User Manual for int_spline

Yuriy Korablev
July 6, 2022

1 Installation

Copy and open the script file "int_spline example.R" or implement the below
code. As data files, copy " figl .csv", " fig3.csv" or "purchases.csv” files.

2 Implementation

Function int_spline has following arguments:
e t - array of n observation coordinates t;;
e Y - array of n — 1 observation values y;;
e s - array of knots s, by default the same as t;
e m - number of knots, by default length(s);
e W - array of weights w;, by default vector of 1;
e alpha - smoothing parameter, by default 10°;

e x - array of coordinates in which the spline values will be calculated and
returned; by default, it ranges from t¢; to ¢, with a step size of 1;

info - indicator of whether to return additional information or not, by
default FALSE.

In a case where number of knots m is defined, but knots s itself are not
defined, knots s are calculated as equally spaced (function seq return sequence
between t; and t,,).

n=length (t)

if (ml=length(s))

s=seq(t[1],t[n],length=m)
Whenever knots s was defined or calculated, the distance between knots hy =
Sk+1 — Sk is calculated.

h=array (0,dim=m—1)
h[l:(m—1)]=s[2:m]—s[1l:(m—1)]

Filling in matrices @ and R. Note, that in main article (subsection 2.1) we
depicted column’s number starting from 2, but here we start indexing columns
from 1 (i.e. element Q[1,1] here is element Q[1,2] from section 2.1). Same for
row’s number in matrix R, they should start from 2, but here we start from 1
(i.e. element R[1,1] here is element R[2,2] from section 2.1).

Q&=matrix (0, nrow=m, ncol=m—2)
for (i in 1:(m=2))

Qi i]=1/h[i]
Q[i+1,i]==1/h[i]=1/h[i+1]
Q[i+2,i]=1/h[i+1]

}

R=matrix (0, nrow=m—2,ncol=m—2)
for (i in 1:(m=2))

R[i,i]=1/3«(h[i]+h[i+1])
if (i<m=2)
{
R[i+1,i]=1/6xh[i+1]
R[i , i+1]:1/6*h[i—|—1]
}
}

After that we calculate matrix K = QR 'Q”, but some intermediate calcula-
tions (R~! and Q) will repeat later, so its better to save them in the corre-
sponding variables (here function solve(R) returns inverse matrix, ¢(Q)) returns
transposed matrix and operation %*% denote matrix multiplication).

inv_R=solve (R)
t Q=t(Q)
K=Q %*% inv_R %% t_Q

The hardest part is filling in V' and P matrices depending on how the observa-
tions landed on the knots intervals. For each row ¢ we need to find on which
k-th interval the i-th observation has landed and in how many intervals L the
i+ 1-th observation has landed !. Note, that for correct indexing we are filling
in the matrix P as if it had m columns, and later we discard the first and last
column.

V=matrix (0,nrow=n—1,ncol=m)
P=matrix (0,nrow=n—1,ncol=m)

k=1
while ((s[k]<=t[1]) & (s[k+1]<t[1])) #find k, that s[k+1]>t
[1]
k=k+1
for (i in 1:(n-=1))
{

#finding L, it can be 0
for (L in 0:(m-k—1))
if (t[li+l]<=s[k+L+1])

IRemark. If we have integrals y; defined on arbitrary intervals [tq[i], t[]], which may even
intersect, all that needs to be changed here is to use 4[] instead of t[i], ¢ [i] instead of t[i + 1]
and define k inside the loop.

break

|=1;

V[i, k]=(s[k+1]—t[i])"2/h[k]/2

Pli ,2k]:h[k]A3/24—(t[i]—s[k])”2*(s[k+1]—t[i]+h[k])“2/h[k]/
4

while (1<=L)

V[i,k+!l]=(h[k+l=1]+h[k+I])/2
Pli, k+1]=(h[k+I=1]"3+h[k+I]"3) /24
=l+1;

V[i, k+1]=V[i, k+1]—(t[i]=s[k]) "2/h[k]/2

Pli, k+1]=P[i , k+1]+(t[i]—s[k])" 2
*((t[i]=s[k])"2—2xh[k]"2)/h[k] /24

V[i, k+L]=V[i k+L]—(s[k+L+1]—t[i+1])"2/h[k+L] /2

Pli, k+L]=P[i , k+L]+(s[k+L+1]—t[i+1])"2
*((s[ktL4+1]—t[i+1])"2—2«h[k+L]"2) /h[k+L] /24

V[i, k+L+1]=(t[i+1]—s[k+L])"2/h[k+L] /2

Pli, k+L+1]=h[k+L]"3/24—(s [k+L+1]—t[i+1])"2
#(t[i+1]—s[k+L]+h[k+L]) "2/h[k+L] /24

k=k-+L

P=P[1:(n—-1),2:(m—1)] #don't need first and last column

Next we calculate the matrix C =V — PR™'Q7 and use the previously calcu-
lated matrices R~' and QT for this.

C=V—P %% inv_R %% t_Q

Finally we calculate vector g = (CTWC + aK)_1 CTWY (spline values) and
vector v = R~'Q7T g (second derivatives). Because matrix C7 is used few times,
we remember it to corresponding variable.

t_C=t(C)

Wediag (W) # make matrix from vector of weights
A=t _C %% W %% C + alpha % K

g=solve (A , t_-C %% W %% Y)

gamma=inv _R %% t_Q %% g

At this point, we have everything to build our spline (the spline is completely
defined by means of g and). We calculate the spline values at arbitrary points
x (array), which are specified by the user and passed as an argument to our
function int_spline (if argument z is omitted, then points are calculated as
range from t; to ¢, with a step size of 1). As result, values y = g(z) (vector),
x, g and v are returned as a list.

g2=c (0,gamma,0) #Second derivative on the edges was zero
y=rep (0,length(x)) #x=seq(t[1],t[n],1) by default

k=1; #index of interval

for (j in (l:length(x)))

while (x[j]<t[n] & x[]j]>s[k]+h[k])

k=k+1;

y[i] = ((x[i]=s[k])*g[k+1]+(s [k+1]—x[j]) *g[k]) /h[k]

- 1/|(5]*)(X[J]—S[k])*(5[k+1]—X[J])*(gQ[kJrl]*(lJr(X[J]—S[k])/h[

82 [k]*(1+(s[k+1]=x[j]) /h[Kk]))

if (info)

{
result=list (x=x,y=y, g=g,gamma=g2, s=s , h=h)
return (result)

}

else

return(y)

3 Application

Data input. Assume the data set represented in the .csv file, which has two
columns: Date and Value. Data from this .csv file can be input using the
following lines of code:

library (lubridate)
filename="F:/FilePath/FileName.csv";

#if CSV file was generated by Excel

MyData = read.csv(file=filename, header=TRUE, sep=";",
stringsAsFactors = FALSE, dec=",")

t=as.numeric(dmy(MyData[[1]]))

#if CSV file was generated by R

#MyData = read.csv(file=filename, header=TRUE, sep=",",
stringsAsFactors = FALSE, dec=".")

#t=as.numeric(ymd(MyData[[1]]))

t=t[!is.na(t)]

n=length (t)

Y=MyData [[2]]

Y=Y[1:(n—1)] # Last value not used

The simplest call to the proposed function, which calculates the spline, can be
done with the following lines of code:

r=int _spline(t,Y)

y=rdy
This function call causes the function to compute the spline defined by the knots,
which coincide with observation dates. By default, spline values are calculated
at every point between the first and last observations (the x-coordinates are not
returned by default; x=t[1]:t[n] must be defined before plotting the graph).
Plotting the spline with a graph of average values using the following code lines

x2=NULL #graph of average values
y2=NULL
for (i in 1:(n=1))

x2=c(x2,t[i],t[i+1])
} y2=c(y2, Y[i]/(e[i+1]=t[i]) Y[i]/(t[i+1]=t[i]))

plot(x,y,col="red"” ,type="1",lwd="1",lty=1, xaxt="n",
ylim=range(c(y,y2)) xlim=range(c(x,x2)))
axis.Date(1l, at=seq(min(dmy(MyData[[1]])).

max (dmy(MyData[[1]]))., by="months"),

format="%m-%Y")

lines(x2,y2,col="black” ,type="1" ,lwd="2" Ity =1)

As a result, the function has been restored by integrals, as shown in Figure 1.
The algorithm clearly tries to fit a spline so that the area under the function
tends to the area under each step (with the roughness penalty). Figure 1 also

30 40
1

20

10

-10

T T
01-2020 03-2020 05-2020 07-2020 09-2020 11-2020 01-2021 03-2021 05-2021 07-2021 09-2021 11-2021

Figure 1: Restored function, simplest call.
Staircase line shows the average values y;/(ti+1 — t;). The area under each stair step
represents the observed integral y;.

shows that the distance between observations (and knots) varies. This creates
a strange incline in the restored function. If knots had been chosen in another
way (equally spaced), the graph would be different. For example, with the same
number of knots n, but spaced equally, the result is as shown in Figure 2 with
the following code lines:

s=seq(t[1],t[n],length=n)
y=int _spline(t,Y,s=s)

20 30 40
| |

10

-10

T T
01-2020 03-2020 05-2020 07-2020 09-2020 11-2020 01-2021 03-2021 05-2021 07-2021 09-2021 11-2021

Figure 2: Restored function, equally spaced knots.

It is not necessary to define the knot sequence s every time, it is enough
to define the number of knots m. The number of knots m can be less than or
greater than the number of observations n. Without a knot sequence s defined,
if m is defined as not equal to n, the resulting knot sequence will be equally

spaced (if m is defined equal to n, the knots will coincide with the observation
points). For example, a simple function call to calculate a spline with equally
spaced knots could be the following:

y=int _spline (t,Y,m=nx3)

The number of knots m does not have much influence on the resulting curve
until it is more than two times less than n. The greatest effect is exerted by
the smoothing parameter o (by default o = 10°, and the second derivative is
much less than the integrals). If « is zero, then no smoothing takes place. If
@ is too large (for example, 100 or greater), the function tends to a straight
line. However, for some data sets, the parameter o has almost no effect until it
becomes large enough to start straightening the restored function. For example,
for the same data set that was used to generate Figure 1), a had no visible effect
from 0 to 10*. This happened because there was little noise in the data and
the spline was computed in an almost perfect way. Any deviation from the
resulting shape will cause significant errors (with the roughness penalty much
weaker that these errors). For noisy data, large errors are already present, and
any slight change in the roughness penalty will lead to changes in spline shape.
For example, for another data set, changing the smoothing parameter a from
a = 10° to a = 10* had a strong influence on the resulting graphs. In Figure 3a
and Figure 3b, note that the restored function shows strange behavior on the
second peak.

80

75
1

70
1

65
]

60

50

T 1 1 T 11 11 1T 1 11 T 1 1 1 1 T T 1 1 1 T 171
01-2020 04-2020 07-2020 10-2020 01-2021 01-2020 04-2020 07-2020 10-2020 01-2021

a) b)

Figure 3: Restored by integrals function with a) a = 10° and b) a = 10*

It is also possible to define weights for individual observations. A weight of
0 will make the algorithm ignore the associated observation, whereas a weight
greater than 1 will make the algorithm pay more attention to the associated
observation. For example, to improve spline shapes in Figures 3a and b, one
can place a weight of 0 on the 8-th observation and a weight of 100 on the 4-th
observation using the following code lines:

W=rep (1,n—1)

W[8]=0

W[4]=100

y=int _spline(t,Y,m=nx3,alpha=10"4 WAW)

As a result, in Figure 4, the depression on the second peak has disappeared,
and the peak on the fourth observation has become slightly higher. With these
changes, it is difficult to see any difference between the two graphs.

8 1 g -
2 o
8 1 2
3 - 8 -
T T
012020 042020 072020 102020 01-2021 012020 042020 07-2020 10-2020 01-2021
a) b)

Figure 4: Same as Figure 3 but with weights w, = 100,wg = 0, a) o = 10° and
b) a = 10%

As mentioned earlier, by default, spline values are calculated at every point
between the first and last observations. To calculate a spline at other points, it
is only necessary to define the vector x. By the following lines to calculate the
spline at every 15th point, the result is as shown in Figure 5:

x=seq (t[1],t[n],15)
y=int_spline(t,Y,m=nx3 ,(alpha=10"5,x=x)

80

75
1

70

65

60

55

50
I

T T T T T T T T T T T T 1
01-2020 04-2020 07-2020 10-2020 01-2021

Figure 5: Calculating spline at every 15 points.

