
Remark on Algorithm 539: A Modern Fortran Reference

Implementation for Carefully Computing the Euclidean

Norm – User Manual

Richard J. Hanson Tim Hopkins

January 18, 2017

Abstract

This document contains details of the software package that accompanies the article Re-
mark on Algorithm 539: A Modern Fortran Reference Implementation for Carefully Comput-
ing the Euclidean Norm.

A description is provided of each test that comprises the extensive test suite designed to
test extensively modern implementations of the BLAS Level 1 *nrm2 routines for computing
the l2 norm of a real or complex vector. Details are given to allow the user to add more tests
if required.

A benchmark package is described which compares the performance (execution time) and
accuracy of the proposed method against a competitive implementation. A number of al-
ternative algorithms/implementations are provided including the original BLAS Level 1, the
implementation that accompanies the Lapack package, Blue’s algorithm and a number of
variants of these methods that use compensated summation and more accurate scaling. The
format of the optional data file that may be supplied to alter the benchmark parameters is
also described.

Details are given of the two makefiles that accompany the package along with information
on how to edit the makefile.inc file for a new platform and the requirements on the Fortran
compiler to build the testing and benchmark executables.

Information is also provided on how to use the test software and the benchmark program
with a new implementation of the *nrm2 routines.

1

1 Introduction

This user manual accompanies the software implementing a new hybrid algorithm for computing
the l2 norm of a real or complex n-vector which is described in the article [6].

Section 2 contains detail of the individual tests that form part of the comprehensive test suite
which is suitable for testing any set of routines with the same structure as the BLAS Level-1
*nrm2 routines. A benchmark program that compares the performance of competing algorithms
and implementations from both a timing and an accuracy viewpoint is described in Section 3.

In Sections 4 and 5 we describe the structure and contents of the files which make up the
software package and the accompanying makefiles. Finally in Section 6 we provide details of the
changes needed

1. to add new tests to the test suite, and

2. to allow a new implementation of the l2 norm routines to be tested against the test suite
and benchmarked against the proposed hybrid code.

2 Testing

By using a combination of black box and white box testing techniques, we have produced a com-
prehensive set of tests that we believe would prove extensive for any implementation of a routine
designed to compute the l2 norm of a real or complex vector. All the following implementations
have been tested using the complete suite

1. the original Level 1 Blas reference routines [11],

2. the reference LAPACK [1] implementation,

3. Kahan’s algorithm in stand-alone mode,

4. our proposed hybrid implementation.

The tests have been devised to make the computed results automatically checkable.
The tests given below are all presented as real data. The same data is used for testing the

complex routines after transforming it as follows:

incx = 1 If the number of elements, n, in the real input vector, x, is even, then we generate a
complex input vector, xc, of length n/2 where xc(j) = CMPLX(x(2 ∗ j − 1), x(2 ∗ j)) for
j = 1, . . . , n/2. If n is odd then the final element is xc(dn/2e) = CMPLX(x(n), zero).

incx > 1 Here we generate a complex input vector, xc, of the same length as the real input vector,
n, with xc(i) set to CMPLX(x(i), zero) or CMPLX(zero, x(i)) depending on whether i is
odd or even respectively.

Using this transformation the results for the real and complex data should be identical.
Table 1 gives values for the parameters used later in the paper to define some of the test data

sets. Numerical values are given for both single and double precision IEEE standard formats.
The IEEE floating point status flags signalling on return from any subprogram call must be

the union of the flags signalling on entry to the subprogram and those set within the routine itself.
When the input vector consists entirely of finite floating-point values, the only flags that may be
set as a result of a call to a *nrm2 routine are overflow and inexact. The overflow flag should then
only signal when the value of the final result is not representable in the precision being used; in
this case the inexact flag should also signal. If one of the elements of the input vector is ±Inf
then the result is exactly ±Inf and no overflow flag is set. The invalid flag will signal if a NaN
value (but no Inf values) are detected in the input vector.

Note that the underflow condition should never occur from a call to a *nrm2 routine since
||x||2 ≥ |xi| > 0 provided the vector, x, consists entirely of finite floating-point values with at least

2

Table 1: Values of the constants used in setting test data values.

Single Precision Double Precision

ω (2− 2−23)2127 ≈ 2128 (2− 2−52)21023 ≈ 21024

τ 2−126 2−1022

ε 2−23 2−52

Ω 128 1024
η −23 −52
α −11 −26
γ −125 −1021
δ 24 53

Key

ω HUGE(kind)
τ TINY(kind)
ε EPSILON(kind)
Ω EXPONENT(HUGE(kind))+1
η EXPONENT(ε)-1
α bε/2c
γ MINEXPONENT(kind)
δ DIGITS(kind)

NOTE: the definition of ω and τ used here
differ from those given in the main article.

one element non-zero. Thus, while an intermediate computation could underflow if, for example,
no scaling were employed, the final correct result can only be zero if all the elements of the vector
are zero.

Any test failures that involve the inexact flag (element 5 in the output vector of status flags)
need to be considered carefully as the result may vary depending upon the algorithm used. Many
of the test vectors contain elements that are either small integers or small integers scaled by a
power of two with a resultant l2 norm that is exactly representable in IEEE floating point format.
In these cases we do not expect the inexact status flag to be raised. This is in line with the goal
we set ourselves in [6] although it does favour algorithms that use scaling factors that are powers
of two since division and multiplication by such values should not generate any rounding errors.

However some test cases may or may not signal inexact depending on how the calculations
are performed. One example of this is discussed below for vectors of length one. A second more
general example is the vector x = {9 ∗ p, 11 ∗ p, 13 ∗ p, 23 ∗ p} where p is a power of two which is
large enough to cause the implementation to scale. Provided the result does not overflow (i.e., p
is small enough) we would expect that the exact result, 30 ∗ p, will be returned. However, if any
of the chosen scale factors is not a power of two then the resultant scaling/rescaling will generate
rounding errors and an inexact result will ensue. This will happen using both the original BLAS
implementation and the Lapack routine; details of both routines may be found in [6]).

When the l2 norm cannot be represented exactly using IEEE floating point format, the mathe-
matically correct result generally involves the square root of an integer value multiplied by a power
of two. When computing relative errors we assume that the Fortran intrinsic function, SQRT, re-
turns a correctly rounded result which may be used to generate the best available approximation
to the exact value. Deviations from this value then signal additional rounding errors which may
be due, for example, to poor scaling.

3

2.1 Tests for *nrm2 Routines

We can split the input domain into a number of ‘obvious’ classes

1. Inputs which generate a representable floating point value,

2. Inputs which generate a non-representable floating-point value,

3. Input data that includes non-finite values,

4. Input data that includes not-a-number values,

5. Trivial input data,

6. Illegal input data.

We start with classes 5 and 6 since these are small classes. As we are aiming to deal with
any data within the input vector, i.e., both valid floating-point numbers as well as infinite and
NaN values, the only illegal data is obtained by setting incx to be less than one. The only trivial
data is the case of a null array which we assume is being signaled if the value of n is set to be
non-positive. In both cases we choose to return the value zero for the norm in line with previous
implementations. Thus our first two sets of test data are

Test 1 n = 0, incx = 1, x = {} ⇒ result = 0.0

Test 2 n = 1, incx = 0, x = {} ⇒ result = 0.0

We choose n and incx to be boundary values; i.e., they are values closest to legal values.
n = 1 could be treated as a special case although this is very unlikely to provide any efficiency

gain since it is not a common practical occurrence. Treating this as a special case for real input
data could cause an inconsistency with the setting of the IEEE status flags; for example, consider
x = ω using the proposed hybrid method, then

1. treating this as a special case would give a result of ω with the inexact flag not triggered,

2. not treating it as a special case would generally generate the same result but the inexact
flag would be set due to the computation within Kahan’s algorithm (two scalings, a square
and a square root) on a number which is not an exact power of two,

3. n = 1 is not treated as a special case for complex input where it is equivalent to a real vector
of length two with x = {ω, zero} and this causes the inexact flag to be set as in 2 above.

Finally, a vector of length n where xi = ω and xj = zero for j 6= i will also cause the inexact
flag to be set.

We therefore choose not to treat n = 1 as a special case (resulting in a generally irrelevant loss
of accuracy for real vectors of length one!). We do, however, include a set of tests with n = 1 as
these provide

1. simple tests for our software, and

2. tests for an implementation that does treat n = 1 as a special case.

We also include a test (Test 14) of the form {0, 0, . . . , 0, ω, 0, . . . , 0} to check for consistency
(or to detect n = 1 being treated as special).

Test 3 n = 1, incx = 1, x = {3.0} ⇒ result = 3.0

Test 4 n = 1, incx = 1, x = {−3.0} ⇒ result = 3.0

4

The ieee inexact status flag is not set in the next four tests (5–8) as the exact result can be
represented; this will happen if n = 1 is treated as a special case or the method uses x1 as a scale
factor.

Test 5 n = 1, incx = 1, x = {ω} ⇒ result = ω

Test 6 n = 1, incx = 1, x = {−ω} ⇒ result = ω

Test 7 n = 1, incx = 1, x = {τ} ⇒ result = τ

Test 8 n = 1, incx = 1, x = {−τ} ⇒ result = τ

Test 9 n = 1, incx = 1, x = {+Inf, } ⇒ result = +Inf

Test 10 n = 1, incx = 1, x = {−Inf} ⇒ result = +Inf

Test 11 n = 1, incx = 1, x = {sNaN} ⇒ result = qNaN (ieee invalid set)

Test 12 n = 1, incx = 1, x = {qNaN} ⇒ result = qNaN (ieee invalid set)

Check that there are no problems if the algorithm scales and the input vector contains only
zero elements:

Test 13 n = 10, incx = 1, x = {0, 0, . . . , 0, 0} ⇒ result = 0

Test for vector of all zeros except for a single element of value ω:

Test 14 n = 5, incx = 1, x = {0, 0, ω, 0, 0} ⇒ result = ω (the comments preceding Test 5 also
apply here)

For the two classes 3 and 4 we choose an input vector that contains infinite or NaN values.
For completeness we use both positive and negative infinity along with signaling and quiet NaN
values:

Test 15 n = 3, incx = 1, x = {2.0,−1.0,+Inf} ⇒ result = +Inf

Test 16 n = 3, incx = 1, x = {2.0,−Inf,−1.0} ⇒ result = +Inf

Test 17 n = 3, incx = 1, x = {2.0,−Inf, sNaN} ⇒ result = +Inf

Test 18 n = 3, incx = 1, x = {2.0, sNaN,−1.0} ⇒ result = qNaN (ieee invalid set)

Test 19 n = 3, incx = 1, x = {qNaN, 2.0,−1.0} ⇒ result = qNaN (ieee invalid set)

Test 20 n = 4, incx = 1, x = {qNaN, sNaN,−Inf, sNaN}} ⇒ result = +Inf

For class 2 we need to consider a vector of size at least two since, for n = 1, if the element is a
representable floating-point value, then we can represent the value of the l2 norm as it is just the
absolute value of the input and all valid negative IEEE values have a valid positive value of the
same magnitude. Hence, an obvious test would be:

Test 21 n = 2, incx = 1, x = {ω, ω} ⇒ result = +Inf (ieee overflow and ieee inexact set)

The next two data sets use boundary values to test that the routine returns a finite value/over-
flows at the expected point. Use x = {ω, x2} and choose x2 to be the largest value which won’t
cause an overflow and the smallest value which will using floating-point arithmetic. We have

res =
√
ω2 + (x2)2 = ω

√(
1 +

x2
2

ω2

)
(1)

If the software is performing to its specification, we should obtain an infinite result only if (1 +
x2

2/ω
2) > 1 otherwise a value of ω should be returned. Thus an unrecoverable overflow would

occur if x2
2 ≥ ω2ε and using ω = 2Ω to obtain an exact power of two gives x2 ≥ 2Ω+α.

Whence,

5

Test 22 n = 2, incx = 1, x =
{
ω, 2Ω+α

}
⇒ result = +Inf (ieee overflow and ieee inexact set)

Test 23 n = 2, incx = 1, x =
{
ω, 2Ω+α−1

}
⇒ result = ω (ieee inexact set)

We should also check that we do not have any problems with underflows:

Test 24 n = 4, incx = 1, x = {τ, τ, τ, τ} ⇒ result = 2 ∗ τ

Next we consider inputs for which the sum of squares of the elements is exactly representable
as an IEEE floating point value.

The first test may cause the inexact flag to be set if non-powers of two are used for scaling,
however, the exact result is representable. The second test should set the inexact flag and should
agree with the value provided by the Fortran square root intrinsic.

Test 25 n = 3, incx = 1, x = {9.0, 18.0, 38.0} ⇒ result = 43.0

Test 26 n = 3, incx = 1, x = {10.0, 11.0, 12.0} ⇒ result =
√

365 (ieee inexact set)

It would also be useful to have an example for a larger value of n. Hirschhorn [7] provides the
following

k−1∑
i=0

(a+ i)2 =

k−1∑
i=0

r2
i = b2 (2)

where k = v2, a = (v4 − 24v2 − 25)/48 and v is any integer not divisible by 2 or 3. The required
sum is then b2 where b is given by

b = (v5 + 47v)/48 (3)

As v increases both the starting value, a, and the number of terms also increase. We note that
all the values are integer and, hence, for smaller values of v the sum of squares will be collected
exactly. We denote the largest value of v that allows an exact result to be computed in the chosen
precision by v1; the next valid value of v = v2 should generate an inexact result. For IEEE single
and double precision the values for (v1, v2) are (11, 13) and (85, 89) respectively. The subroutine
getVals in the module sdTestMod attempts to compute these values automatically. Hence

Test 27 n = v2
1, incx = 1, x = {r0, r1, . . . , rn−1} from equation (2) ⇒ result = 3366.0 and

92438690.0 for IEEE single and double precision respectively.

would provide an extended test. We should also add

Test 28 n = v2
2, incx = 1, x = {r0, r1, . . . , rn−1} from equation (2) ⇒ result = 7748.0 and

116334659.0 for IEEE single and double precision respectively. (ieee inexact set)

to ensure that the IEEE flags are set correctly on exit.
The following six tests would all cause the simple loop to overflow or underflow. The first two

should generate the exact result whether or not the scaling factors used are a power of two; the
second pair also have an l2 norm which is exactly representable but using scaling factors that are
not powers of two will probably lead to the inexact flag signalling.

Test 29 n = 4, incx = 1, x = {p, p, p, p} ⇒ result = 2 ∗ p

Test 30 n = 4, incx = 1, x = {q, q, q, q} ⇒ result = 2 ∗ q

Test 31 n = 4, incx = 1, x = {9 ∗ p, 11 ∗ p, 13 ∗ p, 23 ∗ p} ⇒ result = 30 ∗ p

Test 32 n = 4, incx = 1, x = {9 ∗ q, 11 ∗ q, 13 ∗ q, 23 ∗ q} ⇒ result = 30 ∗ q

6

The last pair of tests should both generate results with the inexact flag set due to the square root
operation

Test 33 n = 5, incx = 1, x = {p, p, p, p, p/4} ⇒ result =
√

65p/4 (ieee inexact set)

Test 34 n = 5, incx = 1, x = {q, q, q, q, 2 ∗ q} ⇒ result = 2
√

2q (ieee inexact set)

where p = 2Ω/2−1 and q = 2−Ω/2.
In the next test the squaring would result in an unnormalized number, if they are available, or

zero, if they aren’t. Either way an underflow would occur with the simple loop. Kahan’s algorithm
will use scaling to generate an inexact, but accurate, result.

Test 35 n = 4, incx = 1, x = {p, p, p, p} ⇒ result = 2 ∗ p where p = r−Ω/2 and r is the nearest
floating point number less than one. (ieee inexact set)

The following two tests are designed to show up scaling problems within the elements of the
vector. The value of p is chosen so that 1 + p2 returns 1 under the floating point arithmetic being
used. The vector is then made large enough so that 1 +

∑
p2 would be representable. Using a

naive approach the first test will return 1 while a similar approach to the second should provide
an accurate result.

Test 36 n = 2nval + 1, incx = 1, x = {1, p, p, p, . . . , p} ⇒ result =
√

1 + p2 ∗ 2nval (ieee inexact

set)

Test 37 n = 2nval + 1, incx = 1, x = {p, p, p, . . . , p, 1} ⇒ result =
√

1 + p2 ∗ 2nval (ieee inexact

set)

where p = 2α−2 and nval = 10.
The next tests check that the implementation operates correctly when incx 6= 1 on a series of

simple examples.

Test 38 n = 3, incx = 2, x = {2.0, 5.0, 3.0, 9.0, 6.0} ⇒ result = 7.0

Test 39 n = 2, incx = 3, x = {2.0, 3.0, 4.0, 5.0} ⇒ result =
√

29 (ieee inexact set)

Test 40 n = 3, incx = 2, x = {2.0,+Inf, 3.0, qNaN, 6.0} ⇒ result = 7.0

The next two tests are algorithm specific and attempt to check that the different accumulator
elements are combined correctly; to be specific: medium and big; and small and medium.

Test 41 n = 2, incx = 1, x =
{

2c−1, 2c+1
}
⇒ result =

√
17× 2c−1 (ieee inexact set)

Test 42 n = 2, incx = 1, x =
{

2d−1, 2d+1
}
⇒ result =

√
17× 2d−1 (ieee inexact set)

where B = fB2c and b = fb2
d are defined in Blue’s algorithm and c = EXPONENT (B),

d = EXPONENT (b), fB = FRACTION(B) and fb = FRACTION(b) as provided by the
Fortran 2008 elemental functions with fb, fB ∈

[
1
2 , 2
)

for IEEE floating point arithmetic.
The next six tests check that the IEEE status flags are processed correctly. We have tested

that the flags are set correctly in the above tests when the input status flags are all set to FALSE
on entry. The following tests mostly check that when the input flags have all been set to TRUE
then the flags are all still TRUE on exit whether the call to *nrm2 would have signalled or not.

In these six tests the status flag settings are stored in a logical array of length five in the order

{ieee overflow, ieee divide by zero, ieee invalid, ieee underflow, ieee inexact}

We give the definition of the test problem and the state of the input flags along with the expected
result and exit settings for the flags.

7

Test 43 n = 2, incx = 1, x = {5, 12}, status = {T, T, T, T, T} ⇒ result = 13, status =
{T, T, T, T, T}

Test 44 n = 2, incx = 1, x = {7, 9}, status = {T, T, T, T, T} ⇒ result =
√

130, status =
{T, T, T, T, T}

Test 45 n = 2, incx = 1, x = {7, 9}, status = {T, T, T, T, F} ⇒ result =
√

130, status =
{T, T, T, T, T}

In the next three tests p = 2Ω/2−1

Test 46 n = 4, incx = 1, x = {p, p, p, p}, status = {T, T, T, T, T} ⇒ result = 2 ∗ p, status =
{T, T, T, T, T}

Test 47 n = 5, incx = 1, x = {p, p, p, p, p/4}, status = {T, T, T, T, T} ⇒ result =
√

65p/4,
status = {T, T, T, T, T}

Test 48 n = 5, incx = 1, x = {p, p, p, p, p/4}, status = {T, T, T, T, F} ⇒ result =
√

65p/4,
status = {T, T, T, T, T}

Finally, these tests require the floating-point system to provide gradual underflow and they
check that underflows are not triggered for input vectors containing elements in the gradual un-
derflow range.

Test 49 n = 4, incx = 1, x = {p, p, p, p} ⇒ result = 2 ∗ p where p = τ/4

Test 50 n = 4, incx = 1, x = {p, p, p, p} ⇒ result = 2 ∗ p where p is the smallest representable
real value = 2γ−δ

Test 51 n = 4, incx = 1, x = {p, p, p, p} ⇒ result = 2 ∗ p where p is the next representable real
value > τ

2.2 Output of IEEE arithmetic status flags

The package checks and reports on the final settings of the five IEEE floating-point status flags
that can be set during the execution of the test suite:

1. overflow

2. divide by zero

3. invalid

4. underflow

5. inexact

and outputs the values as a string of five characters separated by spaces. The order of the
characters in the output is the same as the order of the flags given above.

Each flag may take the value

T: status flag has signalled during the computation of the norm,

F: status flag has not signalled,

X: the status flag is not supported by the compiler/platform combination being used.

For example, the string T F X T F would signify that

8

Input Status Flags
Test No. n incx fp Inf NaN Result Overflow Invalid Inexact

1 0 1 − − − zero − − −
2 1 0 − − − zero − − −
3 1 1 × − − exact fp − − −
4 1 2 × − − exact fp − − −
5 1 1 × − − exact fp − − ?
6 1 1 × − − exact fp − − ?
7 1 1 × − − exact fp − − ?
8 1 1 × − − exact fp − − ?
9 1 1 − × − Inf − − −
10 1 1 − × − Inf − − −
11 1 1 − − q NaN − × −
12 1 1 − − s NaN − × −
13 10 1 × − − zero − − −
14 5 1 × − − exact fp − − ?
15 3 1 × × − Inf − − −
16 3 1 × × − Inf − − −
17 3 1 × × s Inf − − −
18 3 1 × − s NaN − × −
19 3 1 × − q NaN − × −
20 4 1 − × qs Inf − − −
21 2 1 × − − Inf × − ×
22 2 1 × − − Inf × − ×
23 2 1 × − − inexact fp − − ×
24 4 1 × − − exact fp − − −
25 3 1 × − − exact fp − − −
26 3 1 × − − inexact fp − − ×
27 s/d 1 × − − exact fp − − −
28 s/d 1 × − − inexact fp − − ×
29 4 1 × − − exact fp − − −
30 4 1 × − − exact fp − − −
31 4 1 × − − exact fp − − −
32 4 1 × − − exact fp − − −
33 5 1 × − − inexact fp − − ×
34 5 1 × − − inexact fp − − ×
35 4 1 × − − inexact fp − − ×
36 1025 1 × − − inexact fp − − ×
37 1025 1 × − − inexact fp − − ×
38 3 2 × − − exact fp − − −
39 2 3 × − − inexact fp − − ×
40 3 2 × n/a n/a exact fp − − −
41 2 1 × − − inexact fp − − ×
42 2 1 × − − inexact fp − − ×
43 2 1 × − − exact fp − − −
44 2 1 × − − inexact fp − − ×
45 2 1 × − − inexact fp − − ×
46 4 1 × − − exact fp − − −
47 5 1 × − − inexact fp − − −
48 5 1 × − − inexact fp − − −
49 4 1 d − − exact fp − − −
50 4 1 d − − exact fp − − −
51 4 1 d − − inexact fp − − ×

Table 2: Table showing details of test input data, expected results and expected status flag settings

9

• the overflow and underflow flags signalled,

• the divide by zero and inexact flags did not signal, and

• the invalid flag was reported as not being supported.

If any of the characters used in the string offends the user they may be changed by altering
the values of chTrue (flag signalling), chFalse (flag not signalling) and chUnsupported (flag not
supported) in the module variables section of the module chTests.

A discussion of the testing and reporting of the inexact flag may be found at the start of this
section.

2.3 Controlling computation and output of the test suite

The user may control

1. the amount of detail output when running the test suite, and

2. what results are compared and reported.

Different controls may be applied independently to the single and double precision versions of the
test suite.

The level of output obtained may be altered using the routine setOutputLevel from the module
checkTests. This routine takes a single integer argument level ; for example

CALL setOutputLevel (2)

sets the output level to 2. The level set remains in force throughout the execution of the test suite
unless it is altered by a subsequent call. Thus we may obtain different levels of output for the
different precisions using

! Set output level for double precision tests

CALL setOutputLevel (2)

! ... double precision test calls ...

CALL setOutputLevel (1)

! ... single precision test calls ...

The default level is level = 3 and this level will be used if no calls to setOutputLevel have been
made prior to the test suite being executed. If the value provided to setOutputLevel is outside of
the range [1, 3] then the value 3 is used. The current value of level may be obtained using the
function getOutputLevel which returns the value as an integer:

currentLevel = getOutputLevel ()

The different levels available are

• level = 1 : full output of all test results.

Results are printed for each individual test and for both real and complex input vectors
whether or not the test fails. The output includes

– the title of the test,

– the type of the input vector (REAL or COMPLEX),

– the computed l2-norm,

– the returned IEEE arithmetic status flags,

– a count of the number of failures reported.

10

For both the results and the status flags the program also outputs either Correct or ***In-
correct*** tags after comparing the computed values with the expected values. If any of the
computed results do not agree, the expected results are also output along with a ‘banner’
output line. For example:

Test 22: Boundary value causing overflow

Using REAL input vector

Result returned = +Infinity Correct

IEEE status flags returned: T F F F T **Incorrect**

expected: F F F F T

********* TEST FAILED **************

In the case where the computational result differs from the expected, a line giving the
expected value and the relative difference∣∣∣∣expected− computedexpected

∣∣∣∣
is output unless the expected output is zero when the value

|computed|

is used.

• level = 2 : compressed output of all test results.

As with level = 1 above this level produces output for all the test cases but uses a more
compact form from the detailed level. If the computed results agree with the expected
then a single line is output and tagged Correct. If any differences occur then, in the case
of the computed result, the error in the returned value is given (as detailed in level = 1

above). When the IEEE status flags do not agree then the expected flags are output directly
underneath the returned values. In both cases the incorrect test output is highlighted by
using the tag **Incorrect**. A count of the number of failures is also reported.

For example:

22 R +Infinity NONE T F F F T **Incorrect**

F F F F T

• level = 3 : compressed output of unexpected test results.

The output is the same as level = 2 above but only occurs if differences are detected between
the computed and expected results. A count of the number of failures is also reported.

2.4 Controlling the scope of the testing

By default the test driver will check both the return values of the l2 norm and the settings of the
IEEE status flags. It is also possible just to check the returned values and ignore the status flags
in both the test and the report.

The routine setJustValues from the module checkTests has the form

CALL setJustValues(value)

where value is a simple logical variable. If value is set to .TRUE. then only the computed values
are compared and reported. If value is set to .FALSE. (the default) then both computed values
and the IEEE status flags are compared and reported.

The current setting may be retrieved using

value = getJustValues ()

11

2.5 The datatype testInfoType

The data type testInfoType is used to store the definition of a test, the expected computed value
and returned IEEE status flags, the returned computed value and the returned IEEE status flags,
and a title/short description of the test which is available for output. It is defined as follows:

TYPE testInfoType

INTEGER :: testNo

CHARACTER(LEN=:), ALLOCATABLE :: testDescript

REAL(wp), POINTER :: inVector (:)

INTEGER :: nVal , incxVal

LOGICAL :: initialStatus (5)

REAL (wp) :: expectedNorm

LOGICAL :: expectedStatus (5)

REAL (wp) :: returnedNorm

LOGICAL :: returnedStatus (5)

END TYPE testInfoType

A short description of each component follows:

testNo is the test number associated with the test. This is used to identify the particular test in
the output. Details of how to add extra tests to the suite given in Section 2.6.

testDescript contains a short description of the test and is output for some levels of output.

The next three components define the data to be used in the test. The call to an *nrm2 routine
is of the form

returnedNorm = *nrm2(nVal , inVector , incxVal)

inVector is the data for the real array – for details of how the equivalent complex vector is
generated see the start of this section.

nVal is the number of elements to be used in computing the norm,

incxVal is the gap to be used between elements; elements used are (1, incxV al+ 1, 2 ∗ incxV al+
1, . . . , (nV al − 1) ∗ incxV al + 1),

initialStatus defines the IEEE status flags on entry to the *nrm2 routine. These may be used for
two purposes:

1. set to all FALSE to test that the *nrm2 implementation under test only signals the
correct flags,

2. The flags can also be set to test that the correct union of flags is returned after executing
the *nrm2 routine, i.e., the call to the *nrm2 routine does not adversely affect any
existing settings.

expectedNorm defines the expected return value from the call to the *nrm2 routine. This will
be the same value for the real and complex calls for a given precision. This should be the
correctly rounded representation of the exact value.

expectedStatus defines the expected values of the IEEE status flags on exit from the *nrm2 routine.
This should take account of the initial setting.

returnedNorm is the computed value returned by the call to the *nrm2 routine.

returnedStatus is the vector of IEEE status flags following the call to the *nrm2 routine.

12

2.6 Adding a New Test Case

The code defining the individual test cases within the test suite is linear – each test being executed
in its order of appearance within the file sdTestMod.inc.

The test number assigned to the test depends on its order within the sequence. Thus adding
a new test in the middle of the existing suite will move all the following test numbers out of
alignment with the descriptions in Section 2. It is, therefore, recommended that additional tests
are added after the comment

! Any new tests should be added here in the first instance to

! prevent misaligning test numbers with the descriptions given

! in the user manual.

just before the definition of SUBROUTINE getVals in the file sdTestMod.inc.

2.6.1 Format of the Test Definition

In the following, names like nval , incxVal , etc are shortened forms of the components of the
testInfoType defined via the ASSOCIATE statement:

ASSOCIATE(testNo=>testInfo%testNo , &

expStat=>testInfo%expectedStatus , &

expRes =>testInfo%expectedNorm , &

nVal => testInfo%nVal , &

incxVal => testInfo%incxVal , &

initStat => testInfo%initialStatus)

The components inVector and testdescript are dynamic and are quoted in full.
We use an existing test as an example of how a new test should be defined:

1 ! Vector of length = 4 -- incx = 3, n=2 -- inexact result

2 ALLOCATE (x(4))

3 testInfo%inVector=>x

4 x = [two , three , four , five]

5 nVal = 2

6 incxVal = 3

7 initStat = allFalse

8 expStat = [.FALSE.,.FALSE.,.FALSE.,.FALSE.,.TRUE.]

9 expRes = SQRT(twentynine)

10 testNo = testNo + 1

11 testInfo%testdescript = ’incx = 3, inexact result ’

12 CALL indivtest(testInfo)

13 DEALLOCATE (x)

Line 1: provides a comment describing the test that follows,

Line 2: ALLOCATE just the space needed to contain the input vector, x ,

Line 3: set the component inVector of the variable testInfo of type testInfoType to point to the
vector x . testInfo contains a number of components that constitute all the required data to
run and check an individual test.

Line 4: define the data in the x vector. This may be achieved using a block of code or, for shorter
examples, an array initialization,

Line 5: set the number of values to be used. This should either be the number of elements in the
input vector, x , i.e., SIZE(x) when incxVal is one or the number of elements that should be
used if incxVal is greater than one; i.e., x(j) for j = 1, 1+incxV al, . . . , 1+incxV al×(nV al−1).

Line 6: set the increment to be used when accessing the nVal elements within the vector x ; i.e.,
x(j) for j = 1, 1 + incxV al, . . . , 1 + incxV al × (nV al − 1).

13

Line 7: define the initial settings for the IEEE status flags on entry to the *nrm2 routine. Usually
these will be set to all .FALSE. (the LOGICAL, PARAMETER array allFalse may be used to
do this) so that only the flags set to signalling by the routine are visible. This array may also
be used to test that any signalling flags are not incorrectly reset when the *nrm2 routines
are called.

The order of the flags is:

[overflow, divide− by − zero, invalid, underflow, inexact]

Line 8: define the expected settings of the IEEE floating point status flags on exit from the calls
to each of the *nrm2 routines (it is assumed that the same flags will be returned for all four
of the routines).

Line 9: set the expected result. This should be the result obtained when taking into account the
use of floating point arithmetic.

Line 10: increment the test number, testNo.

Line 11: set a short descriptive title for the test. This is only output when detailed output is
requested (see Section 2.3).

Line 12: makes the call to execute the individual test using indivTest . There is one mandatory
argument, testInfo, which is a structure, of type testInfoType (see Section 2.5 for details)
holding all the information required to run the test and compare the computed result against
the expected.

Line 13: DEALLOCATE the input data vector, x .

3 The Benchmark Program

The benchmark program may be used to compare the execution speed and accuracy of the proposed
hybrid method with an alternative implementation of the *nrm2 routines.

By default the elements of the data vectors used are random in the range (0, 1). The program
then times the proposed and comparison methods and calculates the relative errors in the computed
results. For each value of n, a number of data vectors are generated and both the average execution
times and the maximum relative errors are recorded. Details of the other types of data vectors
that may be used along with information on how to change the extent of the benchmarks may
be found in Section 3.1. A number of these input data vector options were used for testing the
FaithfulNorm implementation described in [4]

The values of n used in the current release are 10p, for p = 1, 2, . . . , 5 and the number of
vectors generated is 50 ∗ 10m,m = 5, 4, . . . , 1 respectively. These values may easily be altered by
changing the statements as described in the declaration section of program, sdBenchmark , in the
file sdBenchmark.f90 .

The output generated by the program provides a synopsis of the execution times and the
accuracy as well as two sets of ratios; one of the proposed hybrid method execution times over the
comparison method execution times and the other, the reciprocal of the first. Values of the first
set, labelled Remark/Other, that are greater than one indicate the factor by which the comparison
method is faster than the proposed hybrid method. For the column labelled Other/Remark, values
greater than one indicate the factor by which the hybrid method is faster than the comparison
method.

3.1 Optional Benchmark Data File

If a file with the name BenchData.dat exists in the directory where a benchmark executable is run
then this file is read and the data used to alter a number of the benchmark parameters.

The format of this data file is as follows:

14

Line 1: precision (integer)

Choose whether to run either the single or double precision benchmark or both:

0: run both single and double precision benchmarks, (Default)

1: run single precision only,

2: run double precision only.

Line 2: types (integer) Choose whether to run either the real or complex routines or both:

0: run both real and complex routines, (Default)

1: run real routines only,

2: run complex routines only.

Line 3: timeAccuracy (integer)

Choose whether to perform either timing or accuracy measurements or both:

0: both time and accuracy, (Default)

1: time only,

2: accuracy only.

Line 4: signElts (integer)

Sets the sign pattern to be applied to the elements of the data vector. All data vector
options determined by dataDesc (see below) generate only positive elements. The selected
sign pattern is then applied.

The currently available options are:

0: signs of elements are left unchanged, (Default)

1: the sign of each element is assigned randonly,

2: all elements are set positive,

3: all elements are set negative.

At the moment options 0 and 2 have exactly the same effect; they have both been made
available for possible future extensions to the package.

Line 5: dataDesc (integer)

Choose the type of input vector required. If the value chosen is one of the user defined ranges
(userDefRandom, userDefAscending, userDefDescending) then it is necessary to provide
further information. See details after the list of options:

1: zeroOneRandom – random values in the range (0, 1) (Default).

2: zeroOneAscending – random values in the range (0, 1) sorted into ascending order. This
is the worst case for the current LAPACK routines in that it forces a change of scaling
factor for every element in the vector.

3: zeroOneDescending – random values in the range (0, 1) sorted into descending order.

4: userDefRandom – random values in a user defined range. Details of how to define the
intervals to be used are given at the end of this section.

5: userDefAscending – as 4. above with the data sorted into ascending order.

6: userDefDescending – as 4. above with the data sorted into descending order.

7: simpleAscending – a data vector containing a simple, monotone increasing, sequence of
elements, s.t. xi = 1 + (i− 1)/n, i = 1, . . . , n. Range: [1, 2).

15

8: simpleDescending – a data vector containing a simple, monotone decreasing, sequence of
elements, s.t. xi = 1 + (n− i)/n, i = 1, . . . , n. Range: [1, 2).

9: spuriousUflow – a vector containing data that will cause harmless underflows (i.e., setting
to zero will not affect the result). The vector length requested, n, must be greater than
2. Then x1 = 2emax−1, x2 = 2emax−t where t = 24 (single precision) and t = 53 (double
precision). {xi}ni=1 are chosen to be in the exponent range [eu,−1].

10: noOflow – given the value of n, random elements are chosen so as to guarantee that
the value of the resultant l2 norm is representable as a valid floating point number in
the chosen precision. The range used is dependent on n and is almost the whole range
available except that the maximum exponent used is reduced. Note: this data could
still cause an overflow to occur if no scaling is applied, for example, using a simple
square and add loop. Exponent range: [eu, emax − t] where t = dlog2(n)e+ 2.

11: aroundOne – all the randomly generated values are around one in magnitude. Exponent
range: [−5, 5].

12: reallySmall – all the randomly generated values are very small in magnitude although
the interval chosen does span the low and middle ranges of both Blue and Kahan’s
algorithms. Exponent range: [eu, est].

13: normGradUflow – all randomly generated values are denormalized numbers. Exponent
range: [eu, emin − t] where t = dlog2(n)e+ 2.

14: fullExpRange – the randomly generated values are chosen from the whole range of
floating point numbers available. Note that it is technically possible that the resultant
Euclidean norm value is not representable in the floating point format being used. To
guarantee the result will be representable, see the noOflow option above. Exponent
range: [eu, emax]

15: lowHybridScale – the randomly generated values are chosen to cause the underflow flag
to signal when using the simple loop in the hybrid method. This will result in a call
to Kahan’s routine, a second pass through the data and scaling. The first value in the
data vector has been chosen to cause an underflow and the rest of the values all lie in
the low range defined for Kahan’s method.

16: highHybridScale – the randomly generated values are chosen to cause the overflow flag
to signal when using the simple loop in the hybrid method. This will result in a call
to Kahan’s routine, a second pass through the data and scaling. The first value in the
data vector has been chosen to cause an overflow and the rest of the values all lie in
the high range defined for Kahan’s method.

17: bothHybridScale – the randomly generated values are chosen to cause both the overflow
and underflow flags to signal when using the simple loop in the hybrid method. This
will result in a call to Kahan’s routine, a second pass through the data and scaling. The
first two value in the data vector has been chosen to cause an underflow and overflow
respectively and the rest of the values all lie in the low and high ranges defined for
Kahan’s method.

18: KahanComp – this is as highHybridScale above but the element causing the overflow
is the last element rather than the first. This causes a worst case input vector for the
original version of Kahan’s method.

If dataDesc options userDefRandom, userDefAscending, or userDefDescending are chosen,
then more input data is required to define the data ranges to be used when generating the
element values. A data range is specified by a pair of integers (minExp,maxExp) which
defines the range of element values to be (2minExp, (2 − ε)2maxExp], i.e., any valid floating
point number, except 2minExp, where the exponent is in the range [minExp,maxExp]. To
make the data generation as flexible as possible, multiple intervals are allowed; no checks
are performed on the given interval values so the defined intervals need not be disjoint.

The form of the additional data is:

16

Line 6: numIntervals (integer)

Provide the number of range definitions (i.e., pairs of exponent values) required.

Line 7–6+numIntervals: (pairs of integers)

Defines the minimum and maximum exponent values that are used to define each interval.
The order of these values is actually immaterial.

If more than one interval is defined the number of elements generated in each interval is
nint = bn/numIntervalsc except the last interval which contains n − (n − 1)nint. The
elements are generated a block at a time contiguously in the vector.

If the file, BenchData.dat , contained the following lines then just the routine SNRM2 (single
precision, real) would be used for accuracy testing only. The input vector would contain elements
whose magnitudes were all in the range (1024, 16384) = (210, 214) and whose signs were randomly
chosen.

1 : single precision only (i.e., restrict to snrm2 and scnrm2)

1 : real routine only (i.e., restrict further to snrm2)

2 : only perform the accuracy tests

1 : set the sign of each element randomly

4 : select user defined data; random values in a specified range

1 : number of ranges to be defined

10 13 : magnitude of elements in the range (2**10, 2**14)

If a data file is not present then the benchmark is run with the defaults shown in the data
description above; i.e., all four routines (single and double precision, real and complex) are run
for both timing and accuracy on data vectors where all the elements are randomly generated in
the range (0, 1). This is equivalent to a BenchData.dat file containing

0 : run single and double precision routines

0 : run real and complex routines

0 : perform both timing and accuracy tests

0 : the sign of each element is left unchanged (equivalent to 2 in this case)

1 : random data in the range (0,1)

The subdirectory Datafiles of Benchmarks contains a number of example data files along with
a ReadMe.txt file providing details of their settings. To use any of these files as input to the
benchmark executables, it must first be renamed BenchData.dat in the same directory as the
benchmark is being executed.

4 Structure of Source Files

The software bundle contains two packagings of the new hybrid code (described in the accompa-
nying article [6]) along with a comprehensive set of test data and a benchmark code that allows
comparison of the efficiency and accuracy of the new code against other implementations. Make-
files are also included to assist with building both the test and benchmark executables.

Wherever possible include files are used so that common code does not have to be duplicated
to produce single and double precision versions of the routines.

The following directory structure has been used:

User Documentation (Doc/)

userManual.tex : the Latex sources for this user manual; this file includes BigTab.tex ,
Introduction.tex , Testing.tex , Benchmark.tex , fileStructure.tex , Makefile.tex , Upate.tex
and Results.tex ,

17

userManual.pdf : a pdf version of userManual.tex ,

refs.bib: the Bibtex data required by userManual.tex .

Algorithm Sources (Hybrid/)

nrm2HybridMod.f90 : a Fortran module containing single and double precision/real and
complex versions of both the hybrid routines (snrm2 , dnrm2 , scnrm2 , dznrm2) and
stand-alone implementations of the one pass Kahan routines (snrm2Kahan, dnrm2Kahan,
scnrm2Kahan, dznrm2Kahan).

This also includes a generic definitions for the names nrm2 and nrm2Kahan which call
the relevant routine depending on the type of the input vector.

nrm2HybridSubs.f90 : a file containing the eight individual Fortran routines implement-
ing the hybrid and one pass Kahan algorithms in single and double precision/real and
complex.

This version could easily be incorporated into an existing non-module based Fortran
library file.

onePassRealKahan.inc, onePassComplexKahan.inc: include files containing the com-
mon code within the single and double precision versions of the one pass version of the
Kahan real and complex routines.

realHybrid.inc, complexHybrid.inc: include files containing the common code within
the single and double precision versions of the hybrid real and complex routines. Used in
nrm2HybridMod.f90 , nrm2HybridSubs.f90 , nrm2HybridOrigKMod.f90 and nrm2HybridOrigKSubs.f90 .

HybridTail.inc, setStatusFlags.inc: include files used by hybrid routines to prevent re-
peating sections of code in multiple routines. Used in nrm2HybridMod.f90 , nrm2HybridSubs.f90 ,
nrm2HybridOrigKMod.f90 and nrm2HybridOrigKSubs.f90 .

nrm2HybridOrigKMod.f90 : a Fortran module containing single and double precision/real
and complex versions of both the hybrid routines (snrm2 , dnrm2 , scnrm2 , dznrm2) and
stand-alone implementations of the original version of the Kahan routines (snrm2Kahan,
dnrm2Kahan, scnrm2Kahan, dznrm2Kahan).

This also includes a generic definitions for the names nrm2 and nrm2Kahan which call
the relevant routine depending on the type of the input vector.

nrm2HybridOrigKSubs.f90 : a file containing the eight individual Fortran routines im-
plementing the hybrid and the original version of the Kahan algorithm in single and
double precision/real and complex.

This version could easily be incorporated into an existing non-module based Fortran
library file.

realKahan.inc, complexKahan.inc: include files containing the common code within the
single and double precision versions of the Kahan real and complex routines. Used in
both nrm2HybridOrigKMod.f90 and nrm2HybridOrigKSubs.f90 .

CInterfaceNrm2.f90 : interface routines to allow the hybrid and Kahan routines to be
called from a C compiler that is interoperable with the Fortran compiler being used.

Note: the method required for building executables when using the C interoperability
features of Fortran may differ from one Fortran/C compiler combination to another.
This may necessitate changes to the Makefile in the Testing directory in order to build
the test program for these routines (sdTestCInterface).

set precision.f90 : module used by the hybrid and Kahan module (as well as alternative
*nrm2 implementations and driver programs) to set the kind parameters for single
(skind) and double (dkind) precision. This code is portable standard Fortran.

Testing Material (Testing/) This directory contains the test module described in Section 2
of this manual plus drivers for the new hybrid and Kahan codes, and all the other BLAS
implementations supplied with the package (described under OtherVersions below).

18

Makefile, runTests: makefile and bash shell script for building and running the various
testing executables; see Section 5 for more details.

sdTest.f90 : This is the common main program used to run the full test suite (i.e., single
and double precision, real and complex input data) on a version of the BLAS Level 1
*nrm2 routines. These routines are assumed to be contained within a module named
nrm2 other . The code requires the module testSubs to pass the four specific routines
(dnrm2 , snrm2 , dznrm2 , scnrm2) and the character variable, descript , which is used as
a heading in the output file to identify the particular set of routines under test.

For more details on both how to control the scope of the testing and how to alter the
amount of detail being output see Section 2.3.

Tests 49 to 51 require that gradual underflow is implemented on the platform being
used to run the tests. The test software calls the function ieee support underflow control

to check that gradual underflow is supported for single and double precision. If this is
not the case for either or both precisions, a message is output on the standard output
channel and the tests are skipped.

sdTestMod.f90 , sdTestMod.inc, indivTest.inc: sdTestMod.f90 contains two subrou-
tines, runDpTests and runSpTests which will run the single and double precision ver-
sions of the test suite respectively. These two routines act as wrappers for the include
file, sdTestMod.inc, which actually defines all the tests along with expected results
and IEEE status flags. The include file indivTest.inc contains routines that run the
individual real and complex versions of the tests for each precision.

The use of include files allows much of the same test code to be used for each precision.

testSubsHybrid.f90 , testSubsGen.f90 : These files all contain a module by the name of
testSubs which imports the names as described under sdTest.f90 above. This inter-
mediate module is required because we may not have control over either the module
name containing the BLAS routines or the names of the four routines under test. See
Section 6 for details of how to test a new implementation of the *nrm2 routines.

checkTests.f90 : module used to check test results and provide the user with a choice of
written reports.

sdTestBLAS.f90 : file used to link the test suite to either an existing library of BLAS
routines that will include implementations of the *nrm2 routines or to a file containing
just the routines under test (i.e., not contained within a module).

sdTestCInterface.c: simple driver program to test the C interface to the new hybrid
routines (in CInterfaceNrm2.f90 within the Hybrid directory). See also the ‘Note’
under the description of CInterfaceNrm2.f90 above.

sdCheckTrue.f90, checkTrueMod.f90,indivTestTrue.inc: Driver program and equiv-
alent files to sdTestMod.f90 and indivTest.f90 that may be used to check the expected
results for each of the tests in the test suite that returns a finite value against the oracle
value.

Benchmark Material (Benchmarks/) This directory contains the Benchmark and support-
ing software described in Section 3 of this user manual.

Makefile, runBenchmarks: makefile and bash shell script for building and running the
various benchmark executables; see Section 5 for more details.

sdBenchmark.f90 : driver program that may be used to compare the efficiency (execution
time) and accuracy of the hybrid method against another implementation.

GenerateTestVectors.f90 : module containing routines that generate test vectors in both
single and double precision. (See Section 3.1 for details of how to generate different
types of input data vectors when running the benchmark software.) Generic interfaces
are used to allow the same calls to be made for both single and double data.

19

oracle.f90 : routines that provide an extended precision computation of the l2 norm of a
vector using a simple square and add loop; these are used to compute the errors in
the results obtained by the various implementations. The multiple precision package
(Bailey [2]), provided in the directory MpPackage, is used to generate the results re-
quired the double precision data. This is done because not all Fortran compilers provide
quadruple precision or provide it in an inconsistent fashion.

The oracle module also checks that the value of the norm of the data vector being
processed by the generic routine (VecOracle) or the two specific routines (spVecOracle

– single precision data and dpVecOracle – double precision data) is representable in
the precision being used to define the data. If the value is not representable then the
module variable, normOverflow , is set to .TRUE. otherwise it is set to .FALSE.. NOTE:
this module variable is not used within the current benchmark software.

The file, testOracle.f90 , contains a small test program that checks the accuracy of
the oracle computations for a simple vector. It also checks that the oracle routine
successfully detects that the input data vector would cause an overflow if computed in
the requested precision.

randMod.f90 : module containing two versions of a double precision random number gen-
erator used to create random test vectors:

1. The two routines dpPortRand and seed implement the portable random number gen-
erator from Schrage [14]. This was never meant as a good quality 64-bit generator
but is both efficient and portable. The use of the fract variable should ensure that
the lower order bits are not all zero, they will just not be very random! seed is used
to set the initial value of the generator and must be a 32-bit integer.

2. The routines, uni64 and fillu, implement the generator published by Marsaglia and
Tsang [12]. This generator is a very good 64-bit generator and is included for those
users who believe that the quality of the random elements may affect the accuracy
of the final results!
Warning: this routine will fail for 32-bit integers if the compiler traps integer
overflows.

Also included is the function randomInt which generates a random integer in the range
[m,n] used to set the exponent range of data values.

quicksort.f90 : set of sorting routines used to sort input data vectors into ascending or
descending order. These routines are only used if the user options zeroOneAscend-
ing, zeroOneDescending, userDefAscending or userDefDescending have been chosen for
dataDesc (see Section 3.1 for details). There is also a generic inteface, qsort, which
allows either single or double precision data to be sorted. A full description of the
implementation of the quicksort routines that are used may be found in [5].

Other Existing or Alternative Implementations (OtherVersions/)

This directory contains other reference implementations of the *nrm2 routines that have
been published (either as code or as detailed algorithm definitions). Also included are a
number of variations of these modules which were generated during the course of this work
to try and improve the performance of these original codes. For convenience these sets of
routines have all been packaged as modules although the original code is largely unaltered.

BlasOrig.f : module containing the original Fortran 66 BLAS Level-1 routines as published
in [11].

newOrig.f90 : the original published code restructured to improve readability; this is a
slightly improved version of the routine that appeared in [8]. This code uses newOrig-
Complex.inc and newOrigReal.inc to avoid duplication of code in the single and double
precision versions.

20

newOrigCsum.f90 : an extension to newOrig.f90 which uses compensated summation to
improve accuracy when collecting the sums of squares. This code uses newOrigCom-
plexCsum.inc and newOrigRealCsum.inc to avoid duplication of code in the single and
double precision versions.

Blue.f90 : an implementation in Fortran 90 of Blue’s triple accumulator algorithm which
was presented in Ratfor in [3]. The code uses blueComplex.inc and blueReal.inc to avoid
duplication of code in the single and double precision versions.

BlueCsum.f90 : an extension to Blue.f90 which uses compensated summation to improve
accuracy when collecting the sums of squares. This code uses blueComplexCsum.inc
and blueRealCsum.inc to avoid duplication of code in the single and double precision
versions.

NewBlue.f90 : an implementation of Blue’s algorithm using only two accumulators. A
pseudocode version of this is provided in [6]. The code uses the include files newBlue-
Complex.inc and newBlueReal.inc to avoid duplication of code in the single and double
precision versions.

lapack.f90 : the routines included as part of the Lapack distribution [13] (version 3.6.1 and
earlier). The BLAS library routines used by the package [1] are provided in case no
platform/compiler specific library is available.

lapackCsum.f90 : an extension of lapack.f90 which uses compensated summation to im-
prove accuracy when collecting the sum of squares.

lapackCsSc.f90 : an extension of lapackCsum.f90 which attempts to improve accuracy fur-
ther by using scale factors that are a power of two rather than element values in the
input vector.

origKahan.f90 : an implementation of the original version of Kahan’s algorithm alone.
A pseudocode version of this is presented as Algorithm 5 in [6]. The code uses the
include files realKahan.inc and complexKahan.inc from the Hybrid directory to avoid
code duplication in the single and double precision versions.

onePassKahan.f90 : an implementation of the one pass version of Kahan’s algorithm
alone. A pseudocode version of this is presented as Algorithm 6 in [6]. The code
uses the include files onePassRealKahan.inc and onePassRomplexKahan.inc from the
Hybrid directory to avoid code duplication in the single and double precision versions.

norm2Intrinsic.f90 : a set of wrapper routines, *nrm2 , that use the intrinsic function
norm2 introduced into the 2008 Fortran standard [10], as a means of computing the
norm. The wrapper routines are used to provide routines of the same name as the
original BLAS routines and to ensure that special cases are handled consistently.

5 Makefiles

Makefiles have been provided in both the Testing and Benchmarks directories. These compile and
link executables for both the proposed hybrid and all the supplied alternative versions.

Both makefiles depend upon an include file, Makefile.inc, which is assumed to be available in
the Submission directory. This sets the compiler to be used, the compilation and linking options
and the path to an existing BLAS library (this is necessary only if the sdTestBLAS executable is
required to run the test suite on an existing library). An example include file is provided in the
distribution but this will need to be edited for the particular compiler/platform combination that
the software is being installed/tested on.

5.1 Makefile: Include File Details

The following variables need to be set to values pertinent to the user’s system (the example settings
given below refer to the NAG Fortran compiler):

21

F95: the Fortran compiler to be used.

The source code uses a number of features from the 2003 Fortran standard [9], for example,
the use of square brackets in array initialization statements.

One of the implementations tested and benchmarked is the Fortran intrinsic function, norm2 ,
which was introduced with the 2008 Fortran standard [10]. If this function is not available
from the compiler being used, then the executables, sdTestNorm2 and sdBenchNorm2 ,
should be removed from the list of executables to be made in the Testing and Benchmarks
makefiles, respectively.

The software also requires the IEEE arithmetic modules, ieee arithmetic, ieee features and
ieee exceptions to be available.

Example: F95=nagfor

F95FLAGS: any flags to be used in the compilation phase of the Fortran compiler. These may
be used to optimize the execution speed, set code warning levels, invoke tools for source code
coverage, etc.

Example: F95FLAGS=-O3

F95LINKFLAGS: any flags that need to be passed at the linking stage of the compilation.
These may be used to ensure the use of static or dynamic libraries, help with debugging, etc

Example: F95LINKFLAGS=

CC: a C compiler that will interoperate with the Fortran compiler defined by F95 above. This
is only required to run the executable sdTestCInterface (see Section 5.2). This may be left
undefined if this executable is not required.

Example: CC=gcc

CCFLAGS: any flags that needs to be used in the compilation phase of the C compiler. Note
that this variable only needs to be set if the CC variable above has been set.

Example: CCFLAGS=-O3

LIBS: the path to a library file containing pre-compiled versions of the BLAS Level 1 *nrm2

routines. Typically such libraries are provided as part of the compiler suite or via the use of
a commercial numerical library.

This variable is only used to build the executables sdTestBLASLib and sdBenchBLASLib
(see Sections 5.2 and 5.3). If these executables are not required then the variable may be
left undefined.

Example: LIBS=

If you successfully generate results for the test and benchmark runs using a platform not
given in the Platforms.txt file in the Results directory, please send a copy of the output files
along with details of the compiler, operating system and hardware used to t.r.hopkins@kent.ac.uk.
Files associated with new platforms will be added to the ‘official’ release and an appropriate
acknowledgement made. It would also be interesting to hear of any library implementations that
have been tested and any further test that have been added.

5.2 Testing Makefile

The makefile (in the directory Testing/) may be used (with gmake) to build a set of executables
which will run the extensive test suite supplied with this package and described in Section 2.
This suite aims to be as comprehensive as possible in testing the accuracy of the four routines for
computing the Euclidean norm of a given input vector which were originally published as part of
the BLAS Level 1 package [11].

22

The executables test a range of algorithms/implementations for computing the Euclidean norm.
It is assumed that IEEE arithmetic is available to the software via the Fortran intrinsic modules,
ieee features, ieee exceptions and ieee arithmetic. The way in which Infand NaNvalues are dealt
with and the setting of IEEE arithmetic status flags are described in detail in the accompanying
article [6].

The following executables may be built using the file Makefile in the Testing directory:

1. sdTestHybrid : new hybrid version using simple loop and Kahan’s algorithm and described
in detail in the main article [6].

2. sdTestOnePassKahan: Kahan’s algorithm (one pass version) on its own. This is computa-
tionally less expensive than the original version when scaling of the input data is required.
A pseudo-code version is presented as Algorithm 6 in [6].

3. sdTestOrigKahan: Kahan’s algorithm (original version) on its own. This is described in
detail in the main article [6] where a pseudo-code version is also given as Algorithm 5.

4. sdTestOrigBLAS : original BLAS routines (Algorithm 539) with the two parameters cutlo and
cuthi set to their defined values for IEEE arithmetic. This implements minor code changes
from the original code which are detailed in the accompanying article [6].

It should be noted that, for organizational reasons, the original BLAS Level 1 routines have
been packaged into a module, nrm2 Other . This should have no effect on the results of either
the testing or benchmark codes.

5. sdTestNewOrig : more readable/maintainable version of 4 originally described in [8] and
improved further here.

6. sdTestBlue: Blue’s algorithm is detailed in [3] where a pseudo-code version is also provided.
It is also described in [6].

7. sdTestNewBlue: the two accumulator variant of Blue’s algorithm is detailed in [6] where a
pseudo-code version is also presented as Algorithm 4.

8. sdTestLa: version of the BLAS Level 1 routines now available (January 2017) via netlib
and distributed with Lapack software (version 3.6.1, June 2016). A pseudo-code version is
presented in the accompanying article [6].

9. sdTestNorm2 : version using the new Fortran (2008+) intrinsic function, norm2 . This uses
wrapper routines to deal with special case and ensure that the resultant routines act in the
same way as the originals.

10. sdTestNewOrigCsum: version of 5 with compensated summation implemented.

11. sdTestBlueCsum: version of 6 with compensated summation implemented.

12. sdTestLaCsum: version of 8 with compensated summation implemented.

13. sdTestLaCsSc: version of 8 with compensated summation and intermediate scaling factors
forced to be powers of two to reduce rounding errors.

14. sdTestCInterface: version that calls the C interface routines for the hybrid package.

15. sdCheckTrue: version that uses extended precision to check the test suite to ensure that the
‘true’ values provided by the suite are correct.

16. sdTestHybridSubs: the new hybrid version using a simple loop and, if necessary, Kahan’s al-
gorithm. The subroutines are supplied as stand-alone routines in the file nrm2HybridSubs.f90
within the Hybrid directory. This run should generate exactly the same results as sdTestHy-
brid .

23

17. sdTestBLASSubs: test an existing implementation of the BLAS Level 1 *nrm2 routines
supplied as either a stand-alone set of source routines (not wrapped in a module) in one or
more files or as one or more pre-compiled (.o) files.

This is a template and may require editing to successfully link.

18. sdTestBLASLib: test an existing platform dependent library; for example, a hardware de-
pendent of the Level-1 BLAS specially tuned for a particular processor.

This is a template and may require editing to successfully link to the library.

It is recommended than only the computed values are tested and not the IEEE status flags
as it is unlikely that precompiled versions will set these flags and this will cause a large
number of warning messages to appear. This may be achieved by using

CALL setJustValues(.TRUE.)

rather than

CALL setJustValues(.FALSE.)

in two places in the file sdTestBLAS.f90 in the Testing directory.

By default

make

will generate the executables 1–14. The remaining executables need to be explicitly named; for
example,

make sdCheckTrue

will generate an executable to check that the test problems appear to have the correct ‘true’
solutions associated with them.

5.3 Benchmarks Makefile

The following executables may be built using the file Makefile in the Benchmarks directory:

1. sdBenchOnePassKahan: Kahan’s algorithm (one pass version) on its own. This is computa-
tionally less expensive than the original version when scaling of the input data is required.
A pseudo-code version is presented as Algorithm 6 in [6].

2. sdBenchOrigKahan: Kahan’s algorithm (original version) on its own. This is described in
detail in the main article [6] where a pseudo-code version is also given as Algorithm 5.

3. sdBenchOrigBLAS : original BLAS routines (Algorithm 539) with the two parameters cutlo

and cuthi set to their defined values for IEEE arithmetic. This implements minor code
changes from the original code which are detailed in the accompanying article [6].

It should be noted that, for organizational reasons, the original BLAS Level 1 routines have
been packaged into a module, nrm2 Other . This should have no effect on the results of either
the testing or benchmark codes.

4. sdBenchNewOrig : more readable/maintainable version of 3 originally described in [8] and
improved further here.

5. sdBenchBlue: Blue’s algorithm is detailed in [3] where a pseudo-code version is also provided.
It is also described in [6].

24

6. sdBenchNewBlue: the two accumulator variant of Blue’s algorithm is detailed in [6] where
a pseudo-code version is also provided.

7. sdBenchLa: version of the BLAS Level 1 routines now available (January 2017) via netlib
and distributed with Lapack software (version 3.6.1, June 2016). A pseudo-code version is
presented in the accompanying article [6].

8. sdBenchNorm2 : version using the new Fortran (2008+) intrinsic function, norm2 . This uses
wrapper routines to deal with special case and ensure that the resultant routines act in the
same way as the originals.

9. sdBenchNewOrigCsum: version of 4 above with compensated summation implemented.

10. sdBenchBlueCsum: version of 5 above with compensated summation implemented.

11. sdBenchLaCsum: version of 7 above with compensated summation implemented.

12. sdBenchLaCsSc: version of 7 above with compensated summation and intermediate scaling
factors forced to be powers of two to reduce rounding errors.

13. testOracle: an executable to check that the multiple precision package is generating plausible
results for double precision data.

14. sdBenchBLASSubs: benchmark an existing implementation of the BLAS Level 1 nrm2 rou-
tines supplied as either a stand-alone set of source routines (not wrapped in a module) in
one or more files or as one or more pre-compiled (.o) files.

This is a template and may require editing to successfully link.

15. sdBenchBLASLib: benchmark an existing platform dependent library; for example, a hard-
ware dependent of the Level-1 BLAS specially tuned for a particular processor.

This is a template and may require editing to successfully link to the library.

By default

make

will generate the executables 1–12. The remaining executables need to be explicitly named; for
example,

make testOracle

will generate an executable to check that the multiple precision package is generating plausible
results for double precision data.

5.4 Shell Scripts

Also provided are two shell scripts, runTests and runBenchmarks, that have been set up to run the
executables obtained by just using the command make in the Testing and Benchmarks directories,
respectively.

Both scripts take a single argument which is the name of a directory to be used to store the
output files generated when running the tests/benchmarks. For example,

./runTests gfOptMac

would, if necessary, create a directory

../Results/Testing/gfOptMac

and write all the resulting test output files to this directory.
If the directory already exists then the user is asked to confirm its use as this may involve the

overwriting of existing files. If no argument is provided then the script exits without running any
executables.

Any output generated on stderr during the execution of the tests/benchmarks is written to
the file RunErrorLog in the Testing and Benchmark directories respectively.

25

6 Updating

The following subsections contain details on how to test and/or benchmark an implementation
of the *nrm2 routines that is not available in the OtherVersions directory of the accompanying
software package. Different approaches are required depending upon whether the new implemen-
tation is available as source code or in some non-source form, for example, a pre-compiled library
or .o files.

Details of how to add a new test case to the existing test suite are covered in Section 2.6.1.

6.1 Testing a New Implementation

To test a new implementation of the *nrm2 routines it is necessary to link the new code with
the test suite software. To facilitate the testing of the algorithms and their variants provided in
the current package, the test suite software has been constructed to expect the *nrm2 routines
to be available as a module. The test driver (sdTest.f90) USEs the module testSubs to import
the four functions dnrm2 , dznrm2 , scnrm2 and snrm2 along with a descriptive title to allow easy
identification of the implementation under test (the title will appear as a header in the generated
results file).

For the majority of the implementations in the current package the module containing the
source files is nrm2 Other and the names of the routines are those given above. Listing 1 shows
the required form of the module testSubs in this case.

Listing 1: Version used for modules in OtherVersions

1 MODULE testSubs

2 !

3 ! This module is used to pass the required routines and description

4 ! variable through to sdTest for one of the modules found in the

5 ! OtherVersions directory . All the BLAS implementations in this

6 ! directory are contained within a module named nrm2_Other and use

7 ! the normal names. The description string is set in the particular

8 ! module using the character variable descript.

9 !

10 USE nrm2_Other , ONLY : dnrm2 , dznrm2 , scnrm2 , snrm2 , descript

11 END MODULE testSubs

Listing 2 gives the version of MODULE testSubs used to test the proposed hybrid routines.
Note that here the required routine names are imported from the module nrm2HybridMod and the
variable containing the descriptive title is defined explicitly in testSubs.

Listing 2: Version used for the new hybrid versions

1 MODULE testSubs

2 !

3 ! This module is used to pass the required routines and description

4 ! variable through to sdTest from the new hybrid module.

5 ! While the routine names are as expected they are imported

6 ! from the module nrm2HybridMod rather than nrm2_other .

7 ! The description string is set here explicitly .

8 !

9 USE nrm2HybridMod , ONLY : dnrm2 , dznrm2 , scnrm2 , snrm2

10 CHARACTER (LEN=∗) , PARAMETER : : descript=’the new hybrid routines ’

11 END MODULE testSubs

Finally, Listing 3 shows how the Kahan routines used in the hybrid module may be tested by
using local names. As with Listing 2, the descript variable is set explicitly in the testSubs module.

Listing 3: Version used for the Kahan versions used by the new hybrid codes

1 MODULE testSubs

2 !

3 ! This module is used to pass the required routines and description

4 ! variable through to sdTest for the Kahan routines contained in

26

5 ! the new hybrid module.

6 ! The routine names are imported from the module nrm2HybridMod

7 ! rather than nrm2_other and , because they are not the expected

8 ! names , we need to change them via the USE statement.

9 ! The description string is set here explicitly .

10 !

11 USE nrm2HybridMod , ONLY : dnrm2=>dnrm2Kahan , dznrm2=>dznrm2Kahan , &
12 scnrm2=>scnrm2Kahan , snrm2=>snrm2Kahan

13 CHARACTER (LEN=∗) , PARAMETER : : descript = &
14 ’the Kahan algorithm implementation ’

15 END MODULE testSubs

If the new routines are already packaged as a module, then the approach used in Listing 2
may be used to interface this module with the test suite. The only changes necessary should be
to use the name of the new module in place of nrm2HybridMod in the USE statement at line 9 and
change the string assignment to the variable, descript , to something appropriate. The associated
Makefile should then be edited to add the new module using the executable sdTestOnePassKahan
as a template.

If the routines to be tested are available as source code but are not packaged as a module, then
the simplest approach is to wrap them as a module, nrm2 Other , and use Listing 1 directly. The
associated Makefile should then be edited using the executable sdTestOrigBLAS as a template.

If the new implementation is not available as source code then the templates provided in
the makefile in the Testing directory should be used to build the executables. The template
sdTestBLASLib provides details for linking against a pre-compiled library and sdTestBLASSubs for
routines only available as .o files or as source code not packaged in a module.

6.2 Running the Benchmark Code against New Sources

If the comparison implementation is in the form of a pre-compiled library (i.e., no source code
is available) or is presented as a set of source routines not contained in a module (either in
.f/.f90/.f95 or .o format), then the benchmark source file sdBenchmark.f90 needs to be
changed. (An alternative for a set of routines in source format would be to wrap them in a
module as described in Section 6.1 above.) The makefile will also need to be changed in order to
build the required executable.

The following steps are required:

1. Follow the instructions in the comments at the start of the program file sdBenchmark.f90 .
The code has been set up to import the required routines, *nrm2 , from the module, nrm2 other .
Thus, if this is not the case, the routines need to be declared EXTERNAL and the type of
each function declared explicitly.

2. To build the executables (sdBenchBLASLib and sdBenchBLASSubs) follow the comments
in the file Makefile in the Benchmarks directory for these names.

Note: the use of sdBenchmark.f90 rather than sdBenchmark.o; this forces the compiler to
overwrite any existing .o and .mod (or equivalent) files under all circumstances.

3. For the case where the comparison implementation is in the form of a set of routines different
build definitions may be necessary depending on the ‘form’ of the routines:

.o files: just link

source files: if we have fixed format then it will probably be necessary to use a different
set of compiler flags to take account of it.

If the source code is not Fortran, then an appropriate compile line will be needed as
well as possible changes to the link line to accommodate the mixed language nature of
the build.

27

7 Results

The directory Results contains the results files obtained by running the various test and benchmark
programs on different compiler/hardware combinations. The file Platforms.txt gives details of each
platform on which the tests have been run and the associated directory name within the Results
directory.

The files runTests and runBenchmarks in the Testing and Benchmarks directories respectively
may be used to write the output files directly to a user named directory. See Section 5 for more
details of both the makefiles and shell scripts.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK: Users’ Guide
(3rd ed.). SIAM, Philadelphia, PA, USA. http://www.netlib.org/lapack/lug/

[2] D. H. Bailey. 1995. A Fortran 90-based Multiprecision System. ACM Trans. Math. Software
21, 4 (Dec. 1995), 379–387. http://doi.acm.org/10.1145/212066.212075

[3] J. L. Blue. 1978. A Portable Fortran Program to Find the Euclidean Norm of a Vector.
ACM Trans. Math. Software 4, 1 (1978), 15–23. DOI:http://dx.doi.org/10.1145/355769.

355771

[4] S. Graillat, C. Lauter, P. Tang, N. Yamanaka, and S. Oishi. 2015. Efficient Calculations of
Faithfully Rounded L2-Norms of n-Vectors. ACM Trans. Math. Software 41, 4, Article 24
(Oct. 2015), 20 pages. DOI:http://dx.doi.org/10.1145/2699469 Software package avail-
able from http://www.christoph-lauter.org/faithfulnorm.tgz; retrieved November 27, 2016.

[5] R. J. Hanson and T. R. Hopkins. 2013. Numerical Computing with Modern Fortran. SIAM
Publications, Philadelphia, PA, USA.

[6] R. J. Hanson and T. R. Hopkins. 2015. Remark on Algorithm 539: A Modern Fortran
Reference Implementation for Carefully Computing the Euclidean Norm. ACM Trans. Math.
Software 0, 0 (2015), 00–00. Submitted for publication in ACM TOMS.

[7] M. D. Hirschhorn. 2011. When is the sum of consecutive squares a square? Mathematical
Gazette 95 (Nov. 2011), 511–512. http://web.maths.unsw.edu.au/~mikeh/webpapers/

paper173.pdf

[8] T.R. Hopkins. 1996. Restructuring Software: A Case Study. Software — Practice and Expe-
rience 26, 8 (Aug. 1996), 967–982.

[9] ISO/IEC. 2004. Information Technology – Programming Languages – Part 1, Base Language
– Fortran (ISO/IEC 1539:2004). ISO/IEC Copyright Office, Geneva, Switzerland.

[10] ISO/IEC. 2011. Information Technology – Programming Languages – Fortran – Part 1: Base
Language (ISO/IEC 1539:2010). ISO/IEC Copyright Office, Geneva, Switzerland.

[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Algorithm 539: Basic
Linear Algebraic Subprograms for Fortran Usage. ACM Trans. Math. Software 5, 3 (Sept.
1979), 324–325.

[12] G. Marsaglia and W. W. Tsang. 2004. The 64-bit universal RNG. Statistics & Probability
Letters 66, 2 (Jan. 2004), 183–187. DOI:http://dx.doi.org/10.1016/j.spl.2003.11.001

[13] LAPACK Project. 2015. LAPACK Official Download Site. http://www.netlib.org/

lapack/. (2015). Accessed: 2015-06-05.

28

[14] L. Schrage. 1979. A More Portable Fortran Random Number Generator. ACM Trans. Math.
Software 5, 2 (June 1979), 132–138. DOI:http://dx.doi.org/10.1145/355826.355828

29

