
Shaman tool suite
User manual

Version 1.0.0

Nestor Demeure, Cédric Chevalier, Christophe Denis,
Pierre Dossantos-Uzarralde

May 27, 2022

Contents

1 Introduction 3

2 Shaman 4
2.1 Installing Shaman . 4

2.1.1 Building Shaman with CMake 4
2.1.2 Adding Shaman to a CMake project 4
2.1.3 Flags . 5
2.1.4 Online version . 5

2.2 Using Shaman . 6
2.2.1 Introducing Shaman in a codebase 6
2.2.2 Unstable tests . 8
2.2.3 Nan and infinity . 9
2.2.4 User-defined types . 9
2.2.5 Integration with other frameworks and libraries 10

3 Shamanizer 11
3.1 Instalation . 11

3.1.1 Instaling Shamanizer with Spack 11
3.1.2 Manual installation . 12

3.2 Usage . 12

4 Numerical debugger 13
4.1 Installation . 14
4.2 Usage . 14

5 Numerical profiler 16
5.1 Installation . 16
5.2 Usage . 16

6 Benchmarks 17
6.1 Content of the Benchmark . 17

6.1.1 Libraries evaluated . 17
6.1.2 Applications timed . 18

6.2 Building the benchmark . 19
6.3 Running the benchmarks . 19

List of Code Listings

1 Heron’s algorithm. 6

1

2 Output of Heron’s algorithm. 7
3 Using Shaman’s types. 8
4 Output of the Shaman type example. 8
5 User defined instrumented type. 10
6 Using Shamanizer with a compilation database. 12
7 Using Shamanizer on a single file application. 13
8 Finding and using Clang’s headers. 13
9 Output of the numerical debugger. 15
10 Using the numerical profiler. 16
11 Output of the numerical profiler. 17
12 Building the docker container. 19
13 Running the benchmark. 20

2

1 Introduction

The Shaman tool suite1 is an ensemble of tools build around Shaman, a C++
library that use operator overloading and encapsulated error to evaluate the
numerical accuracy of an application. It is composed of four components:

• Shaman, the core library, described in section 2,

• Shamanizer, an instrumentation tool described in section 3,

• a numerical debugger described in section 4,

• a numerical profiler described in section 5,

• a benchmarking suite described in section 6,

While this document covers the official C++ reference implementation,
you can currently find two other implementations in the wild. There is an
official Julia implementation here2. There is also an unofficial Haskell imple-
mentation3 within the HGeometry library.

The theory underlying Shaman and most of these tools is detailed in
Nestor Demeure’s PhD.4 You can reference it with:

@phdthesis{demeure_phd,
TITLE = {{Compromise between precision and performance in

high performance computing.}},↪→

AUTHOR = {Demeure, Nestor},
URL = {https://tel.archives-ouvertes.fr/tel-03116750},
SCHOOL = {{{\'E}cole Normale sup{\'e}rieure Paris-Saclay}},
YEAR = {2021},
MONTH = Jan,
TYPE = {Theses}

}

1https://gitlab.com/numerical_shaman
2https://gitlab.com/numerical_shaman/shaman_julia
3https://hackage.haskell.org/package/hgeometry-combinatorial-

0.12.0.0/docs/Data-Double-Shaman.html
4Available at https://tel.archives-ouvertes.fr/tel-03116750 and

https://www.researchgate.net/publication/348551075_Compromise_
between_precision_and_performance_in_high_performance_computing.

3

https://gitlab.com/numerical_shaman
https://gitlab.com/numerical_shaman/shaman
https://gitlab.com/numerical_shaman/shaman_julia
https://hackage.haskell.org/package/hgeometry-combinatorial-0.12.0.0/docs/Data-Double-Shaman.html
https://hackage.haskell.org/package/hgeometry-combinatorial-0.12.0.0/docs/Data-Double-Shaman.html
https://github.com/noinia/hgeometry
https://gitlab.com/numerical_shaman
https://gitlab.com/numerical_shaman/shaman_julia
https://hackage.haskell.org/package/hgeometry-combinatorial-0.12.0.0/docs/Data-Double-Shaman.html
https://hackage.haskell.org/package/hgeometry-combinatorial-0.12.0.0/docs/Data-Double-Shaman.html
https://tel.archives-ouvertes.fr/tel-03116750
https://www.researchgate.net/publication/348551075_Compromise_between_precision_and_performance_in_high_performance_computing
https://www.researchgate.net/publication/348551075_Compromise_between_precision_and_performance_in_high_performance_computing

2 Shaman

shaman5 is a C++11 library that use operator overloading and encapsulated
error to evaluate the numerical accuracy of an application. It has been de-
signed to target high-performance simulations and, thus, built to be not only
accurate but also:

• fast enough to be tested on very large simulations,6

• compatible with all the mathematical functions in the C++ standard
library,

• thread safe and compatible with both OpenMP and MPI.

2.1 Installing Shaman

You can download the Shaman source code from https://gitlab.com/
numerical_shaman/shaman. While one can build and link Shaman to their
project manually, we recommend using CMake (version 3.9 and above) as
explained in the following sections.

2.1.1 Building Shaman with CMake

To build Shaman in the /path/to/dir folder using CMake, run the following
commands:7

cmake -DCMAKE_INSTALL_PREFIX=/path/to/dir .
make install

2.1.2 Adding Shaman to a CMake project

To add Shaman to a project that is built with CMake, open the corresponding
CMakeLists.txt file and:

• add find_package(shaman) to the top of your CMakeLists.txt file,

5https://gitlab.com/numerical_shaman/shaman
6As significant numerical error is more likely to appears when large number of operations

are in play.
7Assuming you are on a UNIX system. See the following link to run CMake on systems

that are not compatible with Make: https://cmake.org/runningcmake/

4

https://gitlab.com/numerical_shaman/shaman
https://en.cppreference.com/w/cpp/numeric/math
https://en.cppreference.com/w/cpp/numeric/math
https://www.openmp.org/
https://www.mpi-forum.org/
https://gitlab.com/numerical_shaman/shaman
https://gitlab.com/numerical_shaman/shaman
https://cmake.org/
https://gitlab.com/numerical_shaman/shaman
https://cmake.org/runningcmake/

• add PUBLIC shaman::shaman to the end of the target_link_libraries
line.

If Shaman’s installation folder is not known to CMake, you can set the
shaman_DIR variable with the path to the CMake files that were autogen-
erated when building Shaman. To do so, add the the followig line to your
CMakeLists.txt : set(shaman_DIR /path/to/dir/lib/cmake/shaman)

Warning: Do not forget to enable Fused-Multiply-Add instructions at com-
pilation (on most compilers, it is done by passing the -mfma flag). Shaman
will keep functioning correctly without it but, some operations (* , / , sqrt)
will be computed significantly slower.

2.1.3 Flags

There are three flags that can be added when building and linking Shaman:

• SHAMAN_ENABLE_TAGGED_ERROR which enables the use tagged error to
locate the sources of error with finer granularity.

• SHAMAN_ENABLE_UNSTABLE_BRANCH which enables the count and detec-
tion of unstable branches. The Shaman::displayUnstableBranches
function can then be used to print the number of unstable tests per-
formed by the application (and additional localization information if
tagged error is enabled).

• SHAMAN_FLUSH_NANINF when used this ensures that the numerical error
is a finite number, flushing other values to zero (see section 2.2.3).

• SHAMAN_DEBUGGER to pinpoint unstable operations with a numerical
debugger or profiler (see section 5). Note that this flag has been depre-
ciated in favor of tagged error and only works in the paper branch (see
section 4.1).

• SHAMAN_DISABLE to disable shaman and use traditional types instead.
This is useful when one wants to keep themain branch of an application
instrumented with Shaman.

2.1.4 Online version

There is also an online version of Shaman8 served by Replit. While it relies
on an older header-only branch and does not implement tagged error, it can

8https://repl.it/@nestordemeure/ShamanDemo?lite=true

5

https://gitlab.com/numerical_shaman/shaman/-/tree/paper
https://repl.it/@nestordemeure/ShamanDemo?lite=true
https://replit.com/
https://gitlab.com/numerical_shaman/shaman/-/tree/header-only
https://repl.it/@nestordemeure/ShamanDemo?lite=true

be used to measure the numerical error of a simple computation and quickly
familiarize oneself with Shaman before using the up to date version of the
package in a larger project.

2.2 Using Shaman

2.2.1 Introducing Shaman in a codebase

Once Shaman is compiled and linked to your project (see section 2.1), you
just need to:

• include shaman.h at the top of your files,

• replace your floating point datatypes (float , double , long double)
with their Shaman equivalents (Sfloat , Sdouble , Slong_double),

• replace mathematical functions (from the std namespace) with their
homonyms from the Sstd namespace.

Here is an example of Heron’s square root algorithm implemented in C++
and instrumented with Shaman:

1 #include <shaman.h>
2

3 Sdouble x = 2;
4 Sdouble r = x/2;
5

6 while(1e-15 < Sstd::abs(r*r - x))
7 {
8 r = (r + x/r) / 2;
9 printf("sqrt=%.15e\n", r.number);

10 printf("error=%.15e\n\n", r.error);
11 }

Listing 1: Heron’s algorithm.

The code outputs the following:

6

sqrt=1.500000000000000e+00
error=-0.000000000000000e+00

sqrt=1.416666666666667e+00
error=1.480297366166875e-16

sqrt=1.414215686274510e+00
error=1.393221050510000e-16

sqrt=1.414213562374690e+00
error=4.079910214529664e-17

sqrt=1.414213562373095e+00
error=1.253716726897950e-16

Listing 2: Output of Heron’s algorithm.

Once a computation has been instrumented, one can access the numerical
error of any intermediate result directly. The following code excerpt illustrate
other quantities that can be obtained with an instrumented number as well as
the possibility to display only significant digits of a result by simply printing
a Shaman type with the C++ streaming operator (our recommended way to
use Shaman):

7

#include <shaman.h>

// computation
Sdouble largeNum = 2e30;
Sdouble smallNum = 1;
// this should be one
// but ends up being zero due to a cancellation
Sdouble sum = (largeNum + smallNum) - largeNum;

// by default Shaman displays only significant digits
std::cout << "default: " << sum << std::endl;

// number that would have been obtained without Shaman
std::cout << "number: " << sum.number << std::endl;
std::cout << "cast: " << static_cast<double>(sum) << std::endl;

// approximation of the numerical error
std::cout << "error: " << sum.error << std::endl;

// approximation of the number of significant digits
std::cout << "digits: " << sum.digits() << std::endl;

Listing 3: Using Shaman’s types.

The code outputs the following, where ~numerical-noise~ signifies that
the output had no significant digits and could thus not be displayed:

default: ~numerical-noise~
number: 0
cast: 0
error: 1
digits: 0

Listing 4: Output of the Shaman type example.

2.2.2 Unstable tests

A test is said unstable if numerical error could have impacted its output (which
can change the branches being taken by a computation and deeply impact the

8

end result). To detect unstable tests, pass the SHAMAN_UNSTABLE_BRANCH
flag at compile time (see section 2.1.3). They will then be monitored and
counted, calling the Shaman::displayUnstableBranches() function inside
the code will display the number of unstable tests detected so far9.

Whenever an unstable test is detected, the Shaman::unstability func-
tion is called. You can get the exact localization of an unstable test in real time
by putting a breakpoint on the function and running the code with a debugger
(such as GDB). As an unstable test might be triggered hundreds of times in
a loop, making it unpractical to use a debugger to study other instabilities
in a computation, you can also run the code with the numerical profiler (see
section 5) to produce a summary of all unstable test, their position in the
code and how many times they were triggered.

2.2.3 Nan and infinity

Shaman is able to manipulate nan and inf correctly but, they might play
havoc with the numerical error computation. This is not a problem in general
as the numerical error associated with a nan or inf is usually meaningless.

However, some computation (such as a number divided by infinity) man-
age to recover gracefully without resulting in nan in the output. When dis-
playing the result of such a computation, Shaman might display ~nan~ . This
means that the number being displayed is finite but its numerical error is
not-a-number.

You can solve that problem by using the SHAMAN_FLUSH_NANINF flag (see
section 2.1.3). This will flush all non-finite numerical error terms to zero during
the computations. This is not the default behavior as, sometimes, an infinite
numerical error is the correct value.

2.2.4 User-defined types

All IEEE-754 compatible types can be instrumentedwith Shaman. furthermore,
the user can pick any type to manipulate the numerical error and do the higher
precision computations.

For example, given an emulated 16-bits precision type named half , the
following would be a type behaving like half but whose numerical error
is stored and manipulated in float precision and that relies on double
precision when needing higher precision:

9If you are using tagged error, via the SHAMAN_ENABLE_TAGGED_ERROR flag, it will
also display the tags corresponding to the sections of the code in which the tests happened.

9

https://www.sourceware.org/gdb/

using Shalf = S<half, float, double>;

Listing 5: User defined instrumented type.

The Shalf type can then be used like half but it will keep track of its
numerical error.

While Shaman insures that implicit casts are done as they would have
been done by their underlying types, somemixed precision operations that are
legal with the original typesmight be rejected by their instrumented equivalent
in the absence of an explicit cast (such as Sfloat(1.5f) + double(1.5)).
To solve the problem, one just need to add an explicit cast (the previous
example becoming Sfloat(1.5f) + Sdouble(1.5)).

2.2.5 Integration with other frameworks and libraries

The shaman/helpers10 folder contains additional headers that can be included
to help when using:

• std::complex, to help with casting and insuring that the implementation
behaves as the non-instrumented version,

• OpenMP, adding support for reduction over Shaman’s default types
(this requires OpenMP 4.0 or later),

• MPI, adding custom init and finalize functions and support to
send Shaman’s type and reduce over them,

• Eigen, adding traits to support Shaman’s default types as well as arrays
and matrix definition shortcuts,

• Trilinos, adding traits to support Shaman’s default type within the Belos,
Teuchos and Kokkos libraries.

Those implementation are fairly straightforward and do not require access
to shaman’s internals. As such, a user should be able to add support manually
for any templated library they might need.

10https://gitlab.com/numerical_shaman/shaman/-/tree/master/src/
shaman/helpers

10

https://gitlab.com/numerical_shaman/shaman/-/tree/master/src/shaman/helpers
https://en.cppreference.com/w/cpp/numeric/complex
https://www.openmp.org/
https://www.mpi-forum.org/
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://trilinos.github.io/
https://gitlab.com/numerical_shaman/shaman/-/tree/master/src/shaman/helpers
https://gitlab.com/numerical_shaman/shaman/-/tree/master/src/shaman/helpers

3 Shamanizer

Shamanizer11 is a tool, based on the Clang compiler (and in particular LibTool-
ing), that can instrument a C++ codebase replacing classical numerical types
with Shaman’s types and introducing the needed headers.

3.1 Instalation

3.1.1 Instaling Shamanizer with Spack

We recommend that you use Spack in order to install Shamanizer without
having to worry about its dependencies. To do so you first need to install
Spack:

git clone https://github.com/spack/spack.git
cd spack
. share/spack/setup-env.sh

Then, we recommend that you build a recent C++ compiler and register it
as a usable compiler in Spack:

spack install gcc@7.3.0 +binutils
spack compiler add $(spack find -p gcc@7.3.0)

To add Shamanizer to the Spack repository list, you should clone its
repository (https://gitlab.com/numerical_shaman/spack_shaman) then
add the path of the cloned folder to the spack/etc/spack/defaults/repos.yaml
file in your Spack installation:

repos:
- path/to/spack_shaman
- $spack/var/spack/repos/builtin

Once those configuration steps are done, you should be able to install
Shamanizer with Spack:

11https://gitlab.com/numerical_shaman/shamanizer

11

https://gitlab.com/numerical_shaman/shamanizer
https://clang.llvm.org/
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://spack.io/
https://gitlab.com/numerical_shaman/shamanizer

spack install shamanizer

3.1.2 Manual installation

To install Shamanizer manually (which we do not recommend), you will first
need to install the LLVM 3.0 toolchain.

At the moment the official Ubuntu/Debian LLVM packages have broken
CMakefiles, you will thus have to get the packages directly from apt.llvm.org.
If you cannot use a package manager to help you with the installation, you
will need to recompile LLVM and Clang from source (note that you might
encounter insufficient RAM problems if you build them with more than one
parallel worker).

Once you have installed all the packages from the stable branch, you
should be good to go (previously installed LLVM versions could cause prob-
lems, in which case the easier solution is to uninstall them) and can build
Shamanizer with CMake similarly to how you built Shaman (see section 2.1.1).

3.2 Usage

To instrument a project, you need to first make sure that it compiles with
Clang then build a compilation database for it, both Clang and CMake are
equipped to do so12. Once you have a compilation database built for your
project, you can run the following command to instrument all files in the
compilation database:

shamanizer -p=my_compilation_database.json .

Listing 6: Using Shamanizer with a compilation database.

You can replace the end dot with the name of a file to instrument a single
file. Furthermore, for a very simple, single file, application you can omit the
compilation database and run only the following command:

12https://sarcasm.github.io/notes/dev/compilation-database.html#how-
to-generate-a-json-compilation-database

12

http://apt.llvm.org/
https://clang.llvm.org/
https://sarcasm.github.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database
https://sarcasm.github.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database
https://sarcasm.github.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database
https://sarcasm.github.io/notes/dev/compilation-database.html#how-to-generate-a-json-compilation-database

shamanizer my_file.cpp --

Listing 7: Using Shamanizer on a single file application.

Note that Clang’s headers will be needed if Shamanizer is not stored in
the usr/bin folder. They can be located and passed to Shamanizer using
the following commands:

HEADERS=$(dirname $(which clang))/../lib/clang/7.0.0/include

shamanizer -p=my_compilation_database.json . \
-extra-arg=-isystem=$HEADERS

Listing 8: Finding and using Clang’s headers.

The instrumentation will be canceled leaving the files untouched if there
is any compilation error while Shamanizer runs.

4 Numerical debugger

The Shaman numerical debugger displays a summary of the number of nu-
merical instabilities encountered while running a computation. Furthermore,
you can hook a traditional debugger onto it to trigger a break whenever a
computation encounters a numerically unstable operation in order to examine
the state of the computation in real time.

Note that we now recommend using tagged error to trace the sources of
numerical error in a computation as it takes the propagation of the numerical
error into account rather than pinpoint single operations, leading to less false
positives (such as a large cancellation on an intermediate result that will not
impact the end result) and false negatives (such as a slow accumulations
of errors that would not be detected because they never trigger an actual
unstable operation).

13

4.1 Installation

The numerical debugger comes included in the paper branch13 of the code.14
To include it, you just need to compile the corresponding version of the

code with the SHAMAN_DEBUGGER flag (see section 2.1.3) and have a debugger
available (such as GDB).

4.2 Usage

To use the numerical debugger, you need to use Shaman’s types in your appli-
cation and add the NUMERICAL_DEBUGGER compilation flag. This will activate
the numerical debugger, keep a count of the various numerical instabilities in
your computation and display at summary at the end of the run.

For example, here is the output obtainedwhen running our implementation
of Heron’s algorithm (see section 2.2.1) with the numerical debugger enabled:

13https://gitlab.com/numerical_shaman/shaman/-/tree/paper
14As it has been deprecated in favor of tagged error.

14

https://gitlab.com/numerical_shaman/shaman/-/tree/paper
https://gitlab.com/numerical_shaman/shaman/-/tree/paper

sqrt=1.500000000000000e+00
error=-0.000000000000000e+00

sqrt=1.416666666666667e+00
error=1.480297366166875e-16

sqrt=1.414215686274510e+00
error=1.393221050510000e-16

sqrt=1.414213562374690e+00
error=4.079910214529664e-17

sqrt=1.414213562373095e+00
error=1.253716726897950e-16

*** SHAMAN ***
There are 5 numerical instabilities
3 CANCELLATION(S)
0 UNSTABLE DIVISION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE POWER FUNCTION(S)
2 UNSTABLE BRANCHING(S)

Listing 9: Output of the numerical debugger.

We can go further, as the output does not tell us where and when the
cancellations and unstable branches occur, by using a classical debugger to
pause the computations on cancellations or unstable branches.

To do so, you need to compile your application with -g , use a debugger
(such as GDB) and set a breakpoint on the Shaman::unstability function.
You might also need to reduce the optimization level (as usual when debug-
ging a C++ application).

When running the application with the debugger, it will stop whenever an
unstable operation (such as a cancellation or an unstable test) is detected.
Doing so with our example, we learn that from the iteration 4 onward the
subtraction in the loop condition is a cancellation and that the test and the
computation of the absolute value become unstable on the last iteration.

15

5 Numerical profiler

The Shaman numerical profiler15 builds on the numerical debugger to give
you a numerical profile of your application with the number of numerical
instabilities detected in each function and the exact line/operations where
those instabilities appeared. This is particularly useful on a large application
that might have thousands of numerical instabilities, most of them occurring
in the same spots and irrelevant to the end result.

While the numerical debugger has been depreciated in favor of tagged
error, you can still use the numerical profiler in Shaman’s master branch to
gather information on unstable tests.

5.1 Installation

The numerical profiler is included in the shaman/tools/shaman_profiler folder16.
It consist of a Python script and requires gdb-7.11.1 or later (as we rely on
their Python API).

The version present in the main branch can be used to track unstable
tests in the master branch of Shaman but, you will need to use the paper
branch if you want to track all unstable operations such as cancellations.

5.2 Usage

To use the Shaman Profiler, you need to add the NUMERICAL_DEBUGGER 17 and
-g flags at compile time (you might also need to reduce the optimization
level). You can then run your program with the following line (you can also
use the shaman_prof.sh shell script as a shortcut):

gdb -quiet --command shaman_profiler.py --args ./your_program
args↪→

Listing 10: Using the numerical profiler.

15https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/
shaman_profiler

16https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/
shaman_profiler

17You can omit this flag if you are only tracking unstable tests in the master branch but,
you will need the SHAMAN_ENABLE_UNSTABLE_BRANCH flag as detailed in section 2.2.2.

16

https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler
https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler
https://gitlab.com/numerical_shaman/shaman/-/tree/paper
https://gitlab.com/numerical_shaman/shaman/-/tree/paper
https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler
https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler
https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler
https://gitlab.com/numerical_shaman/shaman/-/tree/master/tools/shaman_profiler

It will display a message every 100000 numerical instability detected and
output its results to the EXECUTABLE_NAME_shaman_profile.txt file once
the program finishes running. As it relies on breakpoints to collect informa-
tion you can expect a slowdown proportional to the number of numerical
instabilities (which can be consequent on large computations).

Here is the file produced when running our implementation of Heron’s
algorithm (see section 2.2.1) with the numerical profiler:

*** SHAMAN PROFILE ***
5 heron (file main.cpp)
3 operator- (line 4)
1 operator< (line 4)
1 abs (line 4)

Listing 11: Output of the numerical profiler.

We find the sane results as the ones obtained with the numerical debugger
(in section 4.2) with line 6 corresponding to the loop condition of the code.18
The analysis of this particular example tells us that the stopping criteria of our
algorithm is impacted by the numerical error, creating an unstable branching,
and that it might benefit from a redesign to avoid instabilities19.

6 Benchmarks

The shaman benchmarks20 are a docker container designed to reproduce our
timing benchmark, comparing Shaman with several other library on a variety
of applications.

6.1 Content of the Benchmark

6.1.1 Libraries evaluated

We tried to include at least one implementation for each of the most common
approaches used to measure the numerical error. We choose these imple-

18Note that the computation is inside a heron function in the main.cpp file which
have been omitted from our code snippet for brevity.

19The current criteria uses a naive formula that can, indeed, suffer from convergence
problems from small values of x.

20https://gitlab.com/numerical_shaman/shaman_containers

17

https://gitlab.com/numerical_shaman/shaman_containers
https://gitlab.com/numerical_shaman/shaman_containers

mentations because of their extensive usage in their category and efficiency:

• Shaman.

• MPFR, with the MPFR C++ wrapper, which implements arbitrary preci-
sion arithmetic (tested with 100 and 200 bit of precision).

• Boost Interval, which implements interval arithmetic.

• Verrou, which implements a form of stochastic arithmetic.

• Cadna, which implements a synchronous variant of stochastic arith-
metic.

6.1.2 Applications timed

We instrumented four programs:

• n-body: N-body simulation.

• Spectral norm: computing an eigenvalue using the iterated power
method.

• Mandelbrot set: generating the Mandelbrot set at a given resolution; it
is the only parallel benchmark of the set.

• Lulesh 1.0: solving explicit hydrodynamics equations on a collection of
volumetric elements.

The first three are the tasks that deal with floating-point arithmetic in the
computer benchmark game,21 a well-known benchmarking suite that is used
to compare the peak performances of programming languages on different
tasks. The last program of our selection is the Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics code (Lulesh 1.0), a proxy program
for performance benchmark for exascale computing. All four programs are
in double precision (represented by Shaman’s Sdouble type).

21As the computer benchmark game provides several implementations for each task, we
instrumented the fastest C++ implementations that did not rely on explicit vectorization or
calls to libraries (such as Eigen) to do their computations.

18

https://gitlab.com/numerical_shaman/shaman/-/tree/master
https://www.mpfr.org/
http://www.holoborodko.com/pavel/mpfr/
https://www.boost.org/doc/libs/release/libs/numeric/interval/doc/interval.htm
https://github.com/edf-hpc/verrou
https://www-pequan.lip6.fr/cadna/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://codesign.llnl.gov/lulesh.php
https://eigen.tuxfamily.org/index.php?title=Main_Page

6.2 Building the benchmark

You will need Docker or a Docker compatible tool (such as Podman) to build
the containers.

Once you have downloaded the benchmark’s folder (fromhttps://gitlab.
com/numerical_shaman/shaman_containers), simply run the following
command inside the folder (DOCKER_BUILDKIT=1 is optional but recom-
mended if presents on your system):

DOCKER_BUILDKIT=1 make

Listing 12: Building the docker container.

If the command fails, you might want to try running it in sudo priority,
start docker (as described in section 6.3) and restart your computer before
building. It will build 5 containers:

• shaman/shaman , which contains a Shaman installation,

• shaman/cadna , which contains a Cadna installation,

• shaman/verrou , which contains a Verrou installation,

• shaman/standard , which contains a ubuntu-20.04 installed with
boost-interval and MPFR,

• shaman/sandbox , which is built on top of the previous containers and
allows experimentation with all these tools.

6.3 Running the benchmarks

Once the containers are built and Docker is started, the benchmarks can be
started like this (on a bash compatible shell):

19

https://www.docker.com/
https://podman.io/
https://gitlab.com/numerical_shaman/shaman_containers
https://gitlab.com/numerical_shaman/shaman_containers
https://stackoverflow.com/a/33596140/6422174

docker run -v $(pwd)/tests/benchmarks:/home/user/tests -it
shaman/sandbox↪→

cd ~/tests
make
make time

Listing 13: Running the benchmark.

It should run all the combinations of applications and libraries one after
the other and display the corresponding run times.

20

	Introduction
	Shaman
	Installing Shaman
	Building Shaman with CMake
	Adding Shaman to a CMake project
	Flags
	Online version

	Using Shaman
	Introducing Shaman in a codebase
	Unstable tests
	Nan and infinity
	User-defined types
	Integration with other frameworks and libraries

	Shamanizer
	Instalation
	Instaling Shamanizer with Spack
	Manual installation

	Usage

	Numerical debugger
	Installation
	Usage

	Numerical profiler
	Installation
	Usage

	Benchmarks
	Content of the Benchmark
	Libraries evaluated
	Applications timed

	Building the benchmark
	Running the benchmarks

