB patch gexp(p, xx, w, t, m)



10 · Hendrik Speleers

Input parameters:

p : TB-spline degree

xx : vector of end points

w : TB-spline parameter (optional)

t : representation type (optional)

m : representation parameter (optional)

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a positive integer scalar; it is assumed that p >= 2. The parameter xx
is a vector of two strictly increasing real values (indicating the end points of the domain).
The parameter w is a real scalar. When no value is specified, w = 1 is assumed. The
parameter t is a boolean scalar, or takes the values 0 or 1. When no value is specified,
t = abs(w)*(xx(2)-xx(1)) >= 3 is assumed. The parameter m is a positive integer
scalar. When no value is specified, m = 10 is assumed.

Example:

Create an exponential TB-spline patch of degree 4 with shape parameter ω = 5 on the
domain [0, 1]:

>> P = TB patch gexp(4, [0, 1], 5)

P =

w: 5

t: 1

m: 10

C: [5x5 double]

p: 4

n: 5

U: [0 1]

3.8 TB patch gtrig

This function prepares the data-structure for a TB-spline patch where the corresponding
ECT-space is a generalized polynomial space with trigonometric functions (cos(ωx) and
sin(ωx)). Let the interval [x0, x1] be the domain of the ECT-space, and denote the TB-
spline degree with p. The internal basis functions are taken to be (if t = 1)

φi(x) = ωi
(x− x0)i

i!
, i = 0, . . . , p− 2,

φp−1(x) = cos(ω(x− x0)), φp(x) = sin(ω(x− x0)),



User Manual for the MDTB-Spline Toolbox in MATLAB · 11

or (if t = 0)

φi(x) =
(x− x0)i

i!
, i = 0, . . . , p− 2,

φi(x) =

m∑
j=0

(−1)jω2j (x− x0)i+2j

(i+ 2j)!
, i = p− 1, p,

for some representation parameter m > 0. The latter basis should be employed when the
TB-spline shape parameter ω is close to zero. The TB-spline patch stores the TB-spline
degree p, space dimension n (n = p+1), and interval vector U. Besides these general pa-
rameters, it also contains the TB-spline parameter w, representation type t, representation
parameter m (if t = 0), and the internal basis conversion matrix C.

Syntax:

P = TB patch gtrig(p, xx, w, t, m)

Input parameters:

p : TB-spline degree

xx : vector of end points

w : TB-spline parameter (optional)

t : representation type (optional)

m : representation parameter (optional)

Output parameters:

P : TB-spline patch

Discussion:

The parameter p is a positive integer scalar; it is assumed that p >= 2. The parameter xx
is a vector of two strictly increasing real values (indicating the end points of the domain).
The parameter w is a real scalar. When no value is specified, w = 1 is assumed. The
parameter t is a boolean scalar, or takes the values 0 or 1. When no value is specified,
t = abs(w)*(xx(2)-xx(1)) >= 3 is assumed. The parameter m is a positive integer
scalar. When no value is specified, m = 10 is assumed.

Example:

Create a trigonometric TB-spline patch of degree 4 with shape parameter ω = 5 on the
domain [0, 1]:

>> P = TB patch gtrig(4, [0, 1], 5)

P =

w: 5

t: 1

m: 10

C: [5x5 double]

p: 4

n: 5

U: [0 1]



12 · Hendrik Speleers

3.9 TB patch multi

This function prepares the data-structure for a TB-spline patch, starting from an MDTB-
spline patch and a non-periodic extraction matrix. The TB-spline patch stores a vector
of MDTB-spline degrees p, space dimension n, and interval vector U. Besides this general
parameters, it also contains an MDTB-spline patch MP (see MDTB patch), a non-periodic
extraction matrix H, and possibly the extraction matrix Hpol for the equivalent multi-
degree spline space consisting of polynomial segments. The purpose of the latter matrix
is only for computational efficiency of some routines.

Syntax:

P = TB patch multi(MP, H, Hpol)

Input parameters:

MP : MDTB-spline multi-patch

H : non-periodic extraction matrix

Hpol : non-periodic polynomial extraction matrix (optional)

Output parameters:

P : TB-spline patch

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The polynomial extraction matrix Hpol should be deduced
from an MDTB-spline multi-patch of the same structure of MP but consisting of only
polynomial segments; this matrix is optional. Hence, size(Hpol) should be equal to
size(H) or is empty.

Example:

Create a TB-spline patch from a given MDTB-spline patch defined on the domain [0, 3]:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> P = TB patch multi(MP, H)

P =

MP: [1x1 MDTB patch]

H: [6x9 double]

Hpol: []

p: [3 4]

n: 6

U: [0 3]



User Manual for the MDTB-Spline Toolbox in MATLAB · 13

3.10 TB domain

This function computes the end points of the domain specified by a given TB-spline patch.

Syntax:

[a, b] = TB domain(P)

Input parameters:

P : TB-spline patch

Output parameters:

a : left end point

b : right end point

Example:

Create a TB-spline patch and show the end points of its domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> [a, b] = TB domain(P)

a =

0

b =

1

3.11 TB greville

This function computes the Greville points of a given TB-spline patch, i.e., the coefficients
of the TB-spline form of the identity function (if possible).

Syntax:

gg = TB greville(P)

Input parameters:

P : TB-spline patch

Output parameters:

gg : vector of Greville points

Discussion:

Each element of the vector gg corresponds to a TB-spline basis function, so length(gg)

equals P.n.

Example:

Create a TB-spline patch and show its Greville points:

>> P = TB patch gtrig(4, [0, 1], 5);

>> gg = TB greville(P)

gg =

0 0.3955 0.5000 0.6045 1.0000



14 · Hendrik Speleers

3.12 TB evaluation all

This function evaluates all TB-spline basis functions of a TB-spline patch at a given set
of points, and stores the corresponding values in a matrix.

Syntax:

M = TB evaluation all(P, xx, cl)

Input parameters:

P : TB-spline patch

xx : vector of evaluation points

cl : closed domain if true (optional)

Output parameters:

M : evaluation matrix

Discussion:

The parameter cl is a boolean scalar. If cl is false, then the TB-spline values are
computed on the half-open domain of the patch and are zero outside; otherwise, at the
right end point, they are computed by taking limits from the left. When no value is
specified, cl = true is assumed. Each row in the resulting matrix M corresponds to
a TB-spline basis function and each column to an evaluation point, so size(M) equals
[P.n, length(xx)].

Example:

Create a TB-spline patch and evaluate all the corresponding TB-spline basis functions at
three uniform points in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> M = TB evaluation all(P, [1/4, 1/2, 3/4])

M =

0.4422 0.1123 0.0082

0.3713 0.2712 0.0555

0.1228 0.2328 0.1228

0.0555 0.2712 0.3713

0.0082 0.1123 0.4422

3.13 TB evaluation spline

This function evaluates a spline in TB-spline form at a given set of points, and stores the
corresponding values in a vector.

Syntax:

ss = TB evaluation spline(P, cc, xx)



User Manual for the MDTB-Spline Toolbox in MATLAB · 15

Input parameters:

P : TB-spline patch

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of spline values

Discussion:

Each element of the vector cc corresponds to a TB-spline basis function in the TB-spline
patch. Hence, length(cc) should be equal to P.n. Each element of the resulting vector
ss corresponds to an evaluation point, so length(ss) equals length(xx).

Example:

Create a TB-spline patch and a vector of coefficients, and then evaluate the corresponding
spline in TB-spline form at three uniform points in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 5, 2];

>> ss = TB evaluation spline(P, cc, [1/4, 1/2, 3/4])

ss =

2.4640 3.6711 3.5296

3.14 TB evaluation curve

This function evaluates a spline curve in TB-spline form at a given set of points, and
stores the corresponding curve points in a matrix.

Syntax:

ss = TB evaluation curve(P, cc, xx)

Input parameters:

P : TB-spline patch

cc : matrix of control points (1D, 2D or 3D)

xx : vector of evaluation points

Output parameters:

ss : matrix of spline curve points

Discussion:

Each column of the matrix cc corresponds to a TB-spline basis function in the TB-spline
patch. Hence, size(cc,2) should be equal to P.n. This matrix consists of 1, 2 or 3
rows, identifying a function, a 2D curve or a 3D curve, respectively. Each column of



16 · Hendrik Speleers

the resulting matrix ss corresponds to an evaluation point and this matrix has the same
number of rows as cc, so size(ss) equals [size(cc,1), length(xx)].

Example:

Create a TB-spline patch and a matrix of 2D control points, and then evaluate the
corresponding 2D spline curve in TB-spline form at three uniform points in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 3, 1; 2, 1, 3, 4, 2];

>> ss = TB evaluation curve(P, cc, [1/4, 1/2, 3/4])

ss =

2.3448 3.0163 2.3448

1.8625 2.5041 2.8099

3.15 TB diffend all

This function evaluates all the derivatives, up to a certain order r, of all TB-spline basis
functions of a TB-spline patch at one of the two end points of the domain, and stores the
corresponding values in a matrix.

Syntax:

K = TB diffend all(P, r, el)

Input parameters:

P : TB-spline patch

r : maximum order of derivative

el : left end if true, right end otherwise (optional)

Output parameters:

K : differentiation matrix at end point up to r-th order

Discussion:

The parameter r is a non-negative integer scalar and the parameter el is a boolean scalar.
If el is true, then the left end point of the domain is selected; otherwise, the right end
point. When no value is specified, el = true is assumed. Each row in the resulting
matrix K corresponds to a TB-spline basis function and each column to a derivative, so
size(K) equals [P.n, r+1].

Example:

Create a TB-spline patch and evaluate all derivatives, up to fourth order, of all the
corresponding TB-spline basis functions at the right end point of the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> K = TB diffend all(P, 4, false)



User Manual for the MDTB-Spline Toolbox in MATLAB · 17

K =

0 0 0 0 53.0395

0 0 0 -27.5186 -69.5800

0 0 5.7516 16.5404 -110.7090

0 -2.5285 -7.2714 21.1504 112.2041

1.0000 2.5285 1.5198 -10.1722 15.0453

3.16 TB differentiation all

This function evaluates the r-th order derivative of all TB-spline basis functions of a
TB-spline patch at a given set of points, and stores the corresponding values in a matrix.

Syntax:

M = TB differentiation all(P, r, xx, cl)

Input parameters:

P : TB-spline patch

r : order of derivative

xx : vector of evaluation points

cl : closed domain if true (optional)

Output parameters:

M : differentiation matrix

Discussion:

The parameter r is a non-negative integer scalar and the parameter cl is a boolean scalar.
If cl is false, then the TB-spline values are computed on the half-open domain of the
patch and are zero outside; otherwise, at the right end point, they are computed by
taking limits from the left. When no value is specified, cl = true is assumed. Each row
in the resulting matrix M corresponds to a TB-spline basis function and each column to
an evaluation point, so size(M) equals [P.n, length(xx)].

Example:

Create a TB-spline patch and evaluate the first derivative of all the corresponding TB-
spline basis functions at three uniform points in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> M = TB differentiation all(P, 1, [1/4, 1/2, 3/4])

M =

-1.8337 -0.8068 -0.1277

0.4016 -0.9241 -0.5861

0.7183 0 -0.7183

0.5861 0.9241 -0.4016

0.1277 0.8068 1.8337



18 · Hendrik Speleers

3.17 TB differentiation spline

This function evaluates the r-th order derivative of a spline in TB-spline form at a given
set of points, and stores the corresponding values in a vector.

Syntax:

ss = TB differentiation spline(P, r, cc, xx)

Input parameters:

P : TB-spline patch

r : order of derivative

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of r-th order derivative spline values

Discussion:

The parameter r is a non-negative integer scalar. Each element of the vector cc corre-
sponds to a TB-spline basis function in the TB-spline patch. Hence, length(cc) should
be equal to P.n. Each element of the resulting vector ss corresponds to an evaluation
point, so length(ss) equals length(xx).

Example:

Create a TB-spline patch and a vector of coefficients, and then evaluate the first derivative
of the corresponding spline in TB-spline form at three uniform points in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 5, 2];

>> ss = TB differentiation spline(P, 1, cc, [1/4, 1/2, 3/4])

ss =

6.1485 2.6551 -3.8180

3.18 TB differentiation curve

This function evaluates the r-th order derivative of a spline curve in TB-spline form at a
given set of points, and stores the corresponding curve points in a matrix.

Syntax:

ss = TB differentiation curve(P, r, cc, xx)

Input parameters:

P : TB-spline patch

r : order of derivative

cc : matrix of control points (1D, 2D or 3D)

xx : vector of evaluation points



User Manual for the MDTB-Spline Toolbox in MATLAB · 19

Output parameters:

ss : matrix of r-th order derivative spline curve points

Discussion:

The parameter r is a non-negative integer scalar. Each column of the matrix cc corre-
sponds to a TB-spline basis function in the TB-spline patch. Hence, size(cc,2) should
be equal to P.n. This matrix consists of 1, 2 or 3 rows, identifying a function, a 2D curve
or a 3D curve, respectively. Each column of the resulting matrix ss corresponds to an
evaluation point and this matrix has the same number of rows as cc, so size(ss) equals
[size(cc,1), length(xx)].

Example:

Create a TB-spline patch and a matrix of 2D control points, and then evaluate the first
derivative of the corresponding 2D spline curve in TB-spline form at three uniform points
in the domain:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 3, 1; 2, 1, 3, 4, 2];

>> ss = TB differentiation curve(P, 1, cc, [1/4, 1/2, 3/4])

ss =

4.8486 -0.0000 -4.8486

1.4889 2.7724 -0.9354

3.19 TB visualization all

This function visualizes all TB-spline basis functions of a TB-spline patch.

Syntax:

TB visualization all(P, n, specs)

Input parameters:

P : TB-spline patch

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The parameter n is a positive integer scalar. When no value is specified, n = 100 is
assumed. The parameter specs allows for any number of input arguments, which are
passed on to the function plot. We refer the reader to the documentation of plot for all
the plotting options.

Example:

Create a TB-spline patch and plot all the corresponding TB-spline basis functions:

>> P = TB patch gtrig(4, [0, 1], 5);



20 · Hendrik Speleers

>> TB visualization all(P, 100, ’LineWidth’, 2);

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1
 

3.20 TB visualization spline

This function visualizes a spline in TB-spline form.

Syntax:

TB visualization spline(P, cc, n, specs)

Input parameters:

P : TB-spline patch

cc : vector of coefficients

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

Each element of the vector cc corresponds to a TB-spline basis function in the TB-spline
patch. Hence, length(cc) should be equal to P.n. The parameter n is a positive integer
scalar. When no value is specified, n = 100 is assumed. The parameter specs allows for
any number of input arguments, which are passed on to the function plot. We refer the
reader to the documentation of plot for all the plotting options.

Example:

Create a TB-spline patch and a vector of coefficients, and then plot the corresponding
spline in TB-spline form:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 5, 2];

>> TB visualization spline(P, cc, 100, ’LineWidth’, 2);

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4
 



User Manual for the MDTB-Spline Toolbox in MATLAB · 21

3.21 TB visualization curve

This function visualizes a spline curve in TB-spline form.

Syntax:

TB visualization curve(P, cc, n, specs)

Input parameters:

P : TB-spline patch

cc : matrix of control points (1D, 2D or 3D)

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

Each column of the matrix cc corresponds to a TB-spline basis function in the TB-spline
patch. Hence, size(cc,2) should be equal to P.n. This matrix consists of 1, 2 or 3
rows, identifying a function, a 2D curve or a 3D curve, respectively. The parameter n is a
positive integer scalar. When no value is specified, n = 100 is assumed. The parameter
specs allows for any number of input arguments, which are passed on to the function
plot/plot3. We refer the reader to the documentation of plot/plot3 for all the plotting
options.

Example:

Create a TB-spline patch and a matrix of 2D control points, and then plot the corre-
sponding spline curve in TB-spline form:

>> P = TB patch gtrig(4, [0, 1], 5);

>> cc = [1, 3, 5, 3, 1; 2, 1, 3, 4, 2];

>> TB visualization curve(P, cc, 100, ’LineWidth’, 2);

0.5 1 1.5 2 2.5 3 3.5

1.6

1.8

2

2.2

2.4

2.6

2.8

3
 

3.22 TB conversion

This function converts a spline in TB-spline form into another TB-spline form. The con-
version is exact when the source and destination TB-spline patches imply nested spaces.
It is assumed that Greville points can be computed.

Syntax:

ccd = TB conversion(Pd, Ps, ccs, sh)



22 · Hendrik Speleers

Input parameters:

Pd : destination TB-spline patch

Ps : source TB-spline patch

ccs : source coefficient vector

sh : shift of the source patch (optional)

Output parameters:

ccd : destination coefficient vector

Discussion:

Different types of TB-spline patches for Ps and Pd may be mixed. Each element of the
vector ccs corresponds to a TB-spline basis function in the TB-spline patch Ps. Hence,
length(ccs) should be equal to Ps.n. Similarly, each element of the resulting vector ccd
corresponds to a TB-spline basis function in the TB-spline patch Pd. The parameter sh

is a real scalar. When no value is specified, sh = 0 is assumed.

Example:

Create a TB-spline patch of degree 4 and a vector of coefficients; then, raise the degree
to 9 and compute the coefficients of the new TB-spline form:

>> Ps = TB patch gtrig(4, [0, 1], 5);

>> ccs = [1, 3, 5, 5, 2];

>> Pd = TB patch gtrig(9, [0, 1], 5);

>> ccd = TB conversion(Pd, Ps, ccs)

ccd =

Columns 1 through 7

1.0000 1.5889 2.2889 3.0908 3.8289 4.2506 4.1879

Columns 8 through 10

3.6730 2.8833 2.0000

Now, convert it into a more general TB-spline patch that is shifted by 10:

>> ww = complex([0, 3], [5, 0]);

>> Pe = TB patch tcheb(9, [10, 11], ww, [1, 2]);

>> cce = TB conversion(Pe, Ps, ccs, 10)

Columns 1 through 7

1.0000 1.6283 2.3704 3.2081 3.9310 4.2723 4.1184

Columns 8 through 10

3.5658 2.8059 2.0000

It is no surprise that the vectors ccd and cce are similar because the corresponding basis
functions look similar as well, up to the shift.



User Manual for the MDTB-Spline Toolbox in MATLAB · 23

4. MDTB-SPLINE MULTI-PATCHES

The main multi-patch data-structure is called MDTB-spline multi-patch. It contains a
vector of TB-spline patches and the corresponding cumulative dimension.

The following Matlab functions are provided for constructing MDTB-spline multi-
patches.

• MDTB patch: construction of an MDTB-spline multi-patch from TB-spline segments;

• MDTB patch tcheb: construction of an MDTB-spline multi-patch from Tchebycheff seg-
ments based on constant-coefficient linear differential operators;

• MDTB patch poly: construction of an MDTB-spline multi-patch from algebraic poly-
nomial or algebraic polynomial spline segments;

• MDTB patch ppoly: construction of an MDTB-spline multi-patch from polynomial seg-
ments (algebraic/exponential/trigonometric);

• MDTB patch gpoly: construction of an MDTB-spline multi-patch from generalized poly-
nomial segments (algebraic/exponential/trigonometric).

The following Matlab functions are provided for core operations on MDTB-spline multi-
patches.

• MDTB extraction: computation of the multi-degree spline extraction matrix;

• MDTB extraction periodic: computation of the multi-degree spline extraction matrix
with periodicity;

• MDTB extraction local: computation of the local multi-degree spline extraction ma-
trix corresponding to a single patch.

Furthermore, the following Matlab functions are provided for working with MDTB-
splines. Thanks to the multi-degree spline extraction operator, their implementation can
be easily redirected to their TB-spline analogues described in Section 3.

• MDTB domain: computation of the end points of the domain related to a multi-patch;

• MDTB greville: computation of the multi-degree Greville points;

• MDTB evaluation all: evaluation of all MDTB-spline basis functions in given points;

• MDTB evaluation spline: evaluation of a multi-degree spline in given points;

• MDTB evaluation curve: evaluation of a multi-degree spline curve in given points;

• MDTB differentiation all: differentiation of all MDTB-spline basis functions in given
points;

• MDTB differentiation spline: differentiation of a multi-degree spline in given points;

• MDTB differentiation curve: differentiation of a multi-degree spline curve in given
points;

• MDTB visualization all: visualization of all MDTB-spline basis functions;

• MDTB visualization spline: visualization of a multi-degree spline;

• MDTB visualization curve: visualization of a multi-degree spline curve;

• MDTB conversion: conversion from source to destination MDTB-spline form.



24 · Hendrik Speleers

4.1 MDTB patch

This function prepares the data-structure for an MDTB-spline multi-patch, starting from
a sequence of TB-spline segments. The MDTB-spline multi-patch stores a vector of TB-
spline patches P and the corresponding cumulative dimension mu.

Syntax:

MP = MDTB patch(PP)

Input parameters:

PP : vector of B-spline patches

Output parameters:

MP : MDTB-spline multi-patch

Example:

Create an MDTB-spline multi-patch consisting of two TB-spline patches with different
degrees (3 and 4):

>> P1 = TB patch gexp(3, [0, 1], 5);

>> P2 = TB patch gtrig(4, [1, 3], 2);

>> MP = MDTB patch([P1, P2])

MP =

P: [1x2 TB patch]

mu: [0 4 9]

>> MP.P(1)

ans =

w: 5

t: 1

m: 10

C: [4x4 double]

p: 3

n: 4

U: [0 1]

>> MP.P(2)

ans =

w: 2

t: 1

m: 10

C: [5x5 double]

p: 4

n: 5

U: [1 3]



User Manual for the MDTB-Spline Toolbox in MATLAB · 25

4.2 MDTB patch tcheb

This function prepares the data-structure for an MDTB-spline multi-patch, starting from
a sequence of Tchebycheff segments based on constant-coefficient linear differential oper-
ators (see TB patch tcheb). The MDTB-spline multi-patch stores a vector of TB-spline
patches P and the corresponding cumulative dimension mu.

Syntax:

MP = MDTB patch tcheb(pp, xx, ww, mm)

Input parameters:

pp : vector of TB-spline degrees

xx : vector of break points

ww : cell array of TB-spline roots (optional)

mm : cell array of TB-spline multiplicities (optional)

Output parameters:

MP : MDTB-spline multi-patch

Discussion:

The parameter xx is a vector consisting of a strictly increasing sequence of real values
(indicating the different segments). The parameter pp can be a scalar or a vector whose
elements are non-negative integers. If pp is a scalar, then degree pp is used on each
interval. On the other hand, if pp is a vector, then pp(i) is the degree on the interval
[xx(i), xx(i+1)] for i = 1:length(xx)-1. Hence, length(pp) should be equal to 1

or length(xx)-1. The parameter ww is a cell array of vectors of roots (complex values)
and the parameter mm is a cell array of the corresponding multiplicities (integer values).
Both cell arrays should have a length equal to 1 or length(xx)-1. If the length is 1, then
the same root parameters are considered on each interval; otherwise, ww{i} and mm{i} are
considered on the interval [xx(i), xx(i+1)] for i = 1:length(xx)-1. When no roots
are specified, ww = {0} is assumed. When no multiplicities are specified, mm = {1} is
assumed. We refer the reader to the documentation of TB patch tcheb for a description
of how to construct a valid set of root parameters.

Example:

Create an MDTB-spline multi-patch consisting of two TB-spline patches with different
degrees (3 and 4) by specifying the roots of the characteristic polynomials:

>> ww = {complex(1, 1), complex([0, 3], [1, 0])};
>> mm = {1, [1, 2]};
>> MP = MDTB patch tcheb([3, 4], [0, 1, 3], ww, mm)

MP =

P: [1x2 TB patch tcheb]

mu: [0 4 9]



26 · Hendrik Speleers

>> MP.P(1)

ans =

W: [2x4 double]

mu: [0 2 4]

C: [4x4 double]

p: 3

n: 4

U: [0 1]

>> MP.P(2)

ans =

W: [3x4 double]

mu: [0 1 3 5]

C: [5x5 double]

p: 4

n: 5

U: [1 3]

4.3 MDTB patch poly

This function prepares the data-structure for an MDTB-spline multi-patch, starting from
a sequence of algebraic polynomial segments and smoothness relations. The MDTB-spline
multi-patch stores a vector of TB-spline patches P and the corresponding cumulative di-
mension mu. Consecutive polynomial segments of the same degree are merged into a single
TB-spline patch, unless specified otherwise (see TB patch poly and TB patch spline).

Syntax:

[MP, rr] = MDTB patch poly(pp, xx, kk, mg)

Input parameters:

pp : vector of polynomial degrees

xx : vector of break points

kk : smoothness vector (optional)

mg : same degree merged if true (optional)

Output parameters:

MP : MDTB-spline multi-patch

rr : MDTB-spline smoothness vector (optional)

Discussion:

The parameter xx is a vector consisting of a strictly increasing sequence of real values
(indicating the different segments). The parameter pp can be a scalar or a vector whose
elements are non-negative integers. If pp is a scalar, then degree pp is used on each
interval. On the other hand, if pp is a vector, then pp(i) is the degree on the interval
[xx(i), xx(i+1)] for i = 1:length(xx)-1. Hence, length(pp) should be equal to 1



User Manual for the MDTB-Spline Toolbox in MATLAB · 27

or length(xx)-1. The parameter kk can be a scalar or a vector whose elements are non-
negative integers. If kk is a scalar, then kk should be less than min(pp), and smoothness
kk is imposed at the break point xx(i+1) for i = 1:length(xx)-2. On the other hand,
if kk is a vector, then kk(i) should be less than min(pp(i),pp(i+1)), and smooth-
ness kk(i) is imposed at the break point xx(i+1) for i = 1:length(xx)-2. Hence,
length(kk) should be equal to 1 or length(xx)-2. When no smoothness is specified, kk
= 0 is assumed. The parameter mg is a boolean scalar. If mg is true, then consecutive
polynomial segments of the same degree are merged into a single polynomial TB-spline
patch; otherwise, they are not merged. When no value is specified, mg = true is assumed.
The resulting vector rr represents the corresponding smoothness between the TB-spline
patches, so length(rr) equals length(MP.P)-1.

Example:

Create an MDTB-spline multi-patch consisting of four polynomial segments with different
degrees (3 and 4) that are connected with smoothness C2:

>> [MP, rr] = MDTB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2)

MP =

P: [1x2 TB patch spline]

mu: [0 5 12]

rr =

2

>> MP.P(1)

ans =

p: 3

n: 5

U: [0 0 0 0 1 3 3 3 3]

>> MP.P(2)

ans =

p: 4

n: 7

U: [3 3 3 3 3 4 4 6 6 6 6 6]

4.4 MDTB patch ppoly

This function prepares the data-structure for an MDTB-spline multi-patch, starting from
a sequence of polynomial-type segments. There are three types of segments:

• type 0: algebraic (see TB patch poly);

• type 1: exponential (see TB patch pexp);

• type 2: trigonometric (see TB patch ptrig).

The MDTB-spline multi-patch stores a vector of TB-spline patches P and the correspond-
ing cumulative dimension mu.



28 · Hendrik Speleers

Syntax:

MP = MDTB patch ppoly(pp, xx, tp, ww)

Input parameters:

pp : vector of TB-spline degrees

xx : vector of break points

tp : vector of TB-spline types (optional)

ww : vector of TB-spline parameters (optional)

Output parameters:

MP : MDTB-spline multi-patch

Discussion:

The parameter xx is a vector consisting of a strictly increasing sequence of real values
(indicating the different segments). The parameter pp can be a scalar or a vector whose
elements are non-negative integers. If pp is a scalar, then degree pp is used on each
interval. On the other hand, if pp is a vector, then pp(i) is the degree on the interval
[xx(i), xx(i+1)] for i = 1:length(xx)-1. Hence, length(pp) should be equal to 1

or length(xx)-1. The parameter tp can be a scalar or a vector whose elements are 0, 1
or 2. If tp is a scalar, then TB-spline type tp is used on each interval. On the other hand,
if tp is a vector, then tp(i) is the TB-spline type on the interval [xx(i), xx(i+1)] for
i = 1:length(xx)-1. Hence, length(tp) should be equal to 1 or length(xx)-1. When
no value is specified, tp = 0 is assumed. The parameter ww can be a scalar or a vector of
TB-spline type-specific parameters. If ww is a scalar, then the same value is considered on
each interval; otherwise, ww(i) is considered on the interval [xx(i), xx(i+1)] for i =

1:length(xx)-1. Hence, length(ww) should be equal to 1 or length(xx)-1. In the case
of exponential and trigonometric segments, we refer the reader to the documentation of
TB patch pexp and TB patch ptrig for a description of these type-specific parameters
and their default values. In the case of algebraic polynomial segments, these parameters
have no meaning and can be set arbitrarily.

Example:

Create an MDTB-spline multi-patch consisting of two polynomial-type segments with
different degrees (2 and 4):

>> MP = MDTB patch ppoly([2, 4], [0, 1, 3], [1, 2], [5, 1])

MP =

P: [1x2 TB patch poly]

mu: [0 3 8]

>> MP.P(1)

ans =

w: 5

ss: [3x1 double]

p: 2

n: 3

U: [0 1]



User Manual for the MDTB-Spline Toolbox in MATLAB · 29

>> MP.P(2)

ans =

w: 1

ss: [5x1 double]

p: 4

n: 5

U: [1 3]

4.5 MDTB patch gpoly

This function prepares the data-structure for an MDTB-spline multi-patch, starting from
a sequence of generalized polynomial segments. There are three types of segments:

• type 0: algebraic (see TB patch poly);

• type 1: exponential (see TB patch gexp);

• type 2: trigonometric (see TB patch gtrig).

The MDTB-spline multi-patch stores a vector of TB-spline patches P and the correspond-
ing cumulative dimension mu.

Syntax:

MP = MDTB patch gpoly(pp, xx, tp, ww, tt, mm)

Input parameters:

pp : vector of TB-spline degrees

xx : vector of break points

tp : vector of TB-spline types (optional)

ww : vector of TB-spline parameters (optional)

tt : vector of representation types (optional)

mm : vector of representation parameters (optional)

Output parameters:

MP : MDTB-spline multi-patch

Discussion:

The parameter xx is a vector consisting of a strictly increasing sequence of real values
(indicating the different segments). The parameter pp can be a scalar or a vector whose
elements are non-negative integers. If pp is a scalar, then degree pp is used on each
interval. On the other hand, if pp is a vector, then pp(i) is the degree on the interval
[xx(i), xx(i+1)] for i = 1:length(xx)-1. Hence, length(pp) should be equal to 1

or length(xx)-1. The parameter tp can be a scalar or a vector whose elements are 0, 1
or 2. If tp is a scalar, then TB-spline type tp is used on each interval. On the other hand,
if tp is a vector, then tp(i) is the TB-spline type on the interval [xx(i), xx(i+1)] for
i = 1:length(xx)-1. Hence, length(tp) should be equal to 1 or length(xx)-1. When
no value is specified, tp = 0 is assumed. The parameters ww, tt and mm can be scalars or
vectors of TB-spline type-specific parameters. If they are scalars, then the same values



30 · Hendrik Speleers

are considered on each interval; otherwise, ww(i), tt(i) and mm(i) are considered on
the interval [xx(i), xx(i+1)] for i = 1:length(xx)-1. Hence, their length should be
equal to 1 or length(xx)-1. In the case of exponential and trigonometric segments,
we refer the reader to the documentation of TB patch gexp and TB patch gtrig for
a description of these type-specific parameters and their default values. In the case
of algebraic polynomial segments, these parameters have no meaning and can be set
arbitrarily.

Example:

Create an MDTB-spline multi-patch consisting of two generalized polynomial segments
with different degrees (3 and 4):

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2])

MP =

P: [1x2 TB patch]

mu: [0 4 9]

>> MP.P(1)

ans =

w: 5

t: 1

m: 10

C: [4x4 double]

p: 3

n: 4

U: [0 1]

>> MP.P(2)

ans =

w: 2

t: 1

m: 10

C: [5x5 double]

p: 4

n: 5

U: [1 3]

4.6 MDTB extraction

This function computes the multi-degree spline extraction matrix representing a set of
MDTB-spline basis functions in terms of the TB-spline basis functions related to a given
sequence of TB-spline patches.

Syntax:

H = MDTB extraction(MP, rr)



User Manual for the MDTB-Spline Toolbox in MATLAB · 31

Input parameters:

MP : MDTB-spline multi-patch

rr : MDTB-spline smoothness vector (optional)

Output parameters:

H : extraction matrix

Discussion:

The parameter rr can be a scalar or a vector whose elements are integers. If rr is a scalar,
then rr should be less than min([MP.P.p]), and smoothness rr is imposed between
all consecutive TB-spline patches. On the other hand, if rr is a vector, then rr(i)

should be less than min(MP.P(i).p,MP.P(i+1).p), and smoothness rr(i) is imposed
between TB-spline patches MP.P(i) and MP.P(i+1) for i = 1:length(MP.P)-1. Hence,
length(rr) should be equal to 1 or length(MP.P)-1. A negative value indicates no
active smoothness imposition. When no smoothness is specified, rr = 0 is assumed.
The resulting matrix H is encoded in sparse format; each row in H corresponds to an
MDTB-spline basis function and each column to a TB-spline basis function in one of the
TB-spline patches, so size(H,2) equals MP.mu(end).

Example:

Create an MDTB-spline multi-patch and compute the multi-degree spline extraction ma-
trix for a given smoothness pattern:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> Hfull = full(H)

Hfull =

Columns 1 through 7

1.0000 0 0 0 0 0 0

0 1.0000 0.5476 0.4267 0.4267 0 0

0 0 0.4524 0.5210 0.5210 0.7632 0

0 0 0 0.0523 0.0523 0.2368 1.0000

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Columns 8 through 9

0 0

0 0

0 0

0 0

1.0000 0

0 1.0000



32 · Hendrik Speleers

4.7 MDTB extraction periodic

This function computes the periodic multi-degree spline extraction matrix representing
a set of periodic MDTB-spline basis functions in terms of the TB-spline basis functions
related to a given sequence of TB-spline patches.

Syntax:

H = MDTB extraction periodic(MP, rr, rp)

Input parameters:

MP : MDTB-spline multi-patch

rr : MDTB-spline smoothness vector (optional)

rp : periodicity smoothness (optional)

Output parameters:

H : extraction matrix

Discussion:

The parameter rr can be a scalar or a vector whose elements are integers. If rr is a scalar,
then rr should be less than min([MP.P.p]), and smoothness rr is imposed between all
consecutive TB-spline patches. On the other hand, if rr is a vector, then rr(i) should be
less than min(MP.P(i).p,MP.P(i+1).p), and smoothness rr(i) is imposed between TB-
spline patches MP.P(i) and MP.P(i+1) for i = 1:length(MP.P)-1. Hence, length(rr)
should be equal to 1 or length(MP.P)-1. A negative value indicates no active smoothness
imposition. When no smoothness is specified, rr = 0 is assumed. The parameter rp

should be an integer scalar less than half the dimension (floored) of the related non-
periodic MDTB-spline space. When no periodicity smoothness is specified, rp = -1 is
assumed. The resulting matrix H is encoded in sparse format; each row in H corresponds
to a periodic MDTB-spline basis function and each column to a TB-spline basis function
in one of the TB-spline patches, so size(H,2) equals MP.mu(end).

Example:

Create an MDTB-spline multi-patch and compute the periodic multi-degree spline ex-
traction matrix for a given smoothness pattern:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> Hper = MDTB extraction periodic(MP, 2, 1);

>> Hfull = full(Hper)

Hfull =

Columns 1 through 7

0.2208 0 0 0 0 0 0

0.7792 1.0000 0.5476 0.4267 0.4267 0 0

0 0 0.4524 0.5210 0.5210 0.7632 0

0 0 0 0.0523 0.0523 0.2368 1.0000



User Manual for the MDTB-Spline Toolbox in MATLAB · 33

Columns 8 through 9

1.0000 0.2208

0 0.7792

0 0

0 0

4.8 MDTB extraction local

This function returns the local extraction matrix corresponding to a single TB-spline
patch.

Syntax:

Hl = MDTB extraction local(MP, H, ip)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

ip : index of patch

Output parameters:

Hl : local extraction matrix

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The parameter ip takes an integer value between 1 and
length(MP.P). The resulting matrix Hl is encoded in sparse format; each row in Hl corre-
sponds to an MDTB-spline basis function and each column to a TB-spline basis function
in the selected TB-spline patch, so size(Hl) equals [size(H,1), MP.P(ip).n].

Example:

Create an MDTB-spline multi-patch with smoothness and show the Bézier extraction
matrix corresponding to the first patch:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> Hl = MDTB extraction local(MP, H, 1);

>> B = full(Hl(any(Hl, 2), :))

B =

1.0000 0 0 0

0 1.0000 0.5476 0.4267

0 0 0.4524 0.5210

0 0 0 0.0523



34 · Hendrik Speleers

4.9 MDTB domain

This function computes the end points of the domain specified by a given MDTB-spline
multi-patch.

Syntax:

[a, b] = MDTB domain(MP)

Input parameters:

MP : MDTB-spline multi-patch

Output parameters:

a : left end point

b : right end point

Example:

Create an MDTB-spline multi-patch and show the end points of its domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> [a, b] = MDTB domain(MP)

a =

0

b =

3

4.10 MDTB greville

This function computes the Greville points of a given MDTB-spline multi-patch with
smoothness, i.e., the coefficients of the MDTB-spline form of the identity function (if
possible).

Syntax:

gg = MDTB greville(MP, H)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

Output parameters:

gg : vector of Greville points

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector gg corresponds to an MDTB-
spline basis function, so length(gg) equals size(H,1).



User Manual for the MDTB-Spline Toolbox in MATLAB · 35

Example:

Create an MDTB-spline multi-patch with smoothness and show its Greville points:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> gg = MDTB greville(MP, H)

gg =

0.0000 0.1891 1.5638 2.0000 2.3329 3.0000

4.11 MDTB evaluation all

This function evaluates all (periodic) MDTB-spline basis functions of an MDTB-spline
multi-patch with smoothness at a given set of points, and stores the corresponding values
in a matrix.

Syntax:

M = MDTB evaluation all(MP, H, xx)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

xx : vector of evaluation points

Output parameters:

M : evaluation matrix

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each row in the resulting matrix M corresponds to an
MDTB-spline basis function and each column to an evaluation point, so size(M) equals
[size(H,1), length(xx)].

Example:

Create an MDTB-spline multi-patch with smoothness and evaluate all the corresponding
MDTB-spline basis functions at five uniform points in the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> M = MDTB evaluation all(MP, H, [1/2, 1, 3/2, 2, 5/2])

M =

0.0513 0 0 0 0

0.7163 0.4267 0.1688 0.0393 0.0027

0.2297 0.5210 0.4986 0.2434 0.0417

0.0027 0.0523 0.2760 0.3693 0.1768

0 0.0000 0.0503 0.2561 0.3833

0 0 0.0064 0.0920 0.3955



36 · Hendrik Speleers

Now, do the same with periodic MDTB-spline basis functions:

>> Hper = MDTB extraction periodic(MP, 2, 1);

>> Mper = MDTB evaluation all(MP, Hper, [1/2, 1, 3/2, 2, 5/2])

Mper =

0.0113 0.0000 0.0517 0.2764 0.4706

0.7563 0.4267 0.1737 0.1109 0.3109

0.2297 0.5210 0.4986 0.2434 0.0417

0.0027 0.0523 0.2760 0.3693 0.1768

4.12 MDTB evaluation spline

This function evaluates a spline in (periodic) MDTB-spline form at a given set of points,
and stores the corresponding values in a vector.

Syntax:

ss = MDTB evaluation spline(MP, H, cc, xx)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of spline values

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector cc corresponds to an MDTB-
spline basis function. Hence, length(cc) should be equal to size(H,1). Each element
of the resulting vector ss corresponds to an evaluation point, so length(ss) equals
length(xx).

Example:

Create an MDTB-spline multi-patch with smoothness and a vector of coefficients, and
then evaluate the corresponding spline in MDTB-spline form at three uniform points in
the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> cc = [1, 3, 5, 4, 0, 2];

>> ss = MDTB evaluation spline(MP, H, cc, [1/2, 3/2, 5/2])

ss =

3.3595 4.1159 1.7149



User Manual for the MDTB-Spline Toolbox in MATLAB · 37

Now, do the same with periodic MDTB-spline basis functions:

>> Hper = MDTB extraction periodic(MP, 2, 1);

>> ccper = [1, 3, 5, 4];

>> ssper = MDTB evaluation spline(MP, Hper, ccper, [1/2, 3/2, 5/2])

ssper =

3.4394 4.1697 2.3190

4.13 MDTB evaluation curve

This function evaluates a spline curve in (periodic) MDTB-spline form at a given set of
points, and stores the corresponding curve points in a matrix.

Syntax:

ss = MDTB evaluation curve(MP, H, cc, xx)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

cc : matrix of control points (1D, 2D or 3D)

xx : vector of evaluation points

Output parameters:

ss : matrix of spline curve points

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each column of the matrix cc corresponds to an MDTB-
spline basis function. Hence, size(cc,2) should be equal to size(H,1). This matrix
consists of 1, 2 or 3 rows, identifying a function, a 2D curve or a 3D curve, respectively.
Each column of the resulting matrix ss corresponds to an evaluation point and this matrix
has the same number of rows as cc, so size(ss) equals [size(cc,1), length(xx)].

Example:

Create an MDTB-spline multi-patch with smoothness and a matrix of 2D control points,
and then evaluate the corresponding 2D spline curve in MDTB-spline form at three uni-
form points in the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> Hper = MDTB extraction periodic(MP, 2, 1);

>> ccper = [1, 3, 5, 4; 2, 0, 2, 4];

>> ssper = MDTB evaluation curve(MP, Hper, ccper, [1/2, 3/2, 5/2])

ssper =

3.4394 4.1697 2.3190

0.4928 2.2046 1.7319



38 · Hendrik Speleers

4.14 MDTB differentiation all

This function evaluates the r-th order derivative of all (periodic) MDTB-spline basis
functions of an MDTB-spline multi-patch with smoothness at a given set of points, and
stores the corresponding values in a matrix.

Syntax:

M = MDTB differentiation all(MP, H, r, xx)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

r : order of derivative

xx : vector of evaluation points

Output parameters:

M : differentiation matrix

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The parameter r is a non-negative integer scalar. Each row
in the resulting matrix M corresponds to an MDTB-spline basis function and each column
to an evaluation point, so size(M) equals [size(H,1), length(xx)].

Example:

Create an MDTB-spline multi-patch with smoothness and evaluate the first derivative of
all the corresponding MDTB-spline basis functions at five uniform points in the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> M = MDTB differentiation all(MP, H, 1, [1/2, 1, 3/2, 2, 5/2])

M =

-0.3708 0 0 0 0

-0.2995 -0.6397 -0.3844 -0.1467 -0.0213

0.6509 0.3631 -0.3779 -0.5373 -0.2300

0.0194 0.2766 0.4451 -0.1291 -0.5298

0 0 0.2673 0.4694 -0.1198

0 0 0.0500 0.3437 0.9010

4.15 MDTB differentiation spline

This function evaluates the r-th order derivative of a spline in (periodic) MDTB-spline
form at a given set of points, and stores the corresponding values in a vector.

Syntax:

ss = MDTB differentiation spline(MP, H, r, cc, xx)



User Manual for the MDTB-Spline Toolbox in MATLAB · 39

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

r : order of derivative

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of r-th order derivative spline values

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The parameter r is a non-negative integer scalar. Each ele-
ment of the vector cc corresponds to an MDTB-spline basis function. Hence, length(cc)
should be equal to size(H,1). Each element of the resulting vector ss corresponds to an
evaluation point, so length(ss) equals length(xx).

Example:

Create an MDTB-spline multi-patch with smoothness and a vector of coefficients, and
then evaluate the first derivative of the corresponding spline in MDTB-spline form at
three uniform points in the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> cc = [1, 3, 5, 4, 0, 2];

>> ss = MDTB differentiation spline(MP, H, 1, cc, [1/2, 3/2, 5/2])

ss =

2.0628 -1.1626 -1.5313

4.16 MDTB differentiation curve

This function evaluates the r-th order derivative of a spline curve in (periodic) MDTB-
spline form at a given set of points, and stores the corresponding curve points in a matrix.

Syntax:

ss = MDTB differentiation curve(MP, H, r, cc, xx)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

r : order of derivative

cc : matrix of control points (1D, 2D or 3D)

xx : vector of evaluation points



40 · Hendrik Speleers

Output parameters:

ss : matrix of r-th order derivative spline curve points

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The parameter r is a non-negative integer scalar. Each col-
umn of the matrix cc corresponds to an MDTB-spline basis function. Hence, size(cc,2)
should be equal to size(H,1). This matrix consists of 1, 2 or 3 rows, identifying a func-
tion, a 2D curve or a 3D curve, respectively. Each column of the resulting matrix ss

corresponds to an evaluation point and this matrix has the same number of rows as cc,
so size(ss) equals [size(cc,1), length(xx)].

Example:

Create an MDTB-spline multi-patch with smoothness and a matrix of 2D control points,
and then evaluate the first derivative of the corresponding 2D spline curve in MDTB-
spline form at three uniform points in the domain:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> Hper = MDTB extraction periodic(MP, 2, 1);

>> ccper = [1, 3, 5, 4; 2, 0, 2, 4];

>> ssper = MDTB differentiation curve(MP, Hper, 1, ccper, [1, 3, 5]/2)

ssper =

1.4849 -0.8674 -1.1480

1.2155 1.5813 -2.4209

4.17 MDTB visualization all

This function visualizes all (periodic) MDTB-spline basis functions of an MDTB-spline
multi-patch with smoothness.

Syntax:

MDTB visualization all(MP, H, n, specs)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. The parameter n is a positive integer scalar. When no
value is specified, n = 100 is assumed. The parameter specs allows for any number of
input arguments, which are passed on to the function plot. We refer the reader to the
documentation of plot for all the plotting options.



User Manual for the MDTB-Spline Toolbox in MATLAB · 41

Example:

Create an MDTB-spline multi-patch with smoothness and plot all the corresponding
MDTB-spline basis functions:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> MDTB visualization all(MP, H, 100, ’LineWidth’, 2);

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1
 

4.18 MDTB visualization spline

This function visualizes a spline in (periodic) MDTB-spline form.

Syntax:

MDTB visualization spline(MP, H, cc, n, specs)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

cc : vector of coefficients

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector cc corresponds to an MDTB-
spline basis function. Hence, length(cc) should be equal to size(H,1). The parameter
n is a positive integer scalar. When no value is specified, n = 100 is assumed. The
parameter specs allows for any number of input arguments, which are passed on to the
function plot. We refer the reader to the documentation of plot for all the plotting
options.

Example:

Create an MDTB-spline multi-patch with smoothness and a vector of coefficients, and
then plot the corresponding spline in MDTB-spline form:



42 · Hendrik Speleers

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> H = MDTB extraction(MP, 2);

>> cc = [1, 3, 5, 4, 0, 2];

>> MDTB visualization spline(MP, H, cc, 100, ’LineWidth’, 2);

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5
 

4.19 MDTB visualization curve

This function visualizes a spline curve in (periodic) MDTB-spline form.

Syntax:

MDTB visualization curve(MP, H, cc, n, specs)

Input parameters:

MP : MDTB-spline multi-patch

H : extraction matrix

cc : matrix of control points (1D, 2D or 3D)

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The extraction matrix H should be deduced from the MDTB-spline multi-patch MP and
incorporates the smoothness. Each column of the matrix cc corresponds to an MDTB-
spline basis function. Hence, size(cc,2) should be equal to size(H,1). This matrix
consists of 1, 2 or 3 rows, identifying a function, a 2D curve or a 3D curve, respectively.
The parameter n is a positive integer scalar. When no value is specified, n = 100 is
assumed. The parameter specs allows for any number of input arguments, which are
passed on to the function plot/plot3. We refer the reader to the documentation of
plot/plot3 for all the plotting options.

Example:

Create an MDTB-spline multi-patch with smoothness and a matrix of 2D control points,
and then plot the corresponding 2D spline curve in MDTB-spline form:

>> MP = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> Hper = MDTB extraction periodic(MP, 2, 1);



User Manual for the MDTB-Spline Toolbox in MATLAB · 43

>> ccper = [1, 3, 5, 4; 2, 0, 2, 4];

>> MDTB visualization curve(MP, Hper, ccper, 100, ’LineWidth’, 2);

2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3
 

4.20 MDTB conversion

This function converts a spline in (periodic) MDTB-spline form into another (periodic)
MDTB-spline form. The conversion is exact when the source and destination MDTB-
spline multi-patches with smoothness imply nested spaces. It is assumed that Greville
points can be computed.

Syntax:

ccd = MDTB conversion(MPd, Hd, MPs, Hs, ccs, sh, gl)

Input parameters:

MPd : destination MDTB-spline multi-patch

Hd : destination extraction matrix

MPs : source MDTB-spline multi-patch

Hs : source extraction matrix

ccs : source coefficient vector

sh : shift of the source patch (optional)

gl : global conversion if true (optional)

Output parameters:

ccd : destination coefficient vector

Discussion:

Different types of TB-spline patches within MPs and MPd may be mixed. The extrac-
tion matrix Hs should be deduced from MPs and incorporates the smoothness. Similarly,
the extraction matrix Hd should be deduced from MPd and incorporates the smoothness.
Each element of the vector ccs corresponds to an MDTB-spline basis function related
to Hs. Hence, length(ccs) should be equal to size(Hs,1). Similarly, each element of
the resulting vector ccd corresponds to an MDTB-spline basis function related to Hd.
The parameter sh is a real scalar. When no value is specified, sh = 0 is assumed. The
parameter gl is a boolean scalar. If gl is true, then a global conversion is computed; oth-
erwise, a local patch-wise conversion is computed. The local conversion is more efficient,
but requires that the MDTB-spline multi-patches MPs and MPd share the same number



44 · Hendrik Speleers

of TB-spline patches. Hence, length(MPs.P) should be equal to length(MPd.P). More-
over, MPd should contain the same break points as MPs for the best local conversion results.
When no value is specified, gl = true is assumed.

Example:

Create an MDTB-spline multi-patch of multi-degree (3, 4) with smoothness and a vector
of coefficients; then, raise the multi-degree to (5, 7) and compute the coefficients of the
new MDTB-spline form:

>> MPs = MDTB patch gpoly([3, 4], [0, 1, 3], [1, 2], [5, 2]);

>> Hs = MDTB extraction(MPs, 2);

>> ccs = [1, 3, 5, 4, 0, 2];

>> MPd = MDTB patch gpoly([5, 7], [0, 1, 3], [1, 2], [5, 2]);

>> Hd = MDTB extraction(MPd, 2);

>> ccd = MDTB conversion(MPd, Hd, MPs, Hs, ccs, 0, false)

ccd =

Columns 1 through 7

1.0000 2.6857 3.2379 3.6200 4.3739 4.4464 3.7652

Columns 8 through 11

2.4723 1.3250 1.0897 2.0000

Now, keep the same multi-degree Tchebycheff structure of the original spline but lower
its smoothness, and compute the coefficients of the new MDTB-spline form:

>> MPe = MPs;

>> He = MDTB extraction(MPe, 1);

>> cce = MDTB conversion(MPe, He, MPs, Hs, ccs, 0, false)

cce =

1.0000 3.0000 3.9047 4.7632 4.0000 -0.0000 2.0000

Finally, find an approximation of the original spline using polynomial segments of the
same multi-degree (3, 4):

>> MPf = MDTB patch poly([3, 4], [0, 1, 3]);

>> Hf = MDTB extraction(MPf, 2);

>> ccf = MDTB conversion(MPf, Hf, MPs, Hs, ccs, 0, false)

ccf =

1.0000 3.5162 4.7362 3.8197 0.1696 2.0000

Modifying the local Tchebycheff structure does not preserve the exact shape of the original
spline, but it forms a reasonable approximation. The approximation can be improved by
using locally polynomial spline segments (of uniform degree):

>> [MPg, rg] = MDTB patch poly([3, 3, 4, 4], [0, 1/2, 1, 2, 3], 2);

>> Hg = MDTB extraction(MPg, rg);



User Manual for the MDTB-Spline Toolbox in MATLAB · 45

>> ccg = MDTB conversion(MPg, Hg, MPs, Hs, ccs, 0, false)

ccg =

Columns 1 through 7

1.0000 2.6365 3.4343 4.2898 4.4048 3.0828 1.4169

Columns 8 through 9

1.2354 2.0000

Make a visual comparison between the original spline (blue) and the polynomial spline
approximation (red):

>> MDTB visualization spline(MPs, Hs, ccs, 50, ’LineWidth’, 2, ...

>> ’Marker’, ’o’, ’MarkerSize’, 10, ’Color’, ’blue’);

>> hold on;

>> MDTB visualization spline(MPg, Hg, ccg, 50, ’LineWidth’, 2, ...

>> ’Marker’, ’*’, ’MarkerSize’, 10, ’Color’, ’red’);

>> hold off;

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5
 


	Introduction
	Matlab Class Diagram
	TB-spline patches
	TB_patch
	TB_patch_tcheb
	TB_patch_poly
	TB_patch_spline
	TB_patch_pexp
	TB_patch_ptrig
	TB_patch_gexp
	TB_patch_gtrig
	TB_patch_multi
	TB_domain
	TB_greville
	TB_evaluation_all
	TB_evaluation_spline
	TB_evaluation_curve
	TB_diffend_all
	TB_differentiation_all
	TB_differentiation_spline
	TB_differentiation_curve
	TB_visualization_all
	TB_visualization_spline
	TB_visualization_curve
	TB_conversion

	MDTB-spline multi-patches
	MDTB_patch
	MDTB_patch_tcheb
	MDTB_patch_poly
	MDTB_patch_ppoly
	MDTB_patch_gpoly
	MDTB_extraction
	MDTB_extraction_periodic
	MDTB_extraction_local
	MDTB_domain
	MDTB_greville
	MDTB_evaluation_all
	MDTB_evaluation_spline
	MDTB_evaluation_curve
	MDTB_differentiation_all
	MDTB_differentiation_spline
	MDTB_differentiation_curve
	MDTB_visualization_all
	MDTB_visualization_spline
	MDTB_visualization_curve
	MDTB_conversion


