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Nomad 4

Warning: This user guide is specific to NOMAD 4.

NOMAD 3 is still available. It will be replaced by NOMAD 4 in the future.

Get NOMAD 3 and 4 at https://www.gerad.ca/nomad/.

NOMAD is a blackbox optimization software. A general presentation of NOMAD is given in Introduction.

New users of NOMAD should refer to

• Installation

• Getting started

Using NOMAD

• Starting from NOMAD usage, all users can find ways to tailor problem definition, algorithmic settings and soft-
ware output.

• Refer to Advanced functionalities and Tricks of the trade for specific problem solving.

Please cite NOMAD 4 with reference:

Reference book

A complete introduction to derivative-free and blackbox optimization can be found in the textbook:

INTRODUCTION: 1
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CHAPTER

ONE

INTRODUCTION

Note: NOMAD = Nonlinear Optimization by Mesh Adaptive Direct Search

NOMAD is a software application for simulation-based optimization. It can efficiently explore a design space in search
of better solutions for a large spectrum of optimization problems. NOMAD is at its best when applied to blackbox
functions.

Fig. 1: Blackbox optimization

Such functions are typically the result of expensive computer simulations which

• have no exploitable property such as derivatives,

• may be contaminated by noise,

• may fail to give a result even for feasible points.

NOMAD is a C++ implementation of the Mesh Adaptive Direct Search (MADS) algorithm (see references
[AbAuDeLe09], [AuDe2006], [AuDe09a] for details) designed for constrained optimization of blackbox functions
in the form

min
𝑥∈Ω

𝑓(𝑥)

where the feasible set Ω = {𝑥 ∈ 𝑋 : 𝑐𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽} ⊂ R𝑛, 𝑓, 𝑐𝑗 : 𝑋 → R ∪ {∞} for all 𝑗 ∈ 𝐽 = {1, 2, . . . ,𝑚},
and where 𝑋 is a subset of R𝑛.
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1.1 Basics of the MADS algorithm

At the core of NOMAD resides the Mesh Adaptive Direct Search (MADS) algorithm. As the name implies, this method
generates iterates on a series of meshes with varying size. A mesh is a discretization of the space of variables. However,
also as the name implies, the algorithm performs an adaptive search on the meshes including controlling the refinement
of the meshes. The reader interested in the rather technical details should read Reference [AuDe2006].

The objective of each iteration of the MADS algorithm, is to generate a trial point on the mesh that improves the current
best solution. When an iteration fails to achieve this, the next iteration is initiated on a finer mesh.

Each iteration is composed of two principal steps called the Search and the Poll steps [AuDe2006]. The Search step is
crucial in practice because it is so flexible and can improve the performance significantly. The Search step is constrained
by the theory to return points on the underlying mesh, but of course, it is trying to identify a point that improves the
current best solution.

The Poll step is more rigidly defined, though there is still some flexibility in how this is implemented. The Poll step
generates trial mesh points in the vicinity of the best current solution. Since the Poll step is the basis of the convergence
analysis, it is the part of the algorithm where most research has been concentrated.

A high-level presentation of MADS is shown in the pseudo-code below.

1.2 Using NOMAD

Warning: NOMAD does not provide a graphical user interface to define and perform optimization.

Minimally, users must accomplish several tasks to solve their own optimization problems:

• Create a custom blackbox program(s) to evaluate the functions 𝑓 and 𝑐𝑗 OR embed the functions evaluations in
C++ source code to be linked with the NOMAD library.

• Create the optimization problem definition in a parameter file OR embed the problem definition in C++ source
code to be linked with the NOMAD library.

• Launch the execution at the command prompt OR from another executable system call.

Users can find several examples provided in the installation package and described in this user guide to perform cus-
tomization for their problems. The installation procedure is given in Installation. New users should refer to Getting
started. The most important instructions to use NOMAD are in :ref:’basic_nomad_usage’. In addition, tricks that
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may help solving specific problems and improve NOMAD efficiency are presented in Tricks of the trade. Advanced
parameters and functionalities are presented in Advanced functionalities.

1.3 Supported platforms and environments

NOMAD source codes are in C++ and are identical for all supported platforms. See Installation for details to obtain
binaries from the source files.

1.4 Authors and fundings

The development of NOMAD started in 2001. Three versions of NOMAD have been developed before NOMAD 4.
NOMAD 4 and NOMAD 3 are currently supported. NOMAD 4 is almost a completely new code compared with
NOMAD 3.

NOMAD 4 has been funded by Huawei Canada, Rio Tinto, Hydro-Québec, NSERC (Natural Sciences and Engineer-
ing Research Council of Canada), InnovÉÉ (Innovation en Énergie Électrique) and IVADO (The Institute for Data
Valorization)

NOMAD 3 was created and developed by Charles Audet, Sebastien Le Digabel, Christophe Tribes and Viviane Rochon
Montplaisir and was funded by AFOSR and Exxon Mobil.

NOMAD 1 and 2 were created and developed by Mark Abramson, Charles Audet, Gilles Couture, and John E. Dennis
Jr., and were funded by AFOSR and Exxon Mobil.

The library for dynamic surrogates (SGTELIB) has been developed by Bastien Talgorn (bastien-
talgorn@fastmail.com), McGill University, Montreal. The SGTELIB is included in NOMAD since version
3.8.0.

Developers of the methods behind NOMAD include:

• Mark A. Abramson (abramson@mathematics.byu.edu), Bringham Young University.

• Charles Audet (https://www.gerad.ca/Charles.Audet), GERAD and Département de mathématiques et de génie
industriel, École Polytechnique de Montréal.

• J.E. Dennis Jr. (http://www.caam.rice.edu/~dennis), Computational and Applied Mathematics Department, Rice
University.

• Sébastien Le Digabel (http://www.gerad.ca/Sebastien.Le.Digabel), GERAD and Département de mathématiques
et de génie industriel, École Polytechnique de Montréal.

• Viviane Rochon Montplaisir (https://www.linkedin.com/in/montplaisir).

• Christophe Tribes, GERAD (https://www.gerad.ca/en/people/christophe-tribes) and Département de mathéma-
tiques et de génie industriel, École Polytechnique de Montréal.
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CHAPTER

TWO

LICENSE

NOMAD is a free software application released under the GNU Lesser General Public License v 3.0. As a free software
application you can redistribute and/or modify NOMAD source codes under the terms of the GNU Lesser General
Public License.

For more information, please refer to the local copy of the license obtained during installation. For additional informa-
tion you can contact us or visit the Free Software Foundation website.
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CHAPTER

THREE

CONTACT US

All queries can be submitted by email at

Note: nomad@gerad.ca.

In particular, feel free to ask technical support for problem specification (creating parameter files or integration with
various types of simulations) and system support (installation and plateform-dependent problems).

Bug reports and suggestions are valuable to us! We are committed to answer to posted requests as quickly as possible.

References
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CHAPTER

FOUR

INSTALLATION

On Linux, Windows and Mac OS X, NOMAD can be compiled using CMake, a tool to manage building of source
code.

The minimum version of CMake is 3.14. Older versions should trigger an error. CMake will detect which compiler is
available.

A recent C++ compiler supporting C++14 is also required. The compilation has been tested on Linux with gcc 9.3.0,
10.1.0 and 11.1.0. The compilation has been tested on OSX with gcc Homebrew 9.3.0 and 11.2.0, and also Apple clang
version 11.0.3 and 13.0.0. The compilation has been tested on Windows 8 and Windows 10 Enterprise with Microsoft
Visual Studio 2019 (cl.exe 19.29.300038.1) and Microsoft Visual Studio 2017.

Warning:

Some older version of CMake do not trigger an explicit error on the version number. If the cmake com-
mands fail, check the version manually on the command line

cmake --version

The minimum acceptable version is 3.14.

Note: If the version of CMake is older than 3.14 or if you do not have CMake installed, we recommend to install
CMake using a package manager. The other option is to follow the procedure given at cmake.org to obtain binaries.

For Mac OSX, CMake can be installed on the command line using package manager MacPorts or Homebrew.

For Linux, several package managers exist to automate the procedure.

For Windows, an installer tool is available at cmake.org/download. Please note that all commands are performed in the
Windows Command Prompt windows of Visual Studio.

The NOMAD installation procedure has the three following steps: configuration, building and installation.

Warning: Before starting the procedure we recommend to set the environment variable $NOMAD_HOME with the
path where NOMAD has been copied. For Linux and OSX,

export NOMAD_HOME=/home/myUserName/PathToNomad

For Windows, add an environment variable %NOMAD_HOME% containing the path.

The remaining of the documentation uses the $NOMAD_HOME environment variable.

11

https://cmake.org/install/
https://www.macports.org/
http://brew.sh/
https://cmake.org/download/


Nomad 4

4.1 1- Configuration using provided CMakeLists.txt files

On the command line, in the $NOMAD_HOME directory:

cmake -S . -B build/release

Building options

To enable time stats build:
cmake -DTIME_STATS=ON -S . -B build/release

To enable C interface building:

cmake -DBUILD_INTERFACE_C=ON -S . -B build/release

To enable Matlab interface building:

cmake -DBUILD_INTERFACE_MATLAB=ON -S . -B build/release

To enable Python interface (PyNomad) building:

cmake -DBUILD_INTERFACE_PYTHON=ON -S . -B build/release

To disable OpenMP compilation:

cmake -DTEST_OPENMP=OFF -S . -B build/release

This command creates the files and directories for building (-B) in build/release. The source (-S) CMakeLists.
txt file is in the $NOMAD_HOME directory.

The command can be modified to enable/disable some options (see side bar).

OpenMP is used for parallelization of evaluations. CMake will detect if OpenMP is available by default. To forcefully
deactivate compilation with OpenMP, see option in side bar.

4.2 2- Build

Build the libraries and applications (Linux/OSX):

cmake --build build/release

For Windows, the default configuration is Debug. To obtain the Release version:

cmake --build build/release --config Release

Option --parallel xx can be added for faster build

It is possible to build only a single application in its working directory:

cd $NOMAD_HOME/examples/basic/library/example1
cmake --build $NOMAD_HOME/build/release --target example1_lib.exe
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4.3 3- Install

Copy binaries and headers in build/release/[bin, include, lib] and in the examples/tests directories:

cmake --install build/release

Option –config Release should be used on Windows to install Release configuration.

The executable nomad will installed into the directory:

$NOMAD_HOME/build/release/bin/

Additionally a symbolic link to nomad binary is available:

$NOMAD_HOME/bin

4.4 Bulding for debug version

The procedure to configure, build and install the debug version is the following (linux/OSX). On the command line in
the $NOMAD_HOME directory:

cmake -S . -B build/debug -D CMAKE_BUILD_TYPE=Debug

cmake --build build/debug

cmake --install build/debug

On Windows, all 4 configurations are always build Debug, RelWithDebugInfo, MinSizeRel, Release); the flag
CMAKE_BUILD_TYPE can be ignored.

4.5 Use another compiler

The environment variables CC and CXX can be used to select the C and C++ compilers.

Note: Clang is the default compiler for Mac OSX using XCode. But, OpenMP (used for parallel evaluations) support
is disabled in Clang that come with Xcode. Users of Mac OSX can install and use another compiler to enable OpenMP
support. For example, GCC compilers can be obtained using MacPorts or Homebrew.

4.3. 3- Install 13
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CHAPTER

FIVE

TESTING INSTALLATION

Once building and installation have been performed some tests can be performed.

The NOMAD binary can be tested:

$NOMAD_HOME/bin/nomad -v

This should return the version number on the command line.

By default the examples are built and can be tested:

cd build/release
ctest

For Windows, the configuration must be provided: ctest -C Release.

Please note that the tests will take several minutes. Option --parallel xx can be added for faster execution. The log
of the tests can be found in $NOMAD_HOME/build/release/Testing/Temporary.

15
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CHAPTER

SIX

GETTING STARTED

NOMAD is an efficient tool for simulation-based design optimizations provided in the form:

min
𝑥∈Ω

𝑓(𝑥)

where the feasible set Ω = {𝑥 ∈ 𝑋 : 𝑐𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽} ⊂ R𝑛, 𝑓, 𝑐𝑗 : 𝑋 → R ∪ {∞} for all 𝑗 ∈ 𝐽 = {1, 2, . . . ,𝑚},
and where 𝑋 is a subset of R𝑛. The functions 𝑓 and 𝑐𝑗 , 𝑗 ∈ 𝐽 , are typically blackbox functions whose evaluations
require computer simulation.

NOMAD can be used in two different modes: batch mode and library mode. The batch mode is intended for a basic
usage and is briefly presented below (more details will be provided in NOMAD usage). This chapter explains how to
get started with NOMAD in batch mode. The following topics will be covered:

• Create blackbox programs

• Provide parameters for defining the problem and displaying optimization results

• Conduct optimization

Note: Building NOMAD binaries and running the examples provided during the installation requires to have a C++
compiler installed on your machine.

Compilation instructions rely on CMake and have been tested with GCC (GNU Compiler Collection), Clang and
Visual Studio.

6.1 Create blackbox programs

To conduct optimization in batch mode the users must define their separate blackbox program coded as a standalone
program. Blackbox program executions are managed by NOMAD with system calls.

A valid blackbox program:

• takes an input vector file as single argument,

• reads space-separated values in input vector file,

• returns evaluation values on standard output or file,

• returns an evaluation status.

In what follows we use the example in the $NOMAD_HOME/examples/basic/batch/single_obj. This example
optimization problem has a single objective, 5 variables, 2 nonlinear constraints and 8 bound constraints:

17
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Note: The blackbox programs may be coded in any language (even scripts) but must respect NOMAD format:

1. The blackbox program must be callable in a terminal window at the command prompt and take the input vector file
name as a single argument. For the example above, the blackbox executable is bb.exe, one can execute it with the
command ./bb.exe x.txt. Here x.txt is a text file containing a total of 5 values.

2. NOMAD will manage the creation of the input file consisting of one value for each variable separated by
space and the execution of the blackbox program.

3. The blackbox program must return the evaluation values by displaying them in the standard output (default) or by
writing them in an output file (see Advanced functionalities about advanced output options). It must also return an
evaluation status of 0 to indicate that the evaluation went well. Otherwise NOMAD considers that the evaluation has
failed.

4. The minimum number of values displayed by the blackbox program corresponds to the number of constraints plus
one (or two for bi-objective problems) representing the objective function(s) that one seeks to minimize. The constraints
values correspond to left-hand side of constraints of the form 𝑐𝑗 ≤ 0 (for example, the constraint 0 ≤ 𝑥1 + 𝑥2 ≤ 10
must be displayed with the two quantities 𝑐1(𝑥) = −𝑥1 − 𝑥2 and 𝑐2(𝑥) = 𝑥1 + 𝑥2 − 10).

The blackbox C++ program of the previous example to evaluate the objective and the two constraints for a given design
vector is given as:

1 #include <cmath>
2 #include <iostream>
3 #include <fstream>
4 #include <cstdlib>
5 using namespace std;
6

7 int main ( int argc , char ** argv ) {
8

9 double f = 1e20, c1 = 1e20 , c2 = 1e20;
10 double x[5];
11

12 if ( argc >= 2 ) {
13 c1 = 0.0 , c2 = 0.0;
14 ifstream in ( argv[1] );
15 for ( int i = 0 ; i < 5 ; i++ ) {

(continues on next page)
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(continued from previous page)

16 in >> x[i];
17 c1 += pow ( x[i]-1 , 2 );
18 c2 += pow ( x[i]+1 , 2 );
19 }
20 f = x[4];
21 if ( in.fail() )
22 f = c1 = c2 = 1e20;
23 else {
24 c1 = c1 - 25;
25 c2 = 25 - c2;
26 }
27 in.close();
28 }
29 cout << f << " " << c1 << " " << c2 << endl;
30 return 0;
31 }

The blackbox compilation and test are as follows:

1. Change directory to $NOMAD_HOME/examples/basic/batch/single_obj.

2. Optionally, compile the blackbox program with the following command g++ -o bb.exe bb.cpp (GNU com-
piler). This step is not really required because the building procedure with CMake normally builds the blackbox
executable for this example.

3. Test the executable with the text file x.txt containing 0 0 0 0 0 by entering the command bb.exe x.txt.

4. This test should display 0 -20 20, which means that the point 𝑥 = (0 0 0 0 0)𝑇 has an objective value of 𝑓(𝑥) = 0,
but is not feasible, since the second constraint is not satisfied (𝑐2(𝑥) = 20 > 0).

> cd $NOMAD_HOME/examples/basic/batch/single_obj
> g++ -o bb.exe bb.cpp
> more x.txt
0 0 0 0 0
> ./bb.exe x.txt
0 -20 20

Note: The order of the displayed outputs must correspond to the order defined in the parameter file (see
BB_OUTPUT_TYPE for details). If variables have bound constraints, they must be defined in the parameters file
and should not appear in the blackbox code.

6.2 Provide parameters

In batch mode, the parameters are provided in a text file using predefined keywords followed by one or more argument.

Note: Help on parameters is accessible at the command prompt: $NOMAD_HOME/bin/nomad -h param_name

Here are some of the most important parameters defining an optimization problem (without brackets):

• The number of variables (DIMENSION n).

6.2. Provide parameters 19
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• The name of the blackbox executable that outputs the objective and the constraints (BB_EXE bb_name).

• Bounds on variables are defined with the LOWER_BOUND lb and UPPER_BOUND ub parameters.

• The output types of the blackbox executable: objective and constraints (BB_OUTPUT_TYPE obj cons1 ...
consM).

• A starting point (X0 x0).

• An optional stopping criterion (MAX_BB_EVAL max_bb_eval, for example). If no stopping criterion is specified,
the algorithm will stop as soon as the mesh size reaches a given tolerance.

• Any entry on a line is ignored after the character #.

Note: The order in which the parameters appear in the file or their case is unimportant.

Example of a basic parameters file extracted from $NOMAD_HOME/examples/basic/batch/single_obj/param.
txt. The comments in the file describes some of the syntactic rules to provide parameters:

DIMENSION 5 # number of variables

BB_EXE bb.exe # 'bb.exe' is a program that
BB_OUTPUT_TYPE OBJ PB EB # takes in argument the name of

# a text file containing 5
# values, and that displays 3
# values that correspond to the
# objective function value (OBJ),
# and two constraints values g1
# and g2 with g1 <= 0 and
# g2 <= 0; 'PB' and 'EB'
# correspond to constraints that
# are treated by the Progressive
# and Extreme Barrier approaches
# (all constraint-handling
# options are described in the
# detailed parameters list)

X0 ( 0 0 0 0 0 ) # starting point

LOWER_BOUND * -6 # all variables are >= -6
UPPER_BOUND ( 5 6 7 - - ) # x_1 <= 5, x_2 <= 6, x_3 <= 7

# x_4 and x_5 have no bounds

MAX_BB_EVAL 100 # the algorithm terminates when
# 100 black-box evaluations have
# been made

The constraints defined in the parameters file are of different types. The first constraint 𝑐1(𝑥) ≤ 0 is treated by the
Progressive Barrier approach (PB), which allows constraint violations. The second constraint, 𝑐3(𝑥) ≤ 0, is treated by
the Extreme Barrier approach (EB) that forbids violations. Hence, evaluations not satisfying extreme barrier constraints
are simply not considered when trying to improve the solution.

In the example above, the algorithmic parameters of NOMAD need not to be set because default values are considered.
This will provide the best results in most situations.

20 Chapter 6. Getting started
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6.3 Conduct optimization

Optimization is conducted by starting NOMAD executable in a command window with the parameter file name given
as argument.

$NOMAD_HOME/bin/nomad param.txt

To illustrate the execution, the example provided in $NOMAD_HOME/examples/basic/batch/single_obj/ is con-
sidered:

> cd $NOMAD_HOME/examples/basic/batch/single_obj
> ls
bb.cpp bb.exe CMakeLists.txt makefile param.txt x.txt
>$NOMAD_HOME/bin/nomad param.txt
BBE ( SOL ) OBJ
1 ( 0 0 0 0 0 ) 0 (Phase One)
8 ( 0 4 0 0 0 ) 0 (Phase One)
28 ( 1.4 5 0 -0.6 -0.4 ) -0.4
29 ( 2.6 4 0 -1.4 -0.8 ) -0.8
33 ( 1.63 3 0.92 -1.78 -0.88 ) -0.88
37 ( 2.46 3 0.97 -1.87 -0.92 ) -0.92
41 ( 3.2 3 0.16 -1.26 -1.05 ) -1.05
42 ( 4.27 2 -0.23 -1.07 -1.36 ) -1.36
47 ( 3.0 1 1.22 -1.92 -1.5 ) -1.5
48 ( 3.2 0 1.83 -2.19 -1.86 ) -1.86
57 ( 3.91 -0 1.02 -1.32 -1.95 ) -1.95
67 ( 3.61 -0 1.28 -1.83 -1.99 ) -1.99
78 ( 3.94 1 0.63 -1.14 -2.02 ) -2.02
79 ( 4.32 1 0.02 -0.61 -2.11 ) -2.11
84 ( 3.68 0 0.97 -1.23 -2.15 ) -2.15
88 ( 3.91 1 0.5 -0.6 -2.2 ) -2.2
89 ( 4.07 1 0.1 0.01 -2.31 ) -2.31
94 ( 3.67 1 0.56 -0.47 -2.36 ) -2.36
95 ( 3.35 1 0.84 -0.39 -2.48 ) -2.48
99 ( 4.15 1 -0.37 0.57 -2.49 ) -2.49
Reached stop criterion: Max number of blackbox evaluations (Eval Global) 100
A termination criterion is reached: Max number of blackbox evaluations (Eval Global)␣

→˓No more points to evaluate 100

Best feasible solution: #1540 ( 4.15 1 -0.37 0.57 -2.49 ) Evaluation OK f = -
→˓2.4900000000000002132 h = 0

Best infeasible solution: #1512 ( 3.79 0 1.14 -1.75 -1.97 ) Evaluation OK f = -
→˓1.9699999999999999734 h = 0.03500640999999999475

Blackbox evaluations: 100
Total model evaluations: 1348
Cache hits: 3
Total number of evaluations: 103

6.3. Conduct optimization 21
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CHAPTER

SEVEN

NOMAD USAGE

This chapter describes how to use NOMAD for solving blackbox optimization problems. Functionalities of NOMAD
that are considered more advanced such as parallel evaluations are presented in Advanced functionalities.

Note: New users are encouraged to first read Getting started to understand the basics of NOMAD utilization.

Note: Many examples are provided in $NOMAD_HOME/examples with typical optimization outputs.

Batch mode is presented first, followed by a description of the basic parameters to setup and solve the majority of
optimization problems that NOMAD can handle. The library mode is described in Optimization in library mode.

NOMAD should be cited with references [AuCo04a] and [AuLeRoTr2021]. Other relevant papers by the developers
are accessible through the NOMAD website http://www.gerad.ca/nomad.

References

7.1 Optimization in batch mode

The batch mode allows to separate the evaluation of the objectives and constraints by the blackbox program from
NOMAD executable. This mode has the advantage that if your blackbox program crashes, it will not affect NOMAD:
The point that caused this crash will simply be tagged as a blackbox failure.

Handling crashes in library mode requires special attention to isolate the part of code that may generate crashes. And,
in general, using the library mode will require more computer programming than the batch mode. However, the library
mode offers more options and flexibility for blackbox integration and management of optimization (see Optimization
in library mode).

The different steps for solving your problem in batch mode are:

• Create a directory for your problem. The problem directory is where the NOMAD command is executed. It is a
convenient place to put the blackbox executable, the parameters file and the output files, but those locations can
be customized.

• Create your blackbox evaluation, which corresponds to a program (a binary executable or a script). This program
can be located in the problem directory or not. This program outputs the objectives and the constraints for a given
design vector. If you already have a blackbox program in a certain format, you need to interface it with a wrapper
program to match NOMAD specifications (see Getting started for blackbox basics).

23
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• Create a parameters file, for example param.txt. This file can be located in the problem directory or not (see
Basic parameters description for more details).

• In the problem directory, start the optimization with a command like:

$NOMAD_HOME/bin/nomad param.txt

7.2 Basic parameters description

This section describes the basic parameters for the optimization problem definition, the algorithmic parameters and the
parameters to manage output information. Additional information can be obtained by executing the command:

$NOMAD_HOME/bin/nomad -h

to see all parameters, or:

$NOMAD_HOME/bin/nomad -h PARAM_NAME

for a particular parameter.

The remaining content of a line is ignored after the character #. Except for the file names, all strings and parameter
names are case insensitive: DIMENSION 2 is the same as Dimension 2. File names refer to files in the problem
directory. To indicate a file name containing spaces, use quotes "name" or 'name'. These names may include directory
information relatively to the problem directory. The problem directory will be added to the names, unless the $ character
is used in front of the names. For example, if a blackbox executable is run by the command python script.py, define
parameter BB_EXE "$python script.py".

Some parameters consists of a list of variable indices taken from 0 to 𝑛 − 1 (where 𝑛 is the number of variables).
Variable indices may be entered individually or as a range with format i-j. Character * may be used to replace 0 to
𝑛 − 1. Other parameters require arguments of type boolean: these values may be entered with the strings yes, no, y,
n, 0, or 1. Finally, some parameters need vectors as arguments, use (v1 v2 ... vn) for those. The strings -, inf,
-inf or +inf are accepted to enter undefined real values (NOMAD considers ±∞ as an undefined value).

Parameters are classified into problem, algorithmic and output parameters, and provided in what follows. The advanced
functionalities of NOMAD are presented in Advanced functionalities.

7.2.1 Problem parameters

Table 1: Basic problem parameters
Name Argument Short description Default
BB_EXE list of

strings
blackbox executables (required in batch
mode)

Empty
string

BB_INPUT_TYPE list of types blackbox input types * R (all
real)

BB_OUTPUT_TYPE list of types blackbox output types (required) OBJ
DIMENSION integer 𝑛 the number of variables (required) 0
LOWER_BOUND array of

doubles
lower bounds none

UPPER_BOUND array of
doubles

upper bounds none
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BB_EXE

In batch mode, BB_EXE indicates the names of the blackbox executables.

A single string may be given if a single blackbox is used and gives several outputs. It is also possible to indicate several
blackbox executables.

A blackbox program can return more than one function BB_OUTPUT_TYPE:

BB_EXE bb.exe # defines that `bb.exe' is an
BB_OUTPUT_TYPE OBJ EB EB # executable with 3 outputs

A mapping between the names of the blackbox programs and the BB_OUTPUT_TYPE may be established to identify
which function is returned by which blackbox:

BB_EXE bb1.exe bb2.exe # defines two blackboxes
BB_OUTPUT_TYPE OBJ EB # `bb1.exe' and `bb2.exe'

# with one output each

Blackbox program names can be repeated to establish more complex mapping:

BB_EXE bb1.exe bb2.exe bb2.exe # defines TWO blackboxes
# NO duplication if names are repeated

BB_OUTPUT_TYPE EB OBJ PB # bb1.exe has one output
# bb2.exe has two outputs
# bb1.exe is executed first.
#!! If EB constraint is feasible then
#!! bb2.exe is executed.
#!! If EB constraint not feasible then
#!! bb2.exe is not launched.

A path can precede the blackbox program but spaces are not accepted in the path:

BB_EXE "dir_of_blackbox/bb.exe"

To prevent NOMAD from adding a path, the special character $ should be put in front of a command:

BB_EXE "$python bb.py" # the blackbox is a python
# script: it is run with
# command
# `python PROBLEM_DIR/bb.py'

Or:

BB_EXE "$nice bb.exe" # to run bb.exe
# in nice mode on X systems
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BB_INPUT_TYPE

This parameter indicates the types of each variable. It may be defined once with a list of 𝑛 input types with format (t1
t2 ... tn) or `` * t``. Input types t are values in R, B, I. R is for real/continuous variables, B for binary variables,
and I for integer variables. The default type is R. See also Detailed information.

Note: Categorical variables are not yet supported in NOMAD 4 but are available in NOMAD 3.

BB_OUTPUT_TYPE

This parameter characterizes the values supplied by the blackbox, and in particular tells how constraint values are to be
treated. The arguments are a list of 𝑚 types, where 𝑚 is the number of outputs of the blackbox. At least one of these
values must correspond to the objective function that NOMAD minimizes. Currently, NOMAD 4 only supports single
objective problem (NOMAD 3 can handle bi-objective). Other values typically are constraints of the form 𝑐𝑗(𝑥) ≤ 0,
and the blackbox must display the left-hand side of the constraint with this format.

Note: A terminology is used to describe the different types of constraints [AuDe09a]

• EB constraints correspond to constraints that need to be always satisfied (unrelaxable constraints). The technique
used to deal with those is the Extreme Barrier approach, consisting in simply rejecting the infeasible points.

• PB and F constraints correspond to constraints that need to be satisfied only at the solution, and not necessarily
at intermediate points (relaxable constraints). More precisely, F constraints are treated with the Filter approach
[AuDe04a], and PB constraints are treated with the Progressive Barrier approach [AuDe09a].

• There may be another type of constraints, the hidden constraints, but these only appear inside the blackbox during
an execution, and thus they cannot be indicated in advance to NOMAD (when such a constraint is violated, the
evaluation simply fails and the point is not considered).

If the user is not sure about the nature of its constraints, we suggest using the keyword CSTR, which corresponds by
default to PB constraints.

All the types are:

CNT_EVAL Must be 0 or 1: count or not the blackbox evaluation
EB Constraint treated with Extreme Barrier (infeasible points are ignored)
F Constraint treated with Filter approach
NOTHING EXTRA_O - The output is ignored
OBJ Objective value to be minimized
PB CSTR Constraint treated with Progressive Barrier

Please note that F constraints are not compatible with CSTR or PB. However, EB can be combined with F, CSTR or PB.
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LOWER_BOUND and UPPER_BOUND

Warning: NOMAD is 0 based → The first variable has a 0 index.

Parameters LOWER_BOUND and UPPER_BOUND are used to define bounds on variables. For example, with 𝑛 = 7:

LOWER_BOUND 0-2 -5.0
LOWER_BOUND 3 0.0
LOWER_BOUND 5-6 -4.0
UPPER_BOUND 0-5 8.0

is equivalent to:

LOWER_BOUND ( -5 -5 -5 0 - -4 -4 ) # `-' or `-inf' means that x_4
# has no lower bound

UPPER_BOUND ( 8 8 8 8 8 8 inf ) # `-' or `inf' or `+inf' means
# that x_6 has no upper bound.

Each of these two sequences define the following bounds

−5 ≤ 𝑥0 ≤ 8

−5 ≤ 𝑥1 ≤ 8

−5 ≤ 𝑥2 ≤ 8

0 ≤ 𝑥3 ≤ 8

𝑥4 ≤ 8

−4 ≤ 𝑥5 ≤ 8

−4 ≤ 𝑥6
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7.2.2 Algorithmic parameters

Table 2: Basic algorithmic parameters
Name Argument Short description Default
DIRECTION_TYPE direction

type
type of directions for the poll ORTHO N+1

QUAD
F_TARGET real 𝑡 NOMAD terminates if 𝑓(𝑥𝑘) ≤ 𝑡 for the

objective function
none

INITIAL_MESH_SIZE array of
doubles

𝛿0 [AuDe2006] none

INITIAL_FRAME_SIZE array of
doubles

∆0 [AuDe2006] r0.1 or
based on X0

LH_SEARCH 2 integers:
p0 and pi

LH (Latin-Hypercube) search (p0: ini-
tial and pi: iterative)

none

MAX_BB_EVAL integer maximum number of blackbox evalua-
tions

none

MAX_TIME integer maximum wall-clock time (in seconds) none
TMP_DIR string temporary directory for blackbox i/o files problem di-

rectory
X0 point starting point(s) best point

from a
cache file
or from an
initial LH
search

DIRECTION_TYPE

This parameter defines the type of directions for Mads Poll step. The possible arguments are:

Table 3: Direction types
ORTHO N+1 QUAD OrthoMADS, n+1, with ((n+1)th dir = quad model optimization) [Default since

4.2][AuIaLeDTr2014]_
ORTHO 2N OrthoMADS, 2n. This corresponds to the original Ortho Mads algorithm

[AbAuDeLe09] with 2𝑛 directions.
ORTHO N+1 NEG OrthoMADS, n+1, with ((n+1)th dir = negative sum of the first n dirs) [AuIaLeDTr2014]
N+1 UNI MADS with n+1, using 𝑛 + 1 uniformly distributed directions.
SINGLE A single direction is produced
DOUBLE Two opposite directions are produced

Multiple direction types may be chosen by specifying DIRECTION_TYPE several times.
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INITIAL_MESH_SIZE and INITIAL_FRAME_SIZE

The Poll step initial frame size ∆0 is decided by INITIAL_FRAME_SIZE. In order to achieve the scaling between
variables, NOMAD considers the frame size parameter for each variable independently. The initial mesh size parameter
\delta_0 is decided based on \Delta_0. INITIAL_FRAME_SIZE may be entered with the following formats:

INITIAL_FRAME_SIZE d0 (same initial mesh size for all variables)
INITIAL_FRAME_SIZE (d0 d1 ... dn-1) (for all variables ``-`` may be used, and␣
→˓defaults will be considered)
INITIAL_FRAME_SIZE i d0 (initial mesh size provided for variable ``i`` only)
INITIAL_FRAME_SIZE i-j d0 (initial mesh size provided for variables ``i`` to ``j``)

The same logic and format apply for providing the INITIAL_MESH_SIZE, MIN_MESH_SIZE and MIN_FRAME_SIZE.

TMP_DIR

If NOMAD is installed on a network file system, with the batch mode use, the cost of read/write files will be high if no
local temporary directory is defined. On linux/unix/osxsystems, the directory /tmp is local and we advise the user to
define TMP_DIR /tmp.

X0

Parameter X0 indicates the starting point of the algorithm. Several starting points may be proposed by entering this
parameter several times. If no starting point is indicated, NOMAD considers the best evaluated point from an existing
cache file (parameter CACHE_FILE) or from an initial Latin-Hypercube search (argument p0 of LH_SEARCH).

The X0 parameter may take several types of arguments:

• A string indicating an existing cache file, containing several points (they can be already evaluated or not). This
file may be the same as the one indicated with CACHE_FILE. If so, this file will be updated during the program
execution, otherwise the file will not be modified.

• A string indicating a text file containing the coordinates of one or several points (values are separated by spaces
or line breaks).

• 𝑛 real values with format (v0 v1 ... vn-1).

• X0 keyword plus integer(s) and one real

X0 i v: (i+1)th coordinate set to v.
X0 i-j v: coordinates i to j set to v.
X0 * v: all coordinates set to v.

• One integer, another integer (or index range) and one real: the same as above except that the first integer k refers
to the (k+1)th starting point.

The following example with 𝑛 = 3 corresponds to the two starting points (5 0 0) and (−5 1 1):

X0 * 0.0
X0 0 5.0
X0 1 * 1.0
X0 1 0 -5.0
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7.2.3 Output parameters

Table 4: Basic output parameters
Name Argument Short description Default
CACHE_FILE string cache file; if the file does not exist, it will

be created
none

DISPLAY_ALL_EVAL bool if yes all points are displayed with
DISPLAY_STATS and STATS_FILE

no

DISPLAY_DEGREE integer in
[0 ; 3] or a
string with
four digits
(see online
help)

0 no display and 3 full display 2

DISPLAY_STATS list of
strings

what information is displayed at each
success

BBE OBJ

HISTORY_FILE string file containing all trial points with
format x1 x2 ... xn bbo1 bbo2 ..
. bbom on each line

none

SOLUTION_FILE string file to save the best feasible incumbent
point in a simple format (SOL BBO)

none

STATS_FILE string
file_name
+ list of
strings

the same as DISPLAY_STATS but for a
display into file

none

DISPLAY_DEGREE

Four different levels of display can be set via the parameter DISPLAY_DEGREE. The DISPLAY_MAX_STEP_LEVEL can
be used to control the number of steps displayed. To control the display of the Models, a QUAD_MODEL_DISPLAY
and a SGTELIB_MODEL_DISPLAY are available. More information on these parameters can be obtained with online
documentation: $NOMAD_HOME/bin/nomad -h display

DISPLAY_STATS and STATS_FILE

These parameters display information each time a new feasible incumbent (i.e. a new best solution) is found.
DISPLAY_STATS is used to display at the standard output and STATS_FILE is used to write into a file. These pa-
rameters need a list of strings as argument, without any quotes. These strings may include the following keywords:

BBE The number of blackbox evaluations
BBO The blackbox outputs
OBJ The objective function value
SOL The current feasible iterate

Note: More display options are available. Check the online help: $NOMAD_HOME/bin/nomad -h display_stats
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EIGHT

OPTIMIZATION IN LIBRARY MODE

The library mode allows to tailor the evaluation of the objectives and constraints within a specialized executable that
calls NOMAD shared object libraries.

For example, it is possible to link your own code with the NOMAD libraries (provided during installation or built)
in a light executable that can define and run optimization for your problem. Contrary to the batch mode, this has the
disadvantage that a crash within the executable (for example during the evaluation of a point) will end the optimization
unless a special treatment of exception is provided by the user. But, as a counterpart, it offers more options and flexibility
for blackbox integration and optimization management (display, pre- and post-processing, multiple optimizations, user
search, etc.).

The library mode requires additional coding and compilation before conducting optimization. First, we will briefly
review the compilation of source code to obtain NOMAD binaries (executable and shared object libraries) and how to
use them. Then, details on how to interface your own code are presented.

8.1 Compilation of the source code

NOMAD source code files are located in $NOMAD_HOME/src. Examples are provided in $NOMAD_HOME/examples/
basic/library and $NOMAD_HOME/examples/advanced/library.

The compilation procedure uses the provided CMake files along with the source code.

In what follows it is supposed that you have a write access to the source codes directory. If it is not the case, please
consider making a copy in a more convenient location.

8.2 Using NOMAD libraries

Calling functionalities in NOMAD shared object libraries (so or dll) requires to build a C++ program and link it with the
libraries to form an executable (Installation describes how to build the libraries and the examples). This is illustrated
on the example located in the directory:

$NOMAD_HOME/examples/basic/library/example1

It is supposed that the environment variable NOMAD_HOME is defined and NOMAD shared object libraries are built. A
basic knowledge of object oriented programming with C++ is assumed. For this example, just one C++ source file is
used, but there could be a lot more.
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8.2.1 Basic example 1

Library mode examples are built during the installation procedure. Let us first test the basic example to check that
libraries are working fine and accessible:

> cd $NOMAD_HOME/examples/basic/library/example1
> ls
CMakeLists.txt example1_lib.cpp example1_lib.exe
> ./example1_lib.exe
All variables are granular. MAX_EVAL is set to 1000000 to prevent algorithm from␣
→˓circling around best solution indefinetely
BBE OBJ
1 -28247.525326 (Phase One)
5 -398.076167 (Phase One)
47 -413.531262
51 -490.074916
59 -656.349576
60 -1192.679165
65 -1595.921082
A termination criterion is reached: Maximum number of blackbox evaluations (Eval Global)␣
→˓No more points to evaluate 1000

Best feasible solution: #171 ( 0.9 24.4 2.4 7.8 5.6 10.5 3.8 9.9 2.7 6.5 ) ␣
→˓Evaluation OK f = -1595.9210820000000695 h = 0

Best infeasible solution: #66734 ( 0 -1.39247e+08 2.57422e+07 -6.45581e+06 -8.
→˓23276e+07 -8.42645e+06 7.52545e+07 6.46595e+07 1.91927e+07 3.1608e+07 ) ␣
→˓Evaluation OK f = -1999.9964250000000447 h = 0.5625

Blackbox evaluations: 1000
Total model evaluations: 64042
Cache hits: 205
Total number of evaluations: 1205

8.2.2 Modify CMake files

As a first task, you can create a CMakeLists.txt for your source code(s) based on the one for the basic example 1.

add_executable(example1_lib.exe example1_lib.cpp )
target_include_directories(example1_lib.exe PRIVATE ${CMAKE_SOURCE_DIR}/src)
set_target_properties(example1_lib.exe PROPERTIES INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/
→˓lib")

if(OpenMP_CXX_FOUND)
target_link_libraries(example1_lib.exe PUBLIC nomadAlgos nomadUtils nomadEval␣

→˓OpenMP::OpenMP_CXX)
else()
target_link_libraries(example1_lib.exe PUBLIC nomadAlgos nomadUtils nomadEval)

endif()

# installing executables and libraries
install(TARGETS example1_lib.exe RUNTIME DESTINATION ${CMAKE_CURRENT_SOURCE_DIR} )

(continues on next page)
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# Add a test for this example
if(BUILD_TESTS MATCHES ON)

message(STATUS " Add example library test 1")

# Can run this test after install
add_test(NAME Example1BasicLib COMMAND ${CMAKE_BINARY_DIR}/examples/runExampleTest.sh␣

→˓./example1_lib.exe WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} )
endif()

If you include your problem into the $NOMAD_HOME/examples directories, you just need to copy the exam-
ple CMakeLists.txt into your own problem directory (for example $NOMAD_HOME/examples/basic/library/
myPb), change the name example1_lib with your choice and add the subdirectory into $NOMAD_HOME/examples/
CMakeLists.txt:

add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/basic/library/myPb)

8.2.3 Modify C++ files

We now describe the other steps required for the creation of the source file (let us use example1.cpp) which is divided
into two parts: a class for the description of the problem, and the main function.

The use of standard C++ types for reals and vectors is of course allowed within your code, but it is suggested that you
use the NOMAD types as much as possible. For reals, NOMAD uses the class NOMAD::Double, and for vectors, the
classes NOMAD::Point or NOMAD::ArrayOfDouble. A lot of functionalities have been coded for theses classes, which
are visible in files $NOMAD_HOME/src/Math/*.hpp.

The namespace NOMAD is used for all NOMAD types, and you must type NOMAD:: in front of all types unless you type
using namespace NOMAD; at the beginning of your program.

Providing the blackbox evaluation of objective and constraints directly in the code avoids the use of temporary files
and system calls by the algorithm. This is achieved by defining a derived class (let us call it My_Evaluator) that
inherits from the class NOMAD::Evaluator. The blackbox evaluation is programmed in a user-defined class that will
be automatically called by the algorithm.}

/**
\file example1_lib.cpp
\brief Library example for nomad
\author Viviane Rochon Montplaisir
\date 2017
*/

#include "Nomad/nomad.hpp"

/*----------------------------------------*/
/* The problem */
/*----------------------------------------*/
class My_Evaluator : public NOMAD::Evaluator
{
public:

My_Evaluator(const std::shared_ptr<NOMAD::EvalParameters>& evalParams)
: NOMAD::Evaluator(evalParams, NOMAD::EvalType::BB)

(continues on next page)
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(continued from previous page)

{}

~My_Evaluator() {}

bool eval_x(NOMAD::EvalPoint &x, const NOMAD::Double &hMax, bool &countEval) const␣
→˓override

{
bool eval_ok = false;
// Based on G2.
NOMAD::Double f = 1e+20, g1 = 1e+20, g2 = 1e+20;
NOMAD::Double sum1 = 0.0, sum2 = 0.0, sum3 = 0.0, prod1 = 1.0, prod2 = 1.0;
size_t n = x.size();

try
{

for (size_t i = 0; i < n ; i++)
{

sum1 += pow(cos(x[i].todouble()), 4);
sum2 += x[i];
sum3 += (i+1)*x[i]*x[i];
prod1 *= pow(cos(x[i].todouble()), 2);
if (prod2 != 0.0)
{

if (x[i] == 0.0)
{

prod2 = 0.0;
}
else
{

prod2 *= x[i];
}

}
}

g1 = -prod2 + 0.75;
g2 = sum2 -7.5 * n;

f = 10*g1 + 10*g2;
if (0.0 != sum3)
{

f -= ((sum1 -2*prod1) / sum3.sqrt()).abs();
}
// Scale
if (f.isDefined())
{

f *= 1e-5;
}

NOMAD::Double c2000 = -f-2000;
auto bbOutputType = _evalParams->getAttributeValue<NOMAD::BBOutputTypeList>(

→˓"BB_OUTPUT_TYPE");
std::string bbo = g1.tostring();

(continues on next page)
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bbo += " " + g2.tostring();
bbo += " " + f.tostring();
bbo += " " + c2000.tostring();

x.setBBO(bbo);

eval_ok = true;
}
catch (std::exception &e)
{

std::string err("Exception: ");
err += e.what();
throw std::logic_error(err);

}

countEval = true;
return eval_ok;

}
};

The argument x (in/out in eval_x()) corresponds to an evaluation point, i.e. a vector containing the coordinates of
the point to be evaluated, and also the result of the evaluation. The coordinates are accessed with the operator []
(x[0] for the first coordinate) and outputs are set with x.setBBO(bbo);. The outputs are returned as a string that
will be interpreted by NOMAD based on the BB_OUTPUT_TYPE defined by the user. We recall that constraints must be
represented by values 𝑐𝑗 for a constraint 𝑐𝑗 ≤ 0.

The second argument, the real h_max (in), corresponds to the current value of the barrier ℎ𝑚𝑎𝑥 parameter. It is not
used in this example but it may be used to interrupt an expensive evaluation if the constraint violation value ℎ grows
larger than ℎ𝑚𝑎𝑥. See [AuDe09a] for the definition of ℎ and ℎ𝑚𝑎𝑥 and of the Progressive Barrier method for handling
constraints.

The third argument, countEval (out), needs to be set to true if the evaluation counts as a blackbox evaluation, and
false otherwise (for example, if the user interrupts an evaluation with the ℎ𝑚𝑎𝑥 criterion before it costs some expensive
computations, then set countEval to false).

Finally, note that the call to eval_x() inside the NOMAD code is inserted into a try block. This means that if an error
is detected inside the eval_x() function, an exception should be thrown. The choice for the type of this exception is
left to the user, but NOMAD::Exception is available. If an exception is thrown by the user-defined function, then the
associated evaluation is tagged as a failure and not counted unless the user explicitely set the flag countEval to true.

8.2.4 Setting parameters

Once your problem has been defined, the main function can be written. NOMAD routines may throw C++ exceptions,
so it is recommended that you put your code into a try block.

/*------------------------------------------*/
/* NOMAD main function */
/*------------------------------------------*/
int main (int argc, char **argv)
{

NOMAD::MainStep TheMainStep;

(continues on next page)

8.2. Using NOMAD libraries 37



Nomad 4

(continued from previous page)

auto params = std::make_shared<NOMAD::AllParameters>();
initAllParams(params);
TheMainStep.setAllParameters(params);

std::unique_ptr<My_Evaluator> ev(new My_Evaluator(params->getEvalParams()));
TheMainStep.setEvaluator(std::move(ev));

try
{

TheMainStep.start();
TheMainStep.run();
TheMainStep.end();

}

catch(std::exception &e)
{

std::cerr << "\nNOMAD has been interrupted (" << e.what() << ")\n\n";
}

return 0;
}

The execution of NOMAD is controlled by the NOMAD::MainStep class using the start, run and end functions. The
user defined NOMAD::Evaluator is set into the NOMAD::MainStep.

The base evaluator constructor takes an NOMAD::EvalParameters as input. The evaluation parameters are included
into a NOMAD::AllParameters.

Hence, in library mode, the main function must declare a NOMAD::AllParameters object to set all types of parameters.
Parameter names are the same as in batch mode but may be defined programmatically.

A parameter PNAME is set with the method AllParameters::setAttributeValue( "PNAME", PNameValue). The
PNameValue must be of a type registered for the PNAME parameter.

Warning: If the PNameValue has not the type associated to the PName parameters, the compilation will succeed
but execution will be stopped when setting or getting the value.

Note: A brief description (including the NOMAD:: type) of all parameters is given Complete list of parameters. More
information on parameters can be obtained by running $NOMAD_HOME/bin/nomad -h KEYWORD.

For the example, the parameters are set in

void initAllParams(std::shared_ptr<NOMAD::AllParameters> allParams)
{

// Parameters creation
// Number of variables
size_t n = 10;
allParams->setAttributeValue( "DIMENSION", n);
// The algorithm terminates after
// this number of black-box evaluations
allParams->setAttributeValue( "MAX_BB_EVAL", 1000);

(continues on next page)
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// Starting point
allParams->setAttributeValue( "X0", NOMAD::Point(n, 7.0) );

allParams->getPbParams()->setAttributeValue("GRANULARITY", NOMAD::ArrayOfDouble(n, 0.
→˓0000001));

// Constraints and objective
NOMAD::BBOutputTypeList bbOutputTypes;
bbOutputTypes.push_back(NOMAD::BBOutputType::PB); // g1
bbOutputTypes.push_back(NOMAD::BBOutputType::PB); // g2
bbOutputTypes.push_back(NOMAD::BBOutputType::OBJ); // f
bbOutputTypes.push_back(NOMAD::BBOutputType::EB); // c2000
allParams->setAttributeValue("BB_OUTPUT_TYPE", bbOutputTypes );
allParams->setAttributeValue("DIRECTION_TYPE", NOMAD::DirectionType::ORTHO_2N);
allParams->setAttributeValue("DISPLAY_DEGREE", 2);
allParams->setAttributeValue("DISPLAY_ALL_EVAL", false);
allParams->setAttributeValue("DISPLAY_UNSUCCESSFUL", false);

allParams->getRunParams()->setAttributeValue("HOT_RESTART_READ_FILES", false);
allParams->getRunParams()->setAttributeValue("HOT_RESTART_WRITE_FILES", false);

// Parameters validation
allParams->checkAndComply();

}

The checkAndComply function must be called to ensure that parameters are compatible. Otherwise an exception is
triggered.

8.2.5 Access to solution and optimization data

In the basic example 1, final information is displayed at the end of an algorithm. More specialized access to solution
and optimization data is allowed.

To access the best feasible and infeasible points, use

NOMAD::CacheBase::getInstance()->findBestFeas(bf, NOMAD::Point(n), NOMAD::EvalType::BB,
NOMAD::ComputeType::STANDARD, nullptr);

NOMAD::CacheBase::getInstance()->findBestInf(bi, NOMAD::INF, NOMAD::Point(n),
NOMAD::EvalType::BB, NOMAD::ComputeType::STANDARD,nullptr);

** More stats will be available in future version. **
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NINE

MATLAB INTERFACE

Note: Building the Matlab MEX interface requires compatibility of the versions of Matlab and the compiler. Check
the compatibility at MathWorks.

The Matlab MEX interface allows to run NOMAD within the command line of Matlab. Some examples and
source codes are provided in $NOMAD_HOME/interface/Matlab_MEX. To enable the building of the interface,
option -DBUILD_INTERFACE_MATLAB=ON must be set when configuring for building NOMAD, as such: cmake
-DTEST_OPENMP=OFF -DBUILD_INTERFACE_MATLAB=ON -S . -B build/release.

Warning: Building the Matlab MEX interface is disabled when NOMAD uses OpenMP. Hence, the option
-DTEST_OPENMP=OFF must be passed during configuration.

The command cmake --build build/release (or cmake --build build/release --config
Release for Windows) is used for building the selected configuration. The command cmake
--install build/release must be run before using the Matlab nomadOpt function. Also,
the Matlab command addpath(strcat(getenv('NOMAD_HOME'),'/build/release/lib')) or
addpath(strcat(getenv('NOMAD_HOME'),'/build/release/lib64')) must be executed to have access
to the libraries and run the examples.

All functionalities of NOMAD are available in nomadOpt. NOMAD parameters are provided in a Matlab structure
with keywords and values using the same syntax as used in the NOMAD parameter files. For example, params =
struct('initial_mesh_size','* 10','MAX_BB_EVAL','100');
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TEN

PYNOMAD INTERFACE

A Python interface for NOMAD called PyNomad can be obtained by building source codes. Some examples and source
codes are provided in $NOMAD_HOME/interfaces/PyNomad.

Note: The build procedure relies on Python 3.6 and Cython 0.24 or higher. A simple way to make it work is to first
install the Anaconda package.

To enable the building of the Python interface, option -DBUILD_INTERFACE_PYTHON=ON must be set when configur-
ing for building NOMAD. The configuration command cmake -DBUILD_INTERFACE_PYTHON=ON -S . -B build/
releasemust be performed within a Conda environment with Cython available (conda activate ... or activate
...).

For Windows, the default Anaconda is Win64. Visual Studio can support both Win32 and Win64 compilations. The
configuration must be forced to use Win64 with a command such as cmake -DBUILD_INTERFACE_PYTHON=ON -S .
-B build/release -G"Visual Studio 15 2017 Win64". The Visual Studio version must be adapted.

The command cmake --build build/release (or cmake --build build/release --config Release for
Windows) is used for building the selected configuration.

The command cmake --install build/release must be run before using the PyNomad module.

All functionalities of NOMAD are available in PyNomad. NOMAD parameters are provided in a list of strings using
the same syntax as used in the NOMAD parameter files. Several tests and examples are proposed in the PyNomad
directory to check that everything is up and running.
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ELEVEN

C INTERFACE

A C interface for NOMAD is available. The source codes are provided in $NOMAD_HOME/interfaces/CInterface/.
To enable the building of the C interface, option -DBUILD_INTERFACE_C=ON must be set when building NOMAD, as
such: cmake -DBUILD_TESTS=ON -S . -B build/release.

The command cmake --build build/release (or cmake --build build/release --config Release for
Windows) is used for building the selected configuration.

The command cmake --install build/release must be run before using the library.

All functionalities of NOMAD are available in the C interface. NOMAD parameters are provided via these functions:

bool addNomadParam(NomadProblem nomad_problem, char *keyword_value_pair);
bool addNomadValParam(NomadProblem nomad_problem, char *keyword, int value);
bool addNomadBoolParam(NomadProblem nomad_problem, char *keyword, bool value);
bool addNomadStringParam(NomadProblem nomad_problem, char *keyword, char *param_str);
bool addNomadArrayOfDoubleParam(NomadProblem nomad_problem, char *keyword, double *array_
→˓param);

See examples that are proposed in the $NOMAD_HOME/examples/advanced/library/c_api directory.
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TWELVE

TRICKS OF THE TRADE

NOMAD has default values for all algorithmic parameters. These values represent a compromise between robustness
and performance obtained by developers on sets of problems used for benchmarking. But you might want to improve
NOMAD performance for your problem by tuning the parameters or use advanced functionalities. The following
sections provide tricks that may work for you.

Here are a few suggestions for tuning NOMAD when facing different symptoms. The suggestions can be tested one by
one or all together.
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Table 1: Suggestions for tuning NOMAD
Symptom Suggestion Ref.
I want to see more display Increase dis-

play degree
DISPLAY_DEGREE

Quantifiable constraints Try PB EB or
combinations

BB_OUTPUT_TYPE

Difficult constraint Try PB in-
stead of EB

BB_OUTPUT_TYPE

No initial point Add a LH
search

LH Search and X0

Variables of different magnitudes Change black-
box input scal-
ing

Create blackbox programs

Change ∆0

per variable
INITIAL_MESH_SIZE and INI-
TIAL_FRAME_SIZE

Tighten
bounds

LOWER_BOUND and UPPER_BOUND

Many variables Fix some vari-
ables

FIXED_VARIABLE

Use PSD-
MADS

PSD-Mads

Unsatisfactory solution Change direc-
tion type to 2N
or N+1 UNI or
N+1 NEG

DIRECTION_TYPE

Change initial
point

LH Search and X0

Add a LH
search

LH Search and X0

Add a VNS
Mads search

VNS Mads Search

Tighten
bounds

LOWER_BOUND and UPPER_BOUND

Change ∆0 INITIAL_MESH_SIZE and INI-
TIAL_FRAME_SIZE

Modify seeds
that affect al-
gorithms

SEED

Disable
quadratic
models

set QUAD_MODEL_SEARCH no

Unable
SGTELIB
models

set SGTELIB_MODEL_SEARCH yes

Disable op-
portunistic
evaluations

set EVAL_OPPORTUNISTIC no

Disable
anisotropic
mesh

set ANISOTROPIC_MESH no

Change
anisotropy
factor

set ANISOTROPY_FACTOR 0.05

Improvements get negligible Change stop-
ping criteria

Type nomad -h stop

Disable
quadratic
models

set QUAD_MODEL_SEARCH no

It takes long to improve 𝑓 Decrease ∆0 INITIAL_MESH_SIZE and INI-
TIAL_FRAME_SIZE

Optimization is time consuming Perform par-
allel blackbox
evaluations

Blackbox evaluation of a block of trial points
and Parallel evaluations

Blackbox is not that expensive Setup max-
imum wall-
clock time

remove MAX_BB_EVAL and set MAX_TIME

Add a LH
search

LH Search and X0

Add a VNS
Mads search

VNS Mads Search
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THIRTEEN

ADVANCED FUNCTIONALITIES

13.1 Advanced parameters

Advanced parameters are intended to setup optimization problems, algorithmic and output parameters when specific
needs are present. Only a few advanced parameters are presented below; all advanced parameters can be obtained with
$NOMAD_HOME -h advanced. Also a complete list of parameters and a short description is available in Complete list
of parameters.

13.1.1 EVAL_QUEUE_SORT

Allows ordering of points before evaluation. This option has an effect only if the opportunistic strategy is enabled
(parameter EVAL_OPPORTUNISTIC). The possible arguments are:

• QUADRATIC_MODEL: Sort points using values given by dynamic quadratic models.

• DIR_LAST_SUCCESS: Points that are generated in a direction similar to the last direction that provided a successful
point are evaluated first.

• LEXICOGRAPHICAL: Points are sorted in lexicographical order before evaluation.

• RANDOM: Mix points randomly before evaluation, instead of sorting them.

• SURROGATE: Sort points using values given by static surrogate. See parameter SURROGATE_EXE.

13.1.2 FIXED_VARIABLE

This parameter is used to fix some variables to a value. This value is optional if at least one starting point is defined.
The parameter may be entered with several types of arguments:

• A vector of 𝑛 values with format (v0 v1 ... vn-1). Character - is used for free variables.

• An index range if at least one starting point has been defined. FIXED_VARIABLE i-j: variables i to j are fixed
to their initial (i-j may be replaced by i only). See X0 for practical examples of index ranges.
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13.1.3 SEED

The directions that NOMAD explores during the Poll phase are dependent upon the seed. The seed is used to generate
a pseudo-random direction on a unit n-dimensional sphere. The user can change the sequence of directions by setting
SEED to a positive integer or -1. If -1 or DIFF is entered the seed is different for each run (PID is used).

Other aspects of NOMAD may depend on a pseudo-random sequence of numbers depending on selected options: LH
Search and PSD Mads.

13.1.4 EVAL_OPPORTUNISTIC

The opportunistic strategy consists in terminating the evaluations of a list of trial points at a given step of the algorithm
as soon as an improved value is found.

This strategy is decided with the parameter EVAL_OPPORTUNISTIC and applies to both the Poll and Search steps.
Search with NOMAD help $NOMAD_HOME/bin/nomad -h OPPORTUNISTIC for more options.

When evaluations are performed by blocks (see Blackbox evaluation of a block of trial points) the opportunistic strategy
applies after evaluating a block of trial points.

13.1.5 VARIABLE_GROUP

By default NOMAD creates one group that combines all continuous, integer, and binary variables.

In batch mode, the VARIABLE_GROUP parameter followed by variable indices is used to explicitly form a group of
variables. Each group of variable generates its own polling directions. The parameter may be entered several times to
define more than one group of variables. Variables in a group may be of different types.

13.1.6 QUAD_MODEL_SEARCH and SGTELIB_MODEL_SEARCH

The Search phase of the MADS algorithm can use models of the objectives and constraints that are constructed dynam-
ically from all the evaluations made. By default, a quadratic model is used to propose new points to be evaluated with
the blackbox. To disable the use of quadratic models, the parameter QUAD_MODEL_SEARCH can be set to no.

Models from the SGTELIB library can be used by setting SGTELIB_MODEL_SEARCH to yes. Many parameters are
available to control SGTELIB models: $NOMAD_HOME/bin/nomad -h SGTELIB, or see Surrogate Library.

13.1.7 VNS_MADS_SEARCH

The Variable Neighborhood Search (VNS) is a strategy to escape local minima.

The VNS Mads search strategy is described in [AuBeLe08b]. It is based on the Variable Neighborhood Search meta-
heuristic [MlHa97a] and [HaMl01a].

VNS Mads should only be used for problems with several such local optima. It will cost some additional evaluations,
since each search performs another MADS run from a perturbed starting point. Currently, the VNS Mads search will
not use a surrogate if it is provided. This feature will be available in the future.

In NOMAD, the VNS Mads search strategy is not activated by default. In order to use the VNS Mads search,
the user has to define the parameter VNS_MADS_SEARCH, with a boolean. The maximum desired ratio of VNS
Mads blackbox evaluations over the total number of blackbox evaluations is specified with the real value parameter
VNS_MADS_SEARCH_TRIGGER. For example, a value of 0.75 means that NOMAD will try to perform a maximum of
75% blackbox evaluations within the VNS Mads search. The default trigger ratio is 0.75.

50 Chapter 13. Advanced functionalities



Nomad 4

13.1.8 GRANULARITY

The MADS algorithm handles granular variables, i.e. variables with a controlled number of decimals. For real numbers
the granularity is 0. For integers and binary variables the granularity is automatically set to one.

The possible syntaxes to specify the granularity of the variables are as follows:

• 𝑛 real values with format GRANULARITY (v0 v1 ... vn-1).

• GRANULARITY i-j v: coordinates i to j set to v.

• GRANULARITY * v: all coordinates set to v.

13.1.9 SURROGATE_EXE

Static surrogate executable.

A static surrogate, or static surrogate function, is a cheaper blackbox function that is used, at least partially, to drive the
optimization.

Fig. 1: Blackbox optimization using a surrogate

Note: The static surrogate is provided by the user.

The current version of NOMAD can use a static surrogate, provided by the user, which is not updated during the algo-
rithm. See [BoDeFrSeToTr99a] for a survey on surrogate optimization, and [AuCM2019] about using static surrogate
evaluations. This surrogate may be used for sorting points before evaluation. This sorting strategy is obtained by setting
the parameter EVAL_QUEUE_SORT to SURROGATE.
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In batch mode, the parameter SURROGATE_EXE associates a static surrogate executable with the blackbox executable
given by parameter BB_EXE. The surrogate must display the same input and output types as its associated blackbox,
given by parameters BB_INPUT_TYPE and BB_OUTPUT_TYPE. In library mode, if a surrogate function is to be used,
then its Evaluator should be of type EvalType::SURROGATE (see Section Optimization in library mode).

13.2 Blackbox evaluation of a block of trial points

At different phases of the MADS algorithm, different numbers of trial points are generated. For example, having
selected the direction type as ORTHO 2N, the maximum number of points generated during the Poll step will be 2N+2.
These points can be partitioned into blocks of trial points to be submitted sequentially for evaluation to a blackbox
program. The maximum size of a block of evaluations is controlled by the BB_MAX_BLOCK_SIZE. By default,
a block contains a single trial point. This can be changed by the user but the blackbox program must support the
evaluation of a varying number of trial points, up to BB_MAX_BLOCK_SIZE.

Due to the strategy of by-block evaluation, the maximum number of evaluations requested to NOMAD may be exceeded
if BB_MAX_BLOCK_SIZE > 1. The reason for this behaviour is that block results are analyzed only after completion
and the maximum number of evaluations may be exceeded when checking this termination criterion. The opportunistic
strategy (enabled by default) may apply after each block of trial points. Evaluations of blocks of trial points can be
performed in parallel by the blackbox program. This strategy of parallelization must be setup by the user within the
blackbox. Examples are provided in what follows.

13.2.1 Batch mode

In batch mode, NOMAD creates input files which can contain at most BB_MAX_BLOCK_SIZE trial points separated
by a linebreak. Each point is given as a row of values. The user must provide a blackbox program that can read the input
file, evaluate them and output the objective and constraints functions (in the order provided by the BB_OUTPUT_TYPE
parameter) for each trial point in the same order as provided in the input file. A blackbox program may fail to evaluate
some of the trial points. When block of trial points is submitted the content of the output file must reflect the outputs
for each point. If one value provided in the output file cannot be read by NOMAD, then the corresponding trial point
is considered as having failed. The trial points that have failed will not be evaluated again. An example of blackbox
program written is provided in the directory $NOMAD_HOME/examples/basic/batch/single_obj_parallel. The
executable bb3.exe evaluates up to 4 trial points in parallel.

> cd $NOMAD_HOME/examples/basic/batch/single_obj_parallel
> more x.txt
1 2 3 4 5
0 0 0 0 0
2 2 2 2 2
5 4 3 2 1
> bb3.exe x.txt
5 5 -65
0 -20 20
2 -20 -20
1 5 -65

The same directory holds the parameter file that specifies this blackbox program with blocks of 4 trial points:

DIMENSION 5 # number of variables

BB_EXE bb3.exe
BB_MAX_BLOCK_SIZE 4

(continues on next page)
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(continued from previous page)

BB_OUTPUT_TYPE OBJ PB EB

X0 ( 0 0 0 0 0 ) # starting point

LOWER_BOUND * -6.0 # all variables are >= -6
UPPER_BOUND ( 5 6 7 - - ) # x_1 <= 5, x_2 <= 6, x_3 <= 7

# x_4 and x_5 have no bounds

MAX_BLOCK_EVAL 20 # the algorithm terminates when
# 20 blocks have been evaluated

TMP_DIR /tmp
DISPLAY_DEGREE 2
DISPLAY_STATS BLK_EVA BLK_SIZE OBJ
DISPLAY_ALL_EVAL true

When evaluations are performed by blocks, i.e., when BB_MAX_BLOCK_SIZE is greater than one, the opportunistic
strategy applies after evaluating a block of trial points.

13.2.2 Library mode

Please refer to $NOMAD_HOME/examples/basic/library/single_obj_parallel for an example on how to man-
age a block of evaluations in parallel using OpenMP.

13.3 Parallel evaluations

When OpenMP is available (see Use OpenMP), the user may provide the number of threads NB_THREADS_OPENMP to
efficiently access the computer cores. If this parameter is not set, OpenMP computes the number of available threads.
The evaluations of trial points are dispatched to these threads.

13.4 PSD-Mads

The PSD-MADS method implements a parallel space decomposition of MADS and is described in [AuDeLe07]. The
method aims at solving larger problems than the scalar version of NOMAD. NOMAD is in general efficient for problems
with up to about 20 variables, PSD-MADS has solved problems with up to 500 variables. In PSD-MADS, each worker
process has the responsibility for a small number of variables on which a MADS algorithm is performed. These
subproblems are decided by the PSD-MADS algorithm. These groups of variables are chosen randomly, without
any specific strategy. A special worker, called the pollster, works on all the variables, but with a reduced number of
directions. The pollster ensures the convergence of the algorithm. Concerning other aspects, the algorithm given here
is similar to the program PSD-MADS given with NOMAD 3.

The management of parallel processes is done using OpenMP. To use PSD-MADS, set parameter
PSD_MADS_OPTIMIZATION to true. Thread 0 is used for the pollster. The next PSD_MADS_NB_SUBPROBLEM threads
are used for subproblems. If this parameter is not set, it is computed using PSD_MADS_NB_VAR_IN_SUBPROBLEM.
Remaining available threads are not used for algorithmic management or point generation, only for point evaluation.
An example of usage of PSD-MADS in library mode is in $NOMAD_HOME/examples/advanced/library/PSDMads.
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13.5 Hot and Warm Restart

This new feature of NOMAD 4 makes it possible to continue the solving process after it has started, without having to
restart it from the beginning. In the case of hot restart, the user interrupts the solver to change the value of a parameter.
With warm restart, the user changes a parameter from a resolution that has already reached a termination condition. In
both cases, the solving process is then continued from its current state.

13.5.1 Hot restart

To enable hot restart, set parameter HOT_RESTART_ON_USER_INTERRUPT to true. While NOMAD is running, inter-
rupt the run with the command CTRL-C. New values for parameters may be entered. For example, entering LH_SEARCH
0 20 will make LH search be used for the rest of the optimization. The syntax is the same as the syntax of a parameter
file, when in batch mode. When all new parameter values are entered, continue optimization by entering the command
CTRL-D. The new parameter values will be taken into account.

13.5.2 Warm restart

To enable warm restart, parameters HOT_RESTART_READ_FILES and HOT_RESTART_WRITE_FILES need to be set to
true. When NOMAD runs a first time, files hotrestart.txt and cache.txt are written to the problem directory.
This information is used if NOMAD is run a second time. Instead of redoing the same optimization, NOMAD will
continue where it was when the first run was ended. For example, suppose the first NOMAD run stopped at evaluation
100 because the value of parameter MAX_BB_EVAL was 100. The user still has room for 50 more evaluations. The
parameter file may be changed with value MAX_BB_EVAL 150, and the second run of NOMAD will start where it was,
with evaluation 101.

13.6 Doxygen

A local doxygen documentation can be created by running the doxygen command (if available) in $NOMAD_HOME/doc/
doxygen. The documentation can be opened by a browser at $NOMAD_HOME/doc/doxygen/html/index.html.

References
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SURROGATE LIBRARY

The SGTELIB library is a dynamic surrogate modelling library. It is used in the Search step of Mads to dynamically
construct models from the previous evaluations. During a Search step that uses SGTELIB, models of the objective and
the constraints are constructed and a surrogate subproblem involving these models is optimized. The resulting solutions
are the next candidates for evaluation by the true problem.

Models from the SGTELIB library can be used by setting the parameter SGTELIB_MODEL_SEARCH to yes or true.

14.1 Models

Models in SGTELIB are defined by using a succession of field names and field values. To choose a model, the parameter
SGTELIB_MODEL_DEFINITION must be used followed by the field name TYPE, and then by the model type. The
subsequent fields enable to define the settings of the model. Each field name is made of one single word and each
field value is made of one single word or numerical value.

Example : SGTELIB_MODEL_DEFINITION TYPE <model type> FIELD1 <field 1 value> FIELD2 <field 2
value>

The section below describes the models and settings available.

14.1.1 Types of models

Below is the list of all possible models and their authorized fields.

14.1.2 PRS

PRS (Polynomial Response Surface) is a type of model.
Authorized fields:

• DEGREE (Can be optimized)

• RIDGE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Examples:
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TYPE PRS DEGREE 2

TYPE PRS DEGREE OPTIM RIDGE OPTIM

14.1.3 PRS_EDGE

PRS_EDGE (Polynomial Response Surface EDGE) is a type of model that allows to model discontinuities at 0 by
using additional basis functions.
Authorized fields:

• DEGREE (Can be optimized)

• RIDGE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Examples:
TYPE PRS_EDGE DEGREE 2

TYPE PRS_EDGE DEGREE OPTIM RIDGE OPTIM

14.1.4 PRS_CAT

PRS_CAT (Categorical Polynomial Response Surface) is a type of model that allows to build one PRS model for each
different value of the first component of 𝑥.
Authorized fields:

• DEGREE (Can be optimized)

• RIDGE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE PRS_CAT DEGREE 2

TYPE PRS_CAT DEGREE OPTIM RIDGE OPTIM

14.1.5 RBF

RBF (Radial Basis Function) is a type of model.
Authorized fields:

• KERNEL_TYPE (Can be optimized)

• KERNEL_SHAPE (Can be optimized)

• DISTANCE_TYPE (Can be optimized)
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• RIDGE (Can be optimized)

• PRESET : Defines the type of RBF model used.

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE RBF KERNEL_TYPE D1 KERNEL_SHAPE OPTIM DISTANCE TYPE NORM2

14.1.6 KS

KS (Kernel Smoothing) is a type of model.
Authorized fields:

• KERNEL_TYPE (Can be optimized)

• KERNEL_SHAPE (Can be optimized)

• DISTANCE_TYPE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE KS KERNEL_TYPE OPTIM KERNEL_SHAPE OPTIM

14.1.7 KRIGING

KRIGING is a type of model.
Authorized fields:

• RIDGE (Can be optimized)

• DISTANCE_TYPE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE KRIGING
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14.1.8 LOWESS

LOWESS (Locally Weighted Regression) is a type of model (from [TaAuKoLed2016]).
Authorized fields:

• DEGREE: Must be 1 (default) or 2 (Can be optimized).

• RIDGE (Can be optimized)

• KERNEL_TYPE (Can be optimized)

• KERNEL_SHAPE (Can be optimized)

• DISTANCE_TYPE (Can be optimized)

• PRESET : Defines how the weight of each data point is computed.

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE LOWESS DEGREE 1

TYPE LOWESS DEGREE OPTIM KERNEL_SHAPE OPTIM KERNEL_TYPE D1

TYPE LOWESS DEGREE OPTIM KERNEL_SHAPE OPTIM KERNEL_TYPE OPTIM DISTANCE TYPE OPTIM

14.1.9 CN

CN (Closest Neighbours) is a type of model.
Authorized fields:

• DISTANCE_TYPE (Can be optimized)

• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE CN

14.1.10 ENSEMBLE

ENSEMBLE is a type of model that uses multiple models simultaneously.
Authorized fields:

• WEIGHT : Defines how the ensemble weights are computed.

• METRIC: Defines which metric is used to compute the weights.

• DISTANCE_TYPE: This parameter is transfered to the models contained in the Ensemble.

• PRESET : Defines the selection of models in the ensemble.
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• BUDGET : Defines the budget allocated for parameter optimization.

• OUTPUT : Defines the output text file.

Example:
TYPE ENSEMBLE WEIGHT SELECT METRIC OECV

TYPE ENSEMBLE WEIGHT OPTIM METRIC RMSECV DISTANCE TYPE NORM2 BUDGET 100

14.1.11 ENSEMBLE_STAT

ENSEMBLE_STAT is a type of model (from [AuLedSa2021]).
Authorized fields:

• all the fields from ENSEMBLE (with different default values though).

• UNCERTAINTY : Selects an alternative for the uncertainty (smooth or nonsmooth).

• SIZE_PARAM: Defines the size parameter (different meaning depending on the value of UNCERTAINTY).

• SIGMA_MULT : Defines the scaling factor of the uncertainty.

• LAMBDA_P: Defines the shape parameter of the probability of feasibility.

• LAMBDA_PI: Defines the shape parameter of the probability of improvement.

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY SMOOTH WEIGHT SELECT5 METRIC RMSECV SIZE_PARAM 15

The following table summarizes the possible fields for every model.

Table 1: Model authorized fields
Model
type

DE-
GREE

RIDGEKER-
NEL_TYPE

KER-
NEL_SHAPE

DIS-
TANCE_TYPE

PRE-
SET

WEIGHTMET-
RIC

UN-
CER-
TAINTY

BUD-
GET

OUT-
PUT

PRS XXX XXX XXX XXX
PRS_EDGEXXX XXX XXX XXX
PRS_CAT XXX XXX XXX XXX
RBF XXX XXX XXX XXX XXX XXX XXX
KS XXX XXX XXX XXX XXX
KRIG-
ING

XXX XXX XXX XXX

LOWESS XXX XXX XXX XXX XXX XXX XXX XXX
CN XXX XXX XXX
ENSEM-
BLE

XXX XXX XXX XXX XXX XXX

ENSEM-
BLE_STAT

XXX XXX XXX XXX XXX XXX XXX
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14.1.12 Main model parameters

Below is the list of fields and their descriptions.

14.1.13 DEGREE

The field name DEGREE defines the degree of a polynomial response surface. The value must be an integer ≥ 1.
Allowed for models of type: PRS, PRS_EDGE, PRS_CAT and LOWESS.
Default value: 5

• For PRS models, the default degree is 2.

• For LOWESS models, the degree must be 1 (default) or 2.

Example:
TYPE PRS DEGREE 3 defines a PRS model of degree 3.

TYPE PRS_EDGE DEGREE 2 defines a PRS_EDGE model of degree 2.

TYPE LOWESS DEGREE OPTIM defines a LOWESS model where the degree is optimized.

14.1.14 RIDGE

The field name RIDGE defines the regularization parameter of the model.
Allowed for models of type: PRS, PRS_EDGE, PRS_CAT , RBF, KRIGING and LOWESS.
Possible values: Real value ≥ 0. Recommended values are 0 and 0.001.
Default value: 0.001.

Example:
TYPE PRS DEGREE 3 RIDGE 0 defines a PRS model of degree 3 with no ridge.
TYPE PRS DEGREE OPTIM RIDGE OPTIM defines a PRS model where the degree and ridge coefficient are
optimized.

14.1.15 KERNEL_TYPE

The field name KERNEL_TYPE defines the type of kernel used in the model. The field name KERNEL is equivalent.
Allowed for models of type: RBF, LOWESS and KS.
Possible values:

• D1: Gaussian kernel

• D2: Inverse Quadratic Kernel

• D3: Inverse Multiquadratic Kernel

• D4: Bi-quadratic Kernel

• D5: Tri-cubic Kernel

• D6: Exponential Sqrt Kernel
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• D7: Epanechnikov Kernel

• I0: Multiquadratic Kernel

• I1: Polyharmonic splines, degree 1

• I2: Polyharmonic splines, degree 2

• I3: Polyharmonic splines, degree 3

• I4: Polyharmonic splines, degree 4

• OPTIM: The type of kernel is optimized

Default value: D1, except for RBF models where it is I2.

Example:
TYPE KS KERNEL_TYPE D2 defines a KS model with Inverse Quadratic Kernel.
TYPE KS KERNEL_TYPE OPTIM KERNEL_SHAPE OPTIM defines a KS model with optimized kernel shape and type.

14.1.16 KERNEL_SHAPE

The field name KERNEL_SHAPE defines the shape coefficient of the kernel function. The field name KERNEL_COEF
is equivalent. Note that this field name has no impact for kernel types I1, I2, I3 and I4 because these kernels do not
include a shape parameter.
Allowed for models of type: RBF, KS and LOWESS.
Possible values: Real value ≥ 0. Recommended range is [0.1; 10]. For KS and LOWESS model, small values lead to
smoother models.
Default value: By default, the kernel coefficient is optimized.

Example:
TYPE RBF KERNEL_TYPE D4 KERNEL_SHAPE 10 defines a RBF model with an inverse bi-quadratic kernel of shape
coefficient 10.
TYPE KS KERNEL_TYPE OPTIM KERNEL_SHAPE OPTIM defines a KS model with optimized kernel shape and type.

14.1.17 DISTANCE_TYPE

The field name DISTANCE_TYPE defines the distance function used in the model.
Allowed for models of type: RBF, KS, KRIGING, LOWESS, CN , ENSEMBLE and ENSEMBLE_STAT .
Possible values:

• NORM1: Euclidian distance

• NORM2: Distance based on norm 1

• NORMINF: Distance based on norm 1

• NORM2_IS0: Tailored distance for discontinuity in 0

• NORM2_CAT: Tailored distance for categorical models
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Default value: NORM2.

Example:
TYPE KS DISTANCE NORM2_IS0 defines a KS model tailored for VAN optimization.

14.1.18 PRESET

The field name PRESET defines the type of model used when applicable.
Allowed for models of type: RBF, LOWESS, ENSEMBLE and ENSEMBLE_STAT .

• When applied to RBF models, PRESET defines the type of RBF. Possible values:

– O: RBF with linear terms and orthogonal constraints

– R: RBF with linear terms and regularization term

– I: RBF with incomplete set of basis functions (see [AuKoLedTa2016] for RBFI models)

Default value: I.

Example:
TYPE RBF PRESET O

• When applied to LOWESS models [TaAuKoLed2016], PRESET defines how the weight 𝑤𝑖 of each data point 𝑥𝑖 is computed.
Possible values:

– D: 𝑤𝑖 = 𝜑(𝑑𝑖) where 𝜑 is the kernel of type and shape defined by the fields KERNEL_TYPE and
KERNEL_SHAPE, respectively, and 𝑑𝑖 is the distance between the prediction point and the data point
𝑥𝑖

– DEN: 𝑤𝑖 = 𝜑(𝑑𝑖/𝑑𝑞) where 𝑑𝑞 is the distance between the prediction point and the 𝑞𝑡ℎ closest data
point, and 𝑑𝑞 is computed with an empirical method

– DGN: 𝑤𝑖 = 𝜑(𝑑𝑖/𝑑𝑞) where 𝑑𝑞 is computed with the Gamma method

– RE:𝑤𝑖 = 𝜑(𝑟𝑖) where 𝑟𝑖 is the rank of 𝑥𝑖 in terms of distance to the prediction point, and 𝑟𝑖 is computed
with empirical method

– RG: 𝑤𝑖 = 𝜑(𝑟𝑖) where 𝑟𝑖 is computed with the Gamma method

– REN: same as RE but the ranks are normalized in [0, 1]

– RGN: same as RG but the ranks are normalized in [0, 1]

Default value: DGN.

Example:
TYPE LOWESS PRESET RE
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• When applied to ENSEMBLE or ENSEMBLE_STAT models, PRESET determines the selection of models in the ensemble.
Possible values:

– DEFAULT: selection of 18 models of types PRS, KS, RBF and CN with various settings

– KS: selection of 7 models of type KS with various kernel shapes

– PRS: selection of 7 models of type PRS with various degrees

– IS0: selection of 30 models of type PRS_EDGE, KS, RBF with various settings and DIS-
TANCE_TYPE set to NOMR2_IS0

– CAT: selection of 30 models of type PRS_EDGE, KS, RBF with various settings and DIS-
TANCE_TYPE set to NOMR2_CAT

– SUPER1: selection of 4 models of types PRS, KS, RBF and LOWESS

– SMALL: selection of 3 models of types PRS, KS and RBF

Default value: DEFAULT.

Example:
TYPE ENSEMBLE PRESET SUPER1

14.1.19 WEIGHT

The field name WEIGHT defines the method used to compute the weights 𝑤 of the ensemble of models. The field
name WEIGHT_TYPE is equivalent.
Allowed for models of type: ENSEMBLE and ENSEMBLE_STAT .
Possible values:

• WTA1: 𝑤𝑘 ∝ ℰ𝑠𝑢𝑚 − ℰ𝑘
• WTA3: 𝑤𝑘 ∝ (ℰ𝑘 + 𝛼ℰ𝑚𝑒𝑎𝑛)𝛽

• SELECT: 𝑤𝑘 ∝ 1 if ℰ𝑘 = ℰ𝑚𝑖𝑛 (only the best model is selected)

• SELECTN: 𝑤𝑘 ∝ ℰ𝑁
𝑠𝑢𝑚 − ℰ𝑘 (for 𝑁 = 1, 2, . . . , 6)

• OPTIM: 𝑤 minimizes ℰ(𝑤)

Where ℰ𝑘 is the error metric (defined by the field name METRIC) of the 𝑘𝑡ℎ model in the ensemble, ℰ𝑠𝑢𝑚 is the
cumulated error of all models, ℰ𝑚𝑖𝑛 is the minimal error, ℰ𝑚𝑒𝑎𝑛 is the average error, 𝛼 = 0.05, 𝛽 = −1, and ℰ𝑁

𝑠𝑢𝑚 is
the cumulated error metric of the 𝑁 best models.

Default value: SELECT for ENSEMBLE models, SELECT3 for ENSEMBLE_STAT models with UNCERTAINTY set to
SMOOTH, and SELECT4 for ENSEMBLE_STAT models with UNCERTAINTY set to NONSMOOTH.

Example:
TYPE ENSEMBLE WEIGHT SELECT METRIC RMSECV defines an ensemble of models which selects the model that
has the best RMSECV.
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TYPE ENSEMBLE WEIGHT OPTIM METRIC RMSECV defines an ensemble of models where the weights 𝑤 are
computed to minimize the RMSECV of the model.
TYPE ENSEMBLE WEIGHT SELECT3 METRIC OECV defines an ensemble of models which selects the 3 models that
have the best OECV.

14.1.20 UNCERTAINTY

(specific to ENSEMBLE_STAT models)

The field name UNCERTAINTY defines the type of uncertainty used in ENSEMBLE_STAT models.
Possible values:

• SMOOTH: Smooth alternative of the uncertainty (default)

• NONSMOOTH: Nonmooth alternative of the uncertainty

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY NONSMOOTH

14.1.21 SIZE_PARAM

(advanced parameter specific to ENSEMBLE_STAT models)

The field name SIZE_PARAM defines the size of the directions of either :

• the simplex used to compute the simplex gradients of the models if the field UNCERTAINTY is set to SMOOTH

• the positive spanning set used to compare models values if the field UNCERTAINTY is set to NONSMOOTH

Possible values: Real value ≥ 0. Recommended range is [0.001; 0.1].
Default value: 0.001 if the field UNCERTAINTY is set to SMOOTH, 0.005 if the field UNCERTAINTY is set to
NONSMOOTH.

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY SMOOTH SIZE_PARAM 0.003
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14.1.22 SIGMA_MULT

(advanced parameter specific to ENSEMBLE_STAT models)

The field name SIGMA_MULT defines the scaling factor of the uncertain to be multiplied by the variance of already
sampled function values.

Possible values: Real value ≥ 0. Recommended range is [1; 100].
Default value: 10.

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY NONSMOOTH SIGMA_MULT 30

14.1.23 LAMBDA_P

(advanced parameter specific to ENSEMBLE_STAT models)

The field name LAMBDA_P defines the shape parameter of the probability of feasibility (P).

Possible values: Real value ≥ 0. Recommended range is [0.1; 10].
Default value: 3 if the field UNCERTAINTY is set to SMOOTH, 1 if the field UNCERTAINTY is set to NONSMOOTH.

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY NONSMOOTH LAMBDA_P 1.5

14.1.24 LAMBDA_PI

(advanced parameterspecific to ENSEMBLE_STAT models)

The field name LAMBDA_PI defines the shape parameter of the probability of improvement (PI).

Possible values: Real value ≥ 0. Recommended range is [0.01; 3].
Default value: 0.1 if the field UNCERTAINTY is set to SMOOTH, 0.5 if the field UNCERTAINTY is set to NONSMOOTH.

Example:
TYPE ENSEMBLE_STAT UNCERTAINTY NONSMOOTH LAMBDA_PI 0.3
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14.1.25 OUTPUT

Defines a text file in which model information are recorded. Allowed for ALL types of model.

14.1.26 Parameter optimization and selection

Below is the list of some field names and values that influence the behaviour of other fields.

14.1.27 OPTIM

The field value OPTIM indicates that the model parameter must be optimized. The default optimization criteria is the
AOECV error metric (except for ENSEMBLE_STAT models where it is OECV).
Parameters that can be optimized:

• DEGREE

• RIDGE

• KERNEL_TYPE

• KERNEL_SHAPE

• DISTANCE_TYPE

Example:
TYPE PRS DEGREE OPTIM

TYPE LOWESS DEGREE OPTIM KERNEL_TYPE OPTIM KERNEL_SHAPE OPTIM METRIC ARMSECV

14.1.28 METRIC

The field name METRIC defines the metric used to select the parameters of the model (including the weights of
Ensemble models).
Allowed for ALL types of model.
Possible values:

• EMAX: Error Max

• EMAXCV: Error Max with Cross-Validation

• RMSE: Root Mean Square Error

• RMSECV: RMSE with Cross-Validation

• OE: Order Error

• OECV: Order Error with Cross-Validation [AuKoLedTa2016]

• LINV: Invert of the Likelihood

• AOE: Aggregate Order Error

• AOECV: Aggregate Order Error with Cross-Validation [TaAuKoLed2016]
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Default value: AOECV, except for ENSEMBLE_STAT models where it is OECV.

Example:
TYPE ENSEMBLE WEIGHT SELECT METRIC RMSECV defines an ensemble of models which selects the model that
has the best RMSECV.

14.1.29 BUDGET

Budget for model parameter optimization. The number of sets of model parameters that are tested is equal to the
optimization budget multiplied by the number of parameters to optimize.
Allowed for ALL types of model.
Default value: 20

Example:
TYPE LOWESS KERNEL_SHAPE OPTIM METRIC AOECV BUDGET 100

TYPE ENSEMBLE WEIGHT OPTIM METRIC RMSECV BUDGET 50

14.2 Surrogate subproblem formulations

The SGTELIB library offers different formulations of the surrogate subproblem to be optimized at the Search step (see
[TaLeDKo2014]). The SGTELIB_MODEL_FORMULATION parameter enables to choose a formulation, and the parameter
SGTELIB_MODEL_DIVERSIFICATION enables to adjust a diversification parameter.

14.2.1 SGTELIB_MODEL_FORMULATION

The formulations of the surrogate subproblem involve various quantities.
𝑓 denotes a model of the objective 𝑓 and 𝑐𝑗 a model of the constraint 𝑐𝑗 , 𝑗 = 1, 2, . . . ,𝑚. For 𝑥 ∈ 𝑋 , 𝜎𝑓 (𝑥) denotes
the uncertainty associated with the prediction 𝑓(𝑥), and 𝜎𝑗(𝑥) denotes the uncertainty associated with the prediction
𝑐𝑗(𝑥), 𝑗 = 1, 2, . . . ,𝑚. This uncertainty depends on the model chosen.

For a KRIGING model, 𝜎𝑓 (𝑥) (or 𝜎𝑗(𝑥)) is readily available through the standard deviation that the model natively
produces.
For an ENSEMBLE_STAT model, the uncertainty is constructed by comparing the predictions of the ensemble
models (see [AuLedSa2021]).
For any other model except ENSEMBLE, 𝜎𝑓 (𝑥) (or 𝜎𝑗(𝑥)) is computed with the distance from 𝑥 to previously
evaluated points.
Finally, for an ENSEMBLE model, the uncertainty is computed through a weighted sum of the squared uncertainties
of the ensemble models.

There are eight different formulations that can be chosen with the parameter SGTELIB_MODEL_FORMULATION. Some
formulations involve a parameter 𝜆 that is described later.

• FS (default):
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min
𝑥∈𝑋

𝑓(𝑥) − 𝜆𝜎̂𝑓 (𝑥)

s.t. 𝑐𝑗(𝑥) − 𝜆𝜎̂𝑗(𝑥) ≤ 0, 𝑗 = 1, 2, . . . ,𝑚

• FSP:

min
𝑥∈𝑋

𝑓(𝑥) − 𝜆𝜎̂𝑓 (𝑥)

s.t. P(𝑥) ≥ 0.5

where P is the probability of feasibility which is the probability that a given point is feasible.

• EIS:
min
𝑥∈𝑋

− EI(𝑥) − 𝜆𝜎̂𝑓 (𝑥)

s.t. 𝑐𝑗(𝑥) − 𝜆𝜎̂𝑗(𝑥) ≤ 0, 𝑗 = 1, 2, . . . ,𝑚

where EI is the expected improvement that takes into account the probability of improvement and the expected ampli-
tude thereof.

• EFI:

min
𝑥∈𝑋

−EFI(𝑥)

where EFI is the expected feasible improvement : EFI = EI × P.

• EFIS:

min
𝑥∈𝑋

−EFI(𝑥) − 𝜆𝜎̂𝑓 (𝑥)

• EFIM:

min
𝑥∈𝑋

−EFI(𝑥) − 𝜆𝜎̂𝑓 (𝑥)𝜇(𝑥)

where 𝜇 is the uncertainty in the feasibility : 𝜇 = 4P × (1 − P).

• EFIC:

min
𝑥∈𝑋

−EFI(𝑥) − 𝜆(EI(𝑥)𝜇(𝑥) + P(𝑥)𝜎̂𝑓 (𝑥))

• PFI:

min
𝑥∈𝑋

−PFI(𝑥)

where PFI is the probability of improvement : PFI = PI × P, with PI being the probability of improvement which is
the probability that the objective decreases from the best known value at a given point.

Example:
SGTELIB_MODEL_DEFINITION TYPE KRIGING

SGTELIB_MODEL_FORMULATION EFIC

The two lines above define a surrogate subproblem based on the EFIC formulation that will involve kriging models.

14.2.2 SGTELIB_MODEL_DIVERSIFICATION

The exploration parameter 𝜆 enables to control the exploration of the search space against the intensification in the
most promising areas. A higher 𝜆 favors exploration whereas a lower 𝜆 favors intensification.

𝜆 is a real value in [0, 1] defined by the parameter SGTELIB_MODEL_DIVERSIFICATION.
Default value : 0.01.
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Example:
SGTELIB_MODEL_DEFINITION TYPE ENSEMBLE

SGTELIB_MODEL_FORMULATION FSP

SGTELIB_MODEL_DIVERSIFICATION 0.1

The three lines above define a surrogate subproblem based on the FSP formulation with an exploration parameter
equals to 0.1 that will involve ensemble models.

References
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CHAPTER

FIFTEEN

RELEASE NOTES AND FUTURE DEVELOPMENTS

NOMAD 4 is a complete redesign compared with NOMAD 3, with a new architecture providing more flexible code,
some added functionalities and reusable code.

Some functionalities available in NOMAD 3 will be included in NOMAD 4 in future releases:

• BiMads [AuSaZg2008a]

• RobustMads [AudIhaLedTrib2016] and StoMads [G-2019-30]

• Categorical [AuDe01a] and periodical variables [AuLe2012]

The performance of NOMAD 4 and 3 are similar when the default parameters of NOMAD 3 are used (see
[AuLeRoTr2021]).

References
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CHAPTER

SIXTEEN

COMPLETE LIST OF PARAMETERS

A set of parameters is available in the table below for fine tuning algorithmic settings. Additional information on each
parameter is available by typing $NOMAD_HOME/bin/nomad -h PARAM_NAME.

Table 1: NOMAD 4 parameters
Name TypeArgu-

ment
Short description Default

ADD_SEED_TO_FILE_NAMESbooladvanced
The flag to add seed to the file names

true

ANISOTROPIC_MESH booladvanced
MADS uses anisotropic mesh for generating di-
rections

true

ANISOTROPY_FACTORNO-
MAD::Double

advanced
MADS anisotropy factor for mesh size change

0.1

BB_EXE std::stringbasic
Blackbox executable

BB_INPUT_TYPE NO-
MAD::BBInputTypeList

basic
The variable blackbox input types • R

BB_MAX_BLOCK_SIZEsize_tadvanced
Size of blocks of points, to be used for parallel
evaluations

1

BB_OUTPUT_TYPE NO-
MAD::BBOutputTypeList

basic
Type of outputs provided by the blackboxes

OBJ

CACHE_FILE std::stringbasic
Cache file name

CACHE_SIZE_MAX size_tadvanced
Maximum number of evaluation points to be
stored in the cache

INF

CS_OPTIMIZATION boolbasic
Coordinate Search optimization

false

continues on next page
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Table 1 – continued from previous page
DIMENSION size_tbasic

Dimension of the optimization problem (re-
quired)

0

DIRECTION_TYPE NO-
MAD::DirectionTypeList

advanced
Direction types for Poll steps

ORTHO
N+1
QUAD

DIREC-
TION_TYPE_SECONDARY_POLL

NO-
MAD::DirectionTypeList

advanced
Direction types for Mads secondary poll

DOU-
BLE

DIS-
PLAY_ALL_EVAL

boolbasic
Flag to display all evaluations

false

DISPLAY_DEGREE int basic
Level of verbose during execution

2

DISPLAY_HEADER size_tadvanced
Frequency at which the stats header is displayed

40

DIS-
PLAY_INFEASIBLE

booladvanced
Flag to display infeasible

false

DIS-
PLAY_MAX_STEP_LEVEL

size_tadvanced
Depth of the step after which info is not printed

20

DISPLAY_STATS NO-
MAD::ArrayOfString

basic
Format for displaying the evaluation points

BBE
OBJ

DIS-
PLAY_UNSUCCESSFUL

booladvanced
Flag to display unsuccessful

false

EVAL_OPPORTUNISTICbooladvanced
Opportunistic strategy: Terminate evaluations
as soon as a success is found

true

EVAL_QUEUE_CLEARbooladvanced
Opportunistic strategy: Flag to clear Evaluator-
Control queue between each run

true

EVAL_QUEUE_SORT NO-
MAD::EvalSortType

advanced
How to sort points before evaluation

QUADRATIC_MODEL

EVAL_STATS_FILE stringbasic
The name of the file for stats about evaluations
and successes

•

EVAL_SURROGATE_COSTsize_tadvanced
Cost of the surrogate function versus the true
function

INF

continues on next page
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Table 1 – continued from previous page
EVAL_SURROGATE_OPTIMIZATIONbooladvanced

Use static surrogate as blackbox for optimiza-
tion

false

EVAL_USE_CACHE booladvanced
Use cache in algorithms

true

FIXED_VARIABLE NO-
MAD::Point

advanced
Fix some variables to some specific values •

FRAME_CENTER_USE_CACHEbooladvanced
Find best points in the cache and use them as
frame centers

false

GRANULARITY NO-
MAD::ArrayOfDouble

advanced
The granularity of the variables •

HISTORY_FILE std::stringbasic
The name of the history file

HOT_RESTART_FILE std::stringadvanced
The name of the hot restart file

hotrestart.txt

HOT_RESTART_ON_USER_INTERRUPTbooladvanced
Flag to perform a hot restart on user interrupt

false

HOT_RESTART_READ_FILESbooladvanced
Flag to read hot restart files

false

HOT_RESTART_WRITE_FILESbooladvanced
Flag to write hot restart files

false

H_MAX_0 NO-
MAD::Double

advanced
Initial value of hMax.

NO-
MAD::INF

INI-
TIAL_FRAME_SIZE

NO-
MAD::ArrayOfDouble

advanced
The initial frame size of MADS •

INI-
TIAL_MESH_SIZE

NO-
MAD::ArrayOfDouble

advanced
The initial mesh size of MADS •

LH_EVAL size_tbasic
Latin Hypercube Sampling of points (no opti-
mization)

0

LH_SEARCH NO-
MAD::LHSearchType

basic
Latin Hypercube Sampling Search method •

continues on next page
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Table 1 – continued from previous page
LOWER_BOUND NO-

MAD::ArrayOfDouble
basic

The optimization problem lower bounds for each
variable

•

MAX_BB_EVAL size_tbasic
Stopping criterion on the number of blackbox
evaluations

INF

MAX_EVAL size_tadvanced
Stopping criterion on the number of evaluations
(blackbox and cache)

INF

MAX_ITERATIONS size_tadvanced
The maximum number of iterations of the
MADS algorithm

INF

MAX_ITERATION_PER_MEGAITERATIONsize_tadvanced
Maximum number of Iterations to generate for
each MegaIteration.

INF

MAX_SURROGATE_EVAL_OPTIMIZATIONsize_tbasic
Stopping criterion on the number of static sur-
rogate evaluations

INF

MAX_TIME size_tbasic
Maximum wall-clock time in seconds

INF

MEGA_SEARCH_POLLbooladvanced
Evaluate points generated from Search and Poll
steps all at once

false

MIN_FRAME_SIZE NO-
MAD::ArrayOfDouble

advanced
Termination criterion on minimal frame size of
MADS

•

MIN_MESH_SIZE NO-
MAD::ArrayOfDouble

advanced
Termination criterion on minimal mesh size of
MADS

•

NB_THREADS_OPENMPint advanced
The number of threads when OpenMP parallel
evaluations are enabled

-1

NM_DELTA_E NO-
MAD::Double

advanced
NM expansion parameter delta_e.

2

NM_DELTA_IC NO-
MAD::Double

advanced
NM inside contraction parameter delta_ic.

-0.5

continues on next page
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Table 1 – continued from previous page
NM_DELTA_OC NO-

MAD::Double
advanced

NM outside contraction parameter delta_oc.
0.5

NM_GAMMA NO-
MAD::Double

advanced
NM shrink parameter gamma.

0.5

NM_OPTIMIZATION booladvanced
Nelder Mead stand alone optimization for con-
strained and unconstrained pbs

false

NM_SEARCH booladvanced
Nelder Mead optimization used as a search step
for Mads

true

NM_SEARCH_MAX_TRIAL_PTS_NFACTORsize_tadvanced
NM-Mads search stopping criterion.

80

NM_SEARCH_RANK_EPSNO-
MAD::Double

advanced
NM-Mads epsilon for the rank of DZ.

0.01

NM_SEARCH_STOP_ON_SUCCESSbooladvanced
NM-Mads search stops on success.

false

NM_SIMPLEX_INCLUDE_FACTORsize_tadvanced
Construct NM simplex using points in cache.

8

NM_SIMPLEX_INCLUDE_LENGTHNO-
MAD::Double

advanced
Construct NM simplex using points in cache.

INF

PSD_MADS_ITER_OPPORTUNISTICbooladvanced
Opportunistic strategy between the Mads sub-
problems in PSD-MADS

true

PSD_MADS_NB_SUBPROBLEMsize_tadvanced
Number of PSD-MADS subproblems

INF

PSD_MADS_NB_VAR_IN_SUBPROBLEMsize_tadvanced
Number of variables in PSD-MADS subprob-
lems

2

PSD_MADS_OPTIMIZATIONbooladvanced
PSD-MADS optimization algorithm

0

PSD_MADS_ORIGINALbooladvanced
Use NOMAD 3 strategy for mesh update in
PSD-MADS

false

PSD_MADS_SUBPROBLEM_MAX_BB_EVALsize_tadvanced
Max number of evaluations for each subproblem

INF

continues on next page
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Table 1 – continued from previous page
PSD_MADS_SUBPROBLEM_PERCENT_COVERAGENO-

MAD::Double
advanced

Percentage of variables that must be covered in
subproblems before updating mesh

70

QUAD_MODEL_DISPLAYstd::stringadvanced
Display of a model

QUAD_MODEL_MAX_BLOCK_SIZEsize_tadvanced
Size of blocks of points, to be used for parallel
evaluations

INF

QUAD_MODEL_MAX_EVALsize_tadvanced
Max number of model evaluations for each op-
timization of the quad model problem

5000

QUAD_MODEL_OPTIMIZATIONbooladvanced
Quad model stand alone optimization for con-
strained and unconstrained pbs

false

QUAD_MODEL_SEARCHboolbasic
Quad model search

true

QUAD_MODEL_SLD_SEARCHboolbasic
Quad model (SLD) search

false

RE-
JECT_UNKNOWN_PARAMETERS

booladvanced
Flag to reject unknown parameters when check-
ing validity of parameters

false

RHO NO-
MAD::Double

advanced
Rho parameter of the progressive barrier

0.1

SEED int advanced
The seed for the pseudo-random number gener-
ator

0

SGTELIB_MAX_POINTS_FOR_MODELsize_tadvanced
Maximum number of valid points used to build
a model

500

SGTELIB_MIN_POINTS_FOR_MODELsize_tadvanced
Minimum number of valid points necessary to
build a model

1

SGTELIB_MODEL_DEFINITIONNO-
MAD::ArrayOfString

advanced
Definition of the Sgtelib model

SGTELIB_MODEL_DISPLAYstd::stringadvanced
Display of a model

continues on next page
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Table 1 – continued from previous page
SGTELIB_MODEL_DIVERSIFICATIONNO-

MAD::Double
advanced

Coefficient of the exploration term in the sgtelib
model problem

0.01

SGTELIB_MODEL_EVALbooladvanced
Sgtelib Model Sampling of points

0

SGTELIB_MODEL_FEASIBILITYNO-
MAD::SgtelibModelFeasibilityType

advanced
Method used to model the feasibility of a point

C

SGTELIB_MODEL_FORMULATIONNO-
MAD::SgtelibModelFormulationType

advanced
Formulation of the sgtelib model problem

FS

SGTELIB_MODEL_MAX_BLOCK_SIZEsize_tadvanced
Size of blocks of points, to be used for parallel
evaluations

INF

SGTELIB_MODEL_MAX_EVALsize_tadvanced
Max number of model evaluations for each op-
timization of the sgtelib model problem

1000

SGTELIB_MODEL_SEARCHboolbasic
Model search using Sgtelib

false

SGTELIB_MODEL_SEARCH_CANDIDATES_NBint advanced
Number of candidates returned by the sgtelib
model search

-1

SGTELIB_MODEL_SEARCH_EXCLUSION_AREANO-
MAD::Double

advanced
Exclusion area for the sgtelib model search
around points of the cache

0.0

SGTELIB_MODEL_SEARCH_FILTERstd::stringadvanced
Methods used in the sgtelib search filter to return
several search candidates

2345

SOLUTION_FILE std::stringbasic
The name of the file containing the best feasible
solution

SPECULA-
TIVE_SEARCH

boolbasic
MADS speculative search method

true

SPECULA-
TIVE_SEARCH_BASE_FACTOR

NO-
MAD::Double

advanced
Distance of the MADS speculative search
method

4.0

SPECULA-
TIVE_SEARCH_MAX

size_tadvanced
MADS speculative search method

1

continues on next page
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Table 1 – continued from previous page
SSD_MADS_ITER_OPPORTUNISTICbooladvanced

Opportunistic strategy between the Mads sub-
problems in SSD-MADS

true

SSD_MADS_NB_SUBPROBLEMsize_tadvanced
Number of SSD-MADS subproblems

INF

SSD_MADS_NB_VAR_IN_SUBPROBLEMsize_tadvanced
Number of variables in SSD-MADS subprob-
lems

2

SSD_MADS_OPTIMIZATIONbooladvanced
SSD-MADS optimization algorithm

0

SSD_MADS_RESET_VAR_PICKUP_SUBPROBLEMbooladvanced
Reset random variable pick-up for each subprob-
lem

false

SSD_MADS_SUBPROBLEM_MAX_BB_EVALsize_tadvanced
Max number of evaluations for each subproblem

INF

STATS_FILE NO-
MAD::ArrayOfString

basic
The name of the stats file

STOP_IF_FEASIBLE booladvanced
Stop algorithm once a feasible point is obtained

false

STOP_IF_PHASE_ONE_SOLUTIONbooladvanced
Stop algorithm once a phase one solution is ob-
tained

false

SURROGATE_EXE std::stringadvanced
Static surrogate executable

TMP_DIR std::stringadvanced
Directory where to put temporary files

UPPER_BOUND NO-
MAD::ArrayOfDouble

basic
The optimization problem upper bounds for
each variable

•

USER_CALLS_ENABLEDbooladvanced
Controls the automatic calls to user function

true

VARIABLE_GROUP NO-
MAD::ListOfVariableGroup

advanced
The groups of variables) •

VNS_MADS_OPTIMIZATIONbooladvanced
VNS MADS stand alone optimization for con-
strained and unconstrained pbs

false

continues on next page
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Table 1 – continued from previous page
VNS_MADS_SEARCH booladvanced

VNS Mads optimization used as a search step
for Mads

false

VNS_MADS_SEARCH_MAX_TRIAL_PTS_NFACTORsize_tadvanced
VNS-Mads search stopping criterion.

100

VNS_MADS_SEARCH_TRIGGERNO-
MAD::Double

advanced
VNS Mads search trigger

0.75

X0 NO-
MAD::ArrayOfPoint

basic
The initial point(s) •

16.1 Detailed information

In progress

BB_INPUT_TYPE

Type: NOMAD::BBInputTypeList

Default: * R

Description:

. Blackbox input types

. List of types for each variable

. Available types:
. B: binary
. I: integer
. R: continuous

. Examples:
. BB_INPUT_TYPE * I # all variables are integers
. BB_INPUT_TYPE ( R I B ) # for all 3 variables
. BB_INPUT_TYPE 1-3 B # NOT YET SUPPORTED ( variables 1 to 3 are binary )
. BB_INPUT_TYPE 0 I # NOT YET SUPPORTED ( first variable is integer )

DIMENSION

Type: size_t

Default: 0

Description :

. Number of variables

(continues on next page)
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(continued from previous page)

. Argument: one positive integer

. Example: DIMENSION 3

82 Chapter 16. Complete list of parameters
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• genindex

• modindex

• search
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