
TECHNICAL DOCUMENTATION

Reference Manual and User’s Guide

Contents

1 Overview. 4

2 Libraries needed. 5

3 General design. 10

4 Modules. 12

4.1 Module precision. 12
4.2 Module tools. 12

4.2.1 tools ij2s. 13
4.2.2 tools s2ij. 13
4.2.3 tools ijk2s. 14
4.2.4 tools s2ijk. 15

4.3 Module random. 15
4.3.1 random parametersup. 16
4.3.2 random uniform0d. 16
4.3.3 random normalstd0d. 16
4.3.4 random normal0d. 17
4.3.5 random normal1dmatrix. 18
4.3.6 random normal1dsqrtmatrix. 19
4.3.7 random meanestimator1d. 20
4.3.8 random covarianceestimator1d. 20
4.3.9 random sqrtcovestimator1d. 21

4.4 Module initialize. 22
4.4.1 initialize parametersup. 22
4.4.2 initialize initialize1. 22
4.4.3 initialize initialize2. 23

4.5 Module model. 23
4.5.1 model parametersup. 23
4.5.2 model model. 24
4.5.3 model tangmodel. 24
4.5.4 model sqrtmodelerror. 25
4.5.5 model modelerror. 25

1

CONTENTS 2

4.6 Module observations. 25
4.6.1 observations parametersup. 26
4.6.2 observations ifobservations. 26
4.6.3 observations numberobs. 26
4.6.4 observations obsvalue. 27
4.6.5 observations tangobsop. 27
4.6.6 observations obsop. 27
4.6.7 observations sqrtcovobs. 28
4.6.8 observations covobs. 28

4.7 Module parallel. 28
4.7.1 parallel init. 29
4.7.2 parallel ranksize. 30
4.7.3 parallel finalize. 30
4.7.4 parallel pregrid. 30
4.7.5 parallel postgrid. 31
4.7.6 parallel predistribute. 31
4.7.7 parallel postdistribute. 32
4.7.8 parallel getrf. 32
4.7.9 parallel gesv. 33
4.7.10 parallel gemm. 34
4.7.11 parallel operator. 35
4.7.12 parallel gesvd. 36
4.7.13 parallel svdcut. 37

4.8 Module ekf. 38
4.8.1 ekf predictor. 38
4.8.2 ekf corrector. 39

4.9 Module enkf. 40
4.9.1 enkf predictor. 40
4.9.2 enkf corrector. 41

4.10 Module rrsqrtkf. 42
4.10.1 rrsqrtkf predictor. 42
4.10.2 rrsqrtkf corrector. 43

4.11 Module rrsqrtenkf. 44
4.11.1 rrsqrtenkf predictor. 45
4.11.2 rrsqrtenkf corrector. 45

5 How to use the package. 46

5.1 Case ekf. 47
5.2 Case enkf. 48
5.3 Case rrsqrtkf. 48
5.4 Case rrsqrtenkf. 49
5.5 An example of a main program. 50

6 Examples. 52

6.1 Example 0D. 52
6.1.1 Problem. 52
6.1.2 Domain. 52

CONTENTS 3

6.1.3 State vectors. 53
6.1.4 Model. 53
6.1.5 Model errors. 53
6.1.6 Observations. 53
6.1.7 Observation errors. 53
6.1.8 Observation operator and the tangent observation operator. 54
6.1.9 Initialization. 54
6.1.10 Experiment. 54

6.2 Example 2D. 55
6.2.1 Problem. 55
6.2.2 Domain. 56
6.2.3 State vectors. 56
6.2.4 Model. 56
6.2.5 Model errors. 57
6.2.6 Observations. 57
6.2.7 Observation errors. 58
6.2.8 Observation operator and the tangent observation operator. 58
6.2.9 Initialization. 58
6.2.10 Experiment. 59

6.3 Example 3D - Assimilation of CO. 59
6.4 Example 3D - Assimilation of O3. 61

1 OVERVIEW. 4

1 Overview.

The package presented here presents a set of Fortran 90 modules that implement the Kalman
filter adapted for large scale problems. The methods that are implemented are the Ex-
tended Kalman filter (identified as EKF), the Reduced Rank Square Root filter (identified
as RRSQRTKF), the Ensemble Kalman filter (identified as ENKF) and the Reduced Rank
Square Root Ensemble filter (identified as RRSQRTENKF). Each method and each necessary
task into the assimilation (for example model and observations) is coded into modules that can
be replaced according to the application.

A list of capabilities is described below:

• Modularity: as mentioned before, each task into an assimilation implementation is
separated one from another. It means that observations, model and assimilation are
different entities. For example, if the observation stations change the location, there is no
need to modify the main code, but only a module related with them. If we need to change
the model, there is no need to transform all the code, but only the module related with
the model. If we want to change the Kalman filter version, a change in the module related
with the assimilation will suffice. This will allow the user to make minimum changes in
all the codes around a modelling system (model, data formats, libraries, configuration
files) in order to avoid programmer bugs.

• Simplicity: there are no derived types of variables defined in the code. It is clear that
derived types of variables are a useful language tool in order to make powerful codes, but
in this case the intention was to determine the global variables and the specific functions
associated to the assimilation. The users are encouraged to introduce all the new abstract
types of variables and all the complexity they need in those modules that have to be edited,
rather than adjust their codes to an existent structure. The code has been prepared for
both an expert programmer as well as for a medium programmer.

• Language: the modules are programmed in Fortran 90. The choice of the language
was made because a big number of large scale models are written either in Fortran 77
or in Fortran 90. Only Fortran standards have been used, and the code will work with
almost any Fortran compiler. It has been succesfully compiled and executed with the
Intel Fortran Compiler, Portland Fortran Compiler, GNU Fortran and g95, and its MPI
wrappers.

• Precision: the modules can handle single and double precision. Some models have their
outputs in single precision, others in double precision, so this is a useful feature. The
switch between these two choices is done changing only one parameter in the whole code.

• Parallelism: repeated tasks like propagating states (or applying the observation opera-
tor, or the tangent observation operator, or the tangent model) are parallelized using the
master-slave strategy with MPI (Message Passing Interface). In this case a set of inde-
pendent tasks are sent to the processors. Once the task is performed, the slave receives a
new task from the master. Linear algebra operations are performed using BLACS (Basic
Linear Algebra Communication Subprograms) and SCALAPACK (Scalable LAPACK).
The global matrices are distributed in a processor grid, then the operation is performed
in each processor over local matrices. Finally, the global matrices are rebuilt from local

2 LIBRARIES NEEDED. 5

pieces. The parallelism is included in a module and the user just needs to call the parallel
routines implemented there avoiding communicators and memory distribution.

2 Libraries needed.

To compile the modules, we need to compile additional libraries:

• BLAS (Basic Linear Algebra Subroutines): they are routines that provide standard build-
ing blocks for performing basic vector and matrix operations. The Level 1 BLAS perform
scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-vector op-
erations, and the Level 3 BLAS perform matrix-matrix operations. See [1].

• LAPACK (Linear Algebra Package): it is written in Fortran 77 and provides routines for
solving systems of simultaneous linear equations, least-squares solutions of linear systems
of equations, eigenvalue problems, and singular value problems. See [2].

• MPI (Message Passing Interface): MPI is a library specification for message-passing,
proposed as a standard by a broadly based committee of vendors, implementors, and
users. See [5].

• BLACS (Basic Linear Algebra Communication Subprograms): it is a linear algebra ori-
ented message passing interface that may be implemented efficiently and uniformly across
a large range of distributed memory platforms. See [3].

• SCALAPACK (Scalable LAPACK): it includes a subset of LAPACK routines redesigned
for distributed memory MIMD parallel computers. It is currently written in a Single-
Program-Multiple-Data style using explicit message passing for interprocessor communi-
cation. It assumes matrices are laid out in a two-dimensional block cyclic decomposition.
It is designed for heterogeneous computing and it is portable on any computer that sup-
ports MPI or PVM. See [4].

The user should notice that if he wants to compile the code from scratch with his own
compiler, it will be necessary to compile the libraries from the source code, because it can
cause incompatibilities. This is equivalent to set configuration files in the libraries according
to the architecture of the machines and the compiler used.

Here below there are hints to compile the libraries with different compilers. Remember that
there are items that can change according to the version of compilers and the architecture, so
use them as a guide.

• BLAS and LAPACK: you need to edit a make.inc file in the following way:

For g95:

FORTRAN = g95

OPTS = -funroll-loops -O2

LOADER = $(FORTRAN)

TIMER = EXT_ETIME

For gfortran:

2 LIBRARIES NEEDED. 6

FORTRAN = gfortran

OPTS = -O2

LOADER = $(FORTRAN)

TIMER = INT_ETIME

For ifort:

FORTRAN = ifort

OPTS = -O3 -fp-port

NOOPT = -fltconsistency

LOADER = $(FORTRAN)

LOADOPTS = -O3

TIMER = EXT_ETIME

For pgf90:

FORTRAN = pgf90

OPTS = -Mnounroll -O3

LOADER = $(FORTRAN)

TIMER = EXT_ETIME

• MPICH: you need to execute the configure script with the following arguments:

./configure --prefix=<path to directory where MPICH will be \

\installed> -fc=<Fortran compiler> -f90=<Fortran 90 \

\compiler> --with-device=<device> --without-romio

• BLACS: you need to edit the Bmake.inc file in the following way:

For g95:

BTOPdir = <path to BLACS source code>

COMMLIB = MPI

PLAT = LINUX

MPIdir = <path to directory where MPI is installed>

INTFACE = -Df77IsF2C

SENDIS =

BUFF =

TRANSCOMM = -DCSameF77

WHATMPI =

SYSERRORS =

F77 = mpif90

F77NO_OPTFLAGS =

F77FLAGS = $(F77NO_OPTFLAGS) -O

F77LOADER = $(F77)

F77LOADFLAGS =

CC = mpicc

CCFLAGS = -O

CCLOADER = $(CC)

CCLOADFLAGS =

2 LIBRARIES NEEDED. 7

For gfortran:

BTOPdir = <path to BLACS source code>

COMMLIB = MPI

PLAT = LINUX

MPIdir = <path to directory where MPI is installed>

INTFACE = -DAdd_

SENDIS =

BUFF =

TRANSCOMM = -DCSameF77

WHATMPI =

SYSERRORS =

F77 = mpif90

F77NO_OPTFLAGS =

F77FLAGS = $(F77NO_OPTFLAGS) -O

F77LOADER = $(F77)

F77LOADFLAGS =

CC = mpicc

CCFLAGS = -O

CCLOADER = $(CC)

CCLOADFLAGS =

For ifort:

BTOPdir = <path to BLACS source code>

COMMLIB = MPI

MPIdir = <path to directory where MPI is installed>

INTFACE = -DAdd_

SENDIS =

BUFF =

TRANSCOMM = -DCSameF77

WHATMPI =

SYSERRORS =

F77 = mpif90

F77NO_OPTFLAGS = -O0

F77FLAGS = $(F77NO_OPTFLAGS) -O

F77LOADER = $(F77)

F77LOADFLAGS =

CC = mpicc

CCFLAGS = -O

CCLOADER = $(CC)

CCLOADFLAGS =

For pgf90:

BTOPdir = <path to BLACS source code>

COMMLIB = MPI

2 LIBRARIES NEEDED. 8

MPIdir = <path to directory where MPI is installed>

INTFACE = -DAdd_

SENDIS =

BUFF =

TRANSCOMM = -DCSameF77

WHATMPI =

SYSERRORS =

F77 = mpif90

F77NO_OPTFLAGS =

F77FLAGS = $(F77NO_OPTFLAGS) -O

F77LOADER = $(F77)

F77LOADFLAGS =

CC = mpicc

CCFLAGS = -O

CCLOADER = $(CC)

CCLOADFLAGS =

• SCALAPACK: you have to edit the SLmake.inc file in the following way:

For g95:

home = <path to SCALAPACK source code>

BLACSdir = <path to directory where BLACS is installed>

SMPLIB = <path to directory where MPI is installed>/libmpich.a

BLACSFINIT = $(BLACSdir)/blacsF77init_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSCINIT = $(BLACSdir)/blacsCinit_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSLIB = $(BLACSdir)/blacs_MPI-$(PLAT)-$(BLACSDBGLVL).a

F77 = mpif90

CC = mpicc

NOOPT =

F77FLAGS = -funroll-all-loops -O3 $(NOOPT)

DRVOPTS = $(F77FLAGS)

CCFLAGS = -O4

SRCFLAG =

F77LOADER = $(F77)

CCLOADER = $(CC)

F77LOADFLAGS =

CCLOADFLAGS =

CDEFS = -Df77IsF2C -DNO_IEEE $(USEMPI)

BLASLIB = <directory where BLAS is installed>/libblas.a

LAPACKLIB = <directory where LAPACK is installed>/liblapack.a

For gfortran:

home = <path to SCALAPACK source code>

BLACSdir = <path to directory where BLACS is installed>

SMPLIB = <path to directory where MPI is installed>/libmpich.a

BLACSFINIT = $(BLACSdir)/blacsF77init_MPI-$(PLAT)-$(BLACSDBGLVL).a

2 LIBRARIES NEEDED. 9

BLACSCINIT = $(BLACSdir)/blacsCinit_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSLIB = $(BLACSdir)/blacs_MPI-$(PLAT)-$(BLACSDBGLVL).a

F77 = mpif90

CC = mpicc

NOOPT =

F77FLAGS = -funroll-all-loops -O3 $(NOOPT)

DRVOPTS = $(F77FLAGS)

CCFLAGS = -O4

SRCFLAG =

F77LOADER = $(F77)

CCLOADER = $(CC)

F77LOADFLAGS =

CCLOADFLAGS =

CDEFS = -DAdd_ -DNO_IEEE $(USEMPI)

BLASLIB = <directory where BLAS is installed>/libblas.a

LAPACKLIB = <directory where LAPACK is installed>/liblapack.a

For ifort:

home = <path to SCALAPACK source code>

BLACSdir = <path to directory where BLACS is installed>

SMPLIB = <path to directory where MPI is installed>/libmpich.a

BLACSFINIT = $(BLACSdir)/blacsF77init_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSCINIT = $(BLACSdir)/blacsCinit_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSLIB = $(BLACSdir)/blacs_MPI-$(PLAT)-$(BLACSDBGLVL).a

F77 = mpif90

CC = mpicc

NOOPT =

F77FLAGS = -O2 $(NOOPT)

DRVOPTS = $(F77FLAGS)

CCFLAGS = -O2

SRCFLAG =

F77LOADER = $(F77)

CCLOADER = $(CC)

F77LOADFLAGS =

CCLOADFLAGS =

CDEFS = -DAdd_ -DNO_IEEE $(USEMPI)

BLASLIB = <directory where BLAS is installed>/libblas.a

LAPACKLIB = <directory where LAPACK is installed>/liblapack.a

For pgf90:

home = <path to SCALAPACK source code>

BLACSdir = <path to directory where BLACS is installed>

SMPLIB = <path to directory where MPI is installed>/libmpich.a

BLACSFINIT = $(BLACSdir)/blacsF77init_MPI-$(PLAT)-$(BLACSDBGLVL).a

BLACSCINIT = $(BLACSdir)/blacsCinit_MPI-$(PLAT)-$(BLACSDBGLVL).a

3 GENERAL DESIGN. 10

BLACSLIB = $(BLACSdir)/blacs_MPI-$(PLAT)-$(BLACSDBGLVL).a

F77 = mpif90

CC = mpicc

NOOPT =

F77FLAGS = -Mnounroll -O3 $(NOOPT)

DRVOPTS = $(F77FLAGS)

CCFLAGS = -O4

SRCFLAG =

F77LOADER = $(F77)

CCLOADER = $(CC)

F77LOADFLAGS =

CCLOADFLAGS =

CDEFS = -DAdd_ -DNO_IEEE $(USEMPI)

BLASLIB = <directory where BLAS is installed>/libblas.a

LAPACKLIB = <directory where LAPACK is installed>/liblapack.a

3 General design.

The package consists of several Fortran 90 modules, namely:

• precision: it defines precision in all types of variables.

• tools: it provides tools to simplify tasks in main programs or modules.

• random: it is devoted to random generation of numbers and vectors.

• initialize: it initializes the filter.

• model: it is dedicated to the model.

• observations: it sets all things related to observations.

• parallel: it provides procedures for parallelization.

• ekf: implementation of the Extended Kalman filter.

• enkf: implementation of the Ensemble Kalman filter.

• rrsqrtkf: implementation of the Reduced Rank Square Root Kalman filter.

• rrsqrtenkf: implementation of the Reduced Rank Square Root Ensemble Kalman filter.

The module precision should be included in all the modules listed above and the modules
and programs developed by the user because it defines precision in all variables.

The module tools includes auxiliary functions. The user can add here all the tools needed
to perform the simulation.

The module random has functions and subroutines that go from random number genera-
tion with uniform distribution to vector random generation with gaussian distribution with a
prescribed mean and covariance matrix. Users can include additional functions if needed.

In general, the modules contain a subroutine called <modulename> parametersup. The new
parameters, if any, may be added to the list of public global variables in order to make them

3 GENERAL DESIGN. 11

visible outside the scope of the module. There are situations where some subroutines are used
and others are not. In the last case, the user should not removed them, but remove the body
of the subroutine, because they are needed at compilation time.

The module initialize initializes the state vector and the covariance matrix (or its square
root version). Users can include here auxiliary modules in order to generate the initial condition.

The module model includes the model, its tangent version (that it will be used in some
versions of the filter), and the covariance matrix of model errors (or its square root). The
idea is to build a wrapper around an existing model in order to minimize edition in the model
source code. Considerations of handling multiple types of variables, nonlinear run for the
tangent model, formats of input data, etc., should be included in this module.

The module observations includes all the things related to observations, for example: to
determine the number of observations, their values, time in which observations appear, etc. The
user can add definition of station locations, types of observations, handling of different kind of
observations (for example humidity, temperature and pressure), file formats if the observations
are given in a file, etc.

Notice that users can take advantage of Fortran features. A Fortran array can be seen as
a vector, thinking in column ordering (for C language, the ordering is performed by rows).
Taking this property into account, inside the module model, users can think of the state vector
as a 3-dimensional array, as it is normally used in large models. But outside the module, the
3-dimensional array is seen as a state vector, so there is no need to code a mapping and make
the code less efficient. The same remark applies to the module observations and its associated
procedures.

The module parallel contains a set of subroutines that, in general terms, are wrappers
of existing parallel subroutines from MPI, BLACS, PBLAS and SCALAPACK. The objective
to do this is that users do not deal directly with parallelization. Users can work with parallel
subroutines as if they coded a sequential program. For repeated tasks, like the propagation of
covariance matrices (the model has to be called many times), the master-slave strategy is used.
For matrix operations, global matrices are distributed into the processor grid, then the matrix
operation is performed in each processor using parallel libraries (PBLAS and SCALAPACK),
and finally, the local pieces are gathered into the global matrix. In case users need another
repeated task, they have to edit the parallel operator subroutine. In case users need another
matrix operation, they can follow the same style as mentioned before: distribution, operation,
gathering.

The modules ekf, enkf, rrsqrtkf and rrsqrtenkf propose implementations of the Kalman
filter dividing tasks in prediction and correction of the state vector and covariance matrices.
These modules can serve as a guide to code new methods.

Programmers can notice that there are no abstract types of variables defined. This has been
done on purpose in order to keep the source code as simple as possible. All the complexity
and structures that can be defined in Fortran 90 (or other languages) should be built above
these modules. Thinking in this way, the proposed package should be considered as a low-level
software that users can include in their own programs.

All the linear algebra computation is performed using the libraries BLAS, LAPACK, PBLAS
and SCALAPACK.

As a final remark, each module can be extended, or new modules can be defined and interact
with the existing modules, at a low cost in lines of source code. As an example for a real case,
see the next sections.

4 MODULES. 12

4 Modules.

The library is a set of Fortran 90 modules with the minimum requirements in order to set
up the assimilation. The user must provide the model and the observations because they will
highly depend on the application. Here below there is a detailed description of each Fortran 90
module.

4.1 Module precision.

The module precision is the most basic module. It defines global variables whose purpose is
to set the precision in all types of variables.

• Name: precision

• Dependencies: none

• Global variables:

- low (integer): number of bytes for single precision variables

- high (integer): number of bytes for double precision variables

- plo (integer): precision for logical variables

- pch (integer): precision for character variables

- pin (integer): precision for integer variables

- pre (integer): precision for real variables

• Adding code: this module can be edited in order to change the precision. For example,
if one works in a computer where a real double precision variable has 16 bytes, it must
be set: high = 16 and pre = high

4.2 Module tools.

The purpose of the module tools is to provide tools to simplify tasks in the main programs.
The user can include here its own functions according to the application.

• Name: tools

• Dependencies: precision

• Global variables:

- from precision: low, high, plo, pch, pin, pre

• Adding code: the user can edit this module adding new tools in order to make them
visible in the assimilation modules

The subroutines/functions associated to this module are:

4 MODULES. 13

4.2.1 tools ij2s.

• Purpose: it maps indices of a matrix of size nx × ny to indices of a vector of size nx ⋆ ny

using Fortran style

• Synopsis: tools ij2s(nx , i , j , s)

• Inputs:

- nx (integer): first dimension of a matrix

- i (integer): first coordinate of a matrix element (1 ≤ i ≤ nx)

- j (integer): second coordinate of a matrix element (1 ≤ j ≤ ny)

• Inputs/outputs: none

• Outputs:

- s (integer): index of the vector element (1 ≤ s ≤ nx ⋆ ny) corresponding to the (i
, j) matrix element according to the Fortran style

• Calls: none

• Comments: in Fortran a matrix can be seen as a vector considering a predefined order
by columns. For example, for a 2× 2 matrix would be:

A =

[

1 3
2 4

]

←→ v =









1
2
3
4









. (1)

Given a position (i, j) in a matrix A of dimension nx×ny, we have to deduce the position
s of the element in the corresponding vector v ordering the matrix by columns as in
Fortran 90. Forming v, at the position (i, j) we have already stored j − 1 columns, and
then we have to put the last i components. Therefore:

s = (j − 1)nx + i. (2)

4.2.2 tools s2ij.

• Purpose: it maps indices of a vector of size nx ⋆ ny to indices of a matrix of size nx × ny

using Fortran style

• Synopsis: tools s2ij(nx , s , i , j)

• Inputs:

- nx (integer): first dimension of a matrix

- s (integer): index of the vector element (1 ≤ s ≤ nx ⋆ ny)

• Inputs/outputs: none

• Outputs:

4 MODULES. 14

- i (integer): first coordinate of the matrix element corresponding to the s vector
element according to the Fortran style

- j (integer): second coordinate of the matrix element corresponding to the s vector
element according to the Fortran style

• Calls: none

• Comments: we have to do the inverse process of the previous subroutine. That is, given
a component s of the vector v of size nx ⋆ ny, we have to find the position (i, j) in a
matrix A of size nx × ny, where A is formed storing the components of v in columns in
the matrix A. For example:





























1
2
3
4
5
6
7
8
9





























←→





1 4 7
2 5 8
3 6 9



 . (3)

Using the remainder’s theorem we have that:

s = nxr + t, 0 ≤ t < nx. (4)

If t 6= 0, then it is clear that i = t, but if t = 0, it means that we have stored exactly r
columns and then we must define i = nx. Once we have i, the number (s− i) /nx is the
number of columns minus 1, therefore j = (s− i) /nx + 1. Thus, we have computed (i, j)
from s.

4.2.3 tools ijk2s.

• Purpose: it maps indices of a matrix of size nx × ny × nz to indices of a vector of size
nx ⋆ ny ⋆ nz using Fortran style

• Synopsis:

– tools ijk2s(nx , ny , i , j , k , s)

• Inputs:

- nx (integer): first dimension of a matrix

- ny (integer): second dimension of a matrix

- i (integer): first coordinate of a matrix element (1 ≤ i ≤ nx)

- j (integer): second coordinate of a matrix element (1 ≤ j ≤ ny)

- k (integer): third coordinate of a matrix element (1 ≤ k ≤ nz)

• Inputs/outputs: none

4 MODULES. 15

• Outputs:

- s (integer): index of the vector element (1 ≤ s ≤ nx ⋆ ny ⋆ nz) corresponding to
the (i , j , k) matrix element according to the Fortran style

• Calls: none

• Comments: this subroutine is an extension of tools ij2s for a matrix of rank 3.

4.2.4 tools s2ijk.

• Purpose: it maps indices of a vector of size nx ⋆ ny ⋆ nz to indices of a matrix of size nx

× ny × nz using Fortran style

• Synopsis:

– tools s2ijk(nx , ny , s , i , j , k)

• Inputs:

- nx (integer): first dimension of a matrix

- ny (integer): second dimension of a matrix

- s (integer): index of a vector component (1 ≤ s ≤ nx ⋆ ny ⋆ nz)

• Inputs/outputs: none

• Outputs:

- i (integer): first coordinate of the matrix element corresponding to the s vector
element according to the Fortran style

- j (integer): second coordinate of the matrix element corresponding to the s vector
element according to the Fortran style

- k (integer): third coordinate of the matrix element corresponding to the s vector
element according to the Fortran style

• Calls: this subroutine is an extension of tools s2ij for a matrix of rank 3.

4.3 Module random.

This module is devoted to generate random numbers and vectors with a specified distribution.

• Name: random

• Dependencies:

- precision

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- idum (integer): seed for random generators. It must be set to a negative value

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4 MODULES. 16

4.3.1 random parametersup.

• Purpose: it sets the seed for the random generator with uniform distribution as a negative
integer related to time

• Synopsis:

– random parametersup()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

• Calls: none

4.3.2 random uniform0d.

• Purpose: long period (> 2 × 1018) random number generator of L’Ecuyer with Bays-
Durham shuffle and added safeguards. Returns a uniform random deviate between 0.0
and 1.0 (exclusive of end-points values). Use global variable idum wich needs to be
initialized with a negative value

• Synopsis:

– random uniform0d()

• Inputs: none

• Inputs/outputs: none

• Outputs:

- random uniform0d (real): random number with uniform distribution between 0.0
and 1.0

• Calls: none

• Comments: this is a translation of function ran2.f of Numerical Recipes (see [6]) adapted
to generate random numbers in single and double precision and translated to free format
in Fortran 90

4.3.3 random normalstd0d.

• Purpose: it returns a normally (standard) distributed deviate with zero mean and unit
variance, using random uniform0d as the source of uniform deviates

• Synopsis:

– random normalstd0d()

• Inputs: none

4 MODULES. 17

• Inputs/outputs: none

• Outputs:

- random normalstd0d (real): random number with normal (standard) distribution

• Calls:

- random normalstd0d: from random

• Comments: this is a translation of function gasdev.f of the Numerical Recipes adapted
to generate random numbers in single and double precision and translated to free format
in Fortran 90

4.3.4 random normal0d.

• Purpose: it returns a normally distributed deviate with mean mu and standard deviation
sigma, using random normalstd0d as the source of normal deviates

• Synopsis:

– random normal0d(mu , sigma)

• Inputs:

- mu (real): mean

- sigma (real): standard deviation

• Inputs/outputs: none

• Outputs:

- random normal0d (real): random number with normal distribution with mean mu

and variance sigma2.

• Calls:

- random normalstd0d: from random

• Comments: if x is a random variable with normal distribution with expectation 0 and
variance 1, then the variable y defined by:

y = µ + σx, (5)

has mean µ and variance σ2.

4 MODULES. 18

4.3.5 random normal1dmatrix.

• Purpose: it returns a set of random vectors with normal distribution with prescribed
mean and prescribed covariance matrix

• Synopsis:

– random normal1dmatrix(mean , covariance , sizemean , &

&numbersamples , samples)

• Inputs:

- mean (real array of size sizemean): mean

- covariance (real array of size sizemean × sizemean): covariance matrix

- sizemean (integer): size of the random vectors to be generated

- numbersamples (integer): number of samples to generate

• Inputs/outputs: none

• Outputs:

- samples (real array of size sizemean × numbersamples): each column of samples
stores a random vector

• Calls:

- dsyev: from LAPACK

- ssyev: from LAPACK

- dgemv: from BLAS

- sgemv: from BLAS

- random normal0d: from random

• Comments: this subroutine addresses the problem of generating a random vector v ∈ Rn

such that v ∈ N (x,P), where x and P are given. First, we compute the eigenvalues
and eigenvectors of the symmetric and semi-positive definite covariance matrix P, that
is P = UDUT . Here U is an orthogonal matrix and D is a diagonal matrix containing
the eigenvalues σi in ascending order (σi ≤ σi+1). Now, we take n random samples and
form a vector a such that a (i) ∈ N

(

0,
√

σi

)

, i = 1 : n. This samples are independent
one from another. Let us define:

v = x + Ua. (6)

Therefore, the mean of v is:

v = x + Ua = x + Ua = x, (7)

and the covariance matrix of v is:

(v − x) (v − x)T = (Ua) (Ua)T = UaaTUT = UDUT = P. (8)

Thus, we have been able to generate a random vector with a required mean and covariance
matrix.

4 MODULES. 19

4.3.6 random normal1dsqrtmatrix.

• Purpose: it returns a set of random vectors with normal distribution with prescribed
mean and prescribed reduced rank square root covariance matrix

• Synopsis:

– random normal1dsqrtmatrix(mean , sqrtcov , sizemean , &

& numbermodes , numbersamples , samples)

• Inputs:

- mean (real array of size sizemean): mean

- sqrtcov (real array of size sizemean × numbermodes): square root of the covariance
matrix with reduced rank limited to numbermodes columns

- sizemean (integer): size of the random vectors to be generated

- numbermodes (integer): number of columns of the reduced rank square root of the
covariance matrix

- numbersamples (integer): number of samples to generate

• Inputs/outputs: none

• Outputs:

- samples (real array of size sizemean × numbersamples): each column stores a
random vector

• Calls:

- dgemv: from BLAS

- sgemv: from BLAS

- random normalstd0d: from random

• Comments: This subroutine looks for random vectors with normal distribution using
the reduced rank square root covariance matrix. That is, we need vectors v such that
v ∈ N

(

x,SST
)

, where S ∈ Rn×m is a given reduced rank square root covariance matrix.
In our applications we will use n≫ m. Let us take:

u (i) ∈ N (0, 1) , i = 1 : m. (9)

As the samples are independent one from another, then u ∈ N (0, I). Finally, we define
v = x + Su. Therefore, the mean of v is:

v = x + Su = x + Su = x, (10)

and the covariance matrix of v is:

(v − x) (v − x)T = (Su) (Su)T = SuuTST = SST . (11)

Thus, we have been able to generate a random vector v with mean equal to x and
covariance matrix equal to SST .

4 MODULES. 20

4.3.7 random meanestimator1d.

• Purpose: it returns the mean of a set of vectors stored by columns in a matrix

• Synopsis:

– random meanestimator1d(size , numbersamples , samples , mean)

• Inputs:

- size (integer): size of the vectors to which we will compute the mean

- numbersamples (integer): number of vectors

- samples (real array of size size × numbersamples): each column of samples is a
vector

• Inputs/outputs: none

• Outputs:

- mean (real array of size sizemean): mean of the vectors stored in samples

• Calls: none

• Comments: Given N random vectors v1, . . . ,vN , the mean is computed simply using:

1

N

N
∑

i=1

vi. (12)

4.3.8 random covarianceestimator1d.

• Purpose: it returns the covariance matrix of a set of vectors stored by columns in a given
matrix

• Synopsis:

– random covarianceestimator1d(size , numbersamples , samples , &

&mean , covariance)

• Inputs:

- size (integer): size of the random vectors

- numbersamples (integer): number of random vectors

- samples (real array of size size × numbersamples): each column of samples is a
vector

- mean (real array of size size): mean of the vectors stored by columns in samples

• Inputs/outputs: none

• Outputs:

- covariance (real array of size size × size): covariance matrix of the vectors stored
by columns in the matrix samples

4 MODULES. 21

• Calls:

- dgemm: from BLAS

- sgemm: from BLAS

• Comments: Given N random vectors v1, . . . ,vN with mean x, the covariance matrix P

can be estimated by:

P =
1

N − 1

N
∑

i=1

(

vi − x
) (

vi − x
)T

=

=
1

N − 1







...
...

v1 − x · · · vN − x
...

...













...
...

v1 − x · · · vN − x
...

...







T

. (13)

4.3.9 random sqrtcovestimator1d.

• Purpose: it returns the reduced rank square root of the covariance matrix of a set of
vectors stored by columns in a matrix

• Synopsis:

– random sqrtcovestimator1d(size , numbersamples , samples , &

&mean , sqrtcovariance)

• Inputs:

- size (integer): size of the vectors

- numbersamples (integer): number of vectors

- samples (real array of size size × numbersamples): each column of samples is a
vector

- mean (real array of size size): mean of the vectors

• Inputs/outputs: none

• Outputs:

- sqrtcovariance (real array of size size × numbersamples): reduced rank square
root covariance matrix of the vectors stored by columns in the matrix samples

• Calls: none

• Comments: Given N random vectors v1, . . . ,vN , we want to estimate the square root S

of the covariance matrix P. From (13) is easy to deduce that:

S =
1√

N − 1







...
...

v1 − x · · · vN − x
...

...






. (14)

Also see [7], pp. 1048.

4 MODULES. 22

4.4 Module initialize.

This module initializes the filter, and it has to be edited by the user in order to adapt the
assimilation for a specific case.

• Name: initialize

• Dependencies:

- precision

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- dimspacestate (integer): dimension of the space state

- numbersamples (integer): number of samples

- modesanalysis (integer): number of analysis modes

- first (logical): flag to determine the first step

• Adding code: the user has to edit this module in order to initialize the filter

The subroutines/functions associated to this module are:

4.4.1 initialize parametersup.

• Purpose: it initializes the global variables of this module

• Synopsis:

– initialize parametersup()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

4.4.2 initialize initialize1.

• Purpose: it sets the state and the covariance matrix at initial time

• Synopsis:

– initialize initialize1(state , covariance)

• Inputs: none

• Inputs/outputs: none

• Outputs:

- state (real array of size dimspacestate): initial state

- covariance (real array of size dimspacestate× dimspacestate): initial covariance
matrix

4 MODULES. 23

4.4.3 initialize initialize2.

• Purpose: it sets the state and the square root of the covariance matrix at initial time

• Synopsis:

– initialize initialize2(state , sqrtcov)

• Inputs: none

• Inputs/outputs: none

• Outputs:

- state (real array of size dimspacestate): initial state

- sqrtcov (real array of size dimspacestate × modesanalysis): initial square root
of the covariance matrix

4.5 Module model.

This module is devoted to the propagation model.

• Name: model

• Dependencies:

- precision

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- modesmodel (integer): number of model modes

- modelerror (real array): covariance matrix of model errors

- sqrtmodelerror (real array): square root of the covariance matrix of model errors

• Adding code: the user has to edit this module in order to set things related to the model

The subroutines/functions associated to this module are:

4.5.1 model parametersup.

• Purpose: it sets the modesmodel variable and auxiliary variables that the user may include
as global variable

• Synopsis:

– model parametersup()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

4 MODULES. 24

4.5.2 model model.

• Purpose: it applies the propagation model from time step index t to time step index l+1

• Synopsis:

– model model(l , statein , stateout)

• Inputs:

- l (integer): time step index

- statein (real array): state before the application of the model

• Inputs/outputs: none

• Outputs:

- stateout (real array): state after applying the model

• Comments: The arrays statein and stateout have to be allocated before calling this
subroutine. Inside it, statein and stateout can be of any rank, but when it is called from
a module devoted to assimilation, these arrays are considered as vectors. This duality
simplifies the matrix-vector mapping, and the identification is done in the Fortran style.

4.5.3 model tangmodel.

• Purpose: it applies to a state vector the tangent version of the model that goes from time
step index l to time step index l+1

• Synopsis:

– model tangmodel(l , statein , stateout)

• Inputs:

- l (integer): time step index

- statein (real array): state vector at time step index l

• Inputs/outputs: none

• Outputs:

- stateout (real array): state vector after the application of the tangent model

• Comments: The arrays statein and stateout have to be allocated before calling this
subroutine. Inside it, statein and stateout can be of any rank, but when it is called from
a module devoted to assimilation, these arrays are considered as vectors. This duality
simplifies the matrix-vector mapping, and the identification is done in the Fortran style.

4 MODULES. 25

4.5.4 model sqrtmodelerror.

• Purpose: it sets the square root of the covariance matrix of model errors at time step
index l, that is, it sets the global variable sqrtmodelerror

• Synopsis:

– model sqrtmodelerror(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.5.5 model modelerror.

• Purpose: it sets the covariance matrix of model errors at time step index l, that is, it
sets the global variable modelerror

• Synopsis:

– model modelerror(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.6 Module observations.

This module sets all things related to observations

• Name: observations

• Dependencies:

- precision

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- modesobs (integer): number of observation modes

- numberobs (integer): number of observations

- ifobs (logical): flag to determine if there are observations

- obsvalue (real array of size numberobs): observation values

4 MODULES. 26

- covobs (real array of size numberobs × numberobs): covariance matrix of observa-
tion errors

- sqrtcovobs (real array of size numberobs× modesobs): square root of the covariance
matrix of observation errors

• Adding code: the user has to edit this module in order to incorporate all things related
to observations

The subroutines/functions associated to this module are:

4.6.1 observations parametersup.

• Purpose: it sets the number of observation modes modesobs

• Synopsis:

– observations parametersup()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

4.6.2 observations ifobservations.

• Purpose: it decides if at time step index l there are observations or not, setting the global
variable ifobs

• Synopsis:

– observations ifobservations(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.6.3 observations numberobs.

• Purpose: it sets the number of observations at time step index l, that is, the variable
numberobs

• Synopsis:

– observations numberobs(l)

• Inputs:

- l (integer): time step index

4 MODULES. 27

• Inputs/outputs: none

• Outputs: none

4.6.4 observations obsvalue.

• Purpose: it sets the observation values at time step index l, that is, the variable obsvalue

• Synopsis:

– observations obsvalue(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.6.5 observations tangobsop.

• Purpose: it applies to a state vector the tangent version observation operator at time step
index l

• Synopsis:

– observations tangobsop(l , vectorin , vectorout)

• Inputs:

- l (integer): time step index

- vectorin (real array): state vector

• Inputs/outputs: none

• Outputs:

- vectorout (real array): state vector after the application of the tangent observation
operator

4.6.6 observations obsop.

• Purpose: it applies to a state vector the observation operator at time step index l

• Synopsis:

– observations obsop(l , vectorin , vectorout)

• Inputs:

- l (integer): time step index

- vectorin (real array): state vector

4 MODULES. 28

• Inputs/outputs: none

• Outputs:

- vectorout (real array): state vector after the application of the observation operator

4.6.7 observations sqrtcovobs.

• Purpose: it sets the square root of the covariance matrix of observation errors at time
step index l, that is, the variable sqrtcovobs

• Synopsis:

– observations sqrtcovobs(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.6.8 observations covobs.

• Purpose: it sets the covariance matrix of observation errors at time step index l, that is,
the variable covobs

• Synopsis:

– observations covobs(l)

• Inputs:

- l (integer): time step index

• Inputs/outputs: none

• Outputs: none

4.7 Module parallel.

This module provides procedures for parallelization.

• Name: parallel

• Dependencies:

- precision

- MPI

- model

- observations

4 MODULES. 29

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- from MPI: variables from mpif.h

- from model: modesmodel, modelerror, sqrtmodelerror

- from observations: modesobs, numberobs, ifobs, obsvalue, covobs, sqrtcovobs

- ierror (integer): variable to detect errors

- rank (integer): which machine

- nproc (integer): number of processors

- block size (integer): block size

- nprow (integer): number of rows in the processor grid

- npcol (integer): number of columns in the processor grid

- context (integer): it is a universe where messages exist and do not interact with
other context’s messages

- myrow (integer): calling processor’s row number in the processor grid

- mycol (integer): calling processor’s column number in the processor grid

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4.7.1 parallel init.

• Purpose: initialization of MPI

• Synopsis:

– parallel init()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

• Calls:

- mpi init: from MPI

• Comments: this subroutine is a wrapper of the mpi init subroutine

4 MODULES. 30

4.7.2 parallel ranksize.

• Purpose: it gets rank and size

• Synopsis:

– parallel ranksize()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

• Calls:

- mpi comm rank: from MPI

- mpi comm size: from MPI

• Comments: this subroutine is a wrapper of the mpi comm rank and mpi comm size sub-
routines

4.7.3 parallel finalize.

• Purpose: finalization of MPI

• Synopsis:

– parallel finalize()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

• Calls:

- mpi finalize: from MPI

• Comments: this subroutine is a wrapper of the mpi finalize subroutine

4.7.4 parallel pregrid.

• Purpose: preparation of the grid

• Synopsis:

– parallel pregrid()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

4 MODULES. 31

• Calls:

- sl init: from SCALAPACK

- blacs gridinfo: from BLACS

• Comments: this subroutine is a wrapper of the sl init and blacs gridinfo subroutines

4.7.5 parallel postgrid.

• Purpose: finalization of the grid

• Synopsis:

– parallel postgrid()

• Inputs: none

• Inputs/outputs: none

• Outputs: none

• Calls:

- blacs gridexit: from BLACS

• Comments: this subroutine is a wrapper of the blacs gridexit subroutine

4.7.6 parallel predistribute.

• Purpose: it distributes a global matrix and gets descriptors

• Synopsis:

– parallel predistribute(m global , n global , a global , &

&a desc , m local , n local , a local)

• Inputs:

- m global (integer): number of rows of the global matrix

- n global (integer): number of columns of the global matrix

- a global (real array of size m global × n global): global matrix

• Inputs/outputs: none

• Outputs:

- a desc (integer array of size 9): BLACS context handle identifying the created
process grid

- m local (integer): number of rows of the local matrix

- n local (integer): number of columns of the local matrix

- a local (pointer to a real array of size m local × n local): local matrix

4 MODULES. 32

• Calls:

- descinit: from SCALAPACK

- blacs barrier: from BLACS

4.7.7 parallel postdistribute.

• Purpose: it gathers local pieces into a global matrix

• Synopsis:

– parallel postdistribute(m global , n global , a global , a local)

• Inputs:

- m global (integer): number of rows of the global matrix

- n global (integer): number of columns of the global matrix

• Inputs/outputs:

- a local (pointer to a real array): pointer to a local matrix

• Outputs:

- a global (real array of size m global × n global): global matrix

• Calls:

- indxl2g: from PBLAS

- sgsum2d: from PBLAS

- dgsum2d: from PBLAS

4.7.8 parallel getrf.

• Purpose: it performs a LU factorization with partial pivoting

• Synopsis:

– parallel getrf(ma global , na global , a global , ipiv global)

• Inputs:

- ma global (integer): number or rows of the global matrix

- na global (integer): number of columns of the global matrix

• Inputs/outputs:

- a global (real array of size ma global × na global): global matrix

• Outputs:

- ipiv global (integer array of size ma global): permutations

4 MODULES. 33

• Calls:

- parallel pregrid: from parallel

- parallel predistribute: from parallel

- parallel postdistribute: from parallel

- parallel postgrid: from parallel

- psgetrf: from SCALAPACK

- pdgetrf: from SCALAPACK

- descset: from SCALAPACK

- pslapiv: from SCALAPACK

- pdlapiv: from SCALAPACK

- dgetrf: from LAPACK

- sgetrf: from LAPACK

• Comments: this subroutine is a wrapper of the pdgetrf and psgetrf subroutines

4.7.9 parallel gesv.

• Purpose: it gets a solution of a linear system

• Synopsis:

– parallel gesv(na global , a global , nrhs global , b global)

• Inputs:

- na global (integer): number of rows of the matrix

- nrhs global (integer): number of right hand sides

• Inputs/outputs:

- a global (real array of size na global× na global): on entry the coefficient matrix,
on exit the factors of the LU decomposition

- b global (real array of size na global × nrhs global): on entry the right hand
side matrix, on exit the solution of the system

• Outputs: none

• Calls:

- parallel pregrid: from parallel

- parallel predistribute: from parallel

- parallel postdistribute: from parallel

- parallel postgrid: from parallel

- psgesv: from SCALAPACK

4 MODULES. 34

- pdgesv: from SCALAPACK

- descset: from SCALAPACK

- pslapiv: from SCALAPACK

- pdlapiv: from SCALAPACK

- dgesv: from LAPACK

- sgesv: from LAPACK

• Comments: this subroutine is a wrapper of the pdgesv and psgesv subroutines

4.7.10 parallel gemm.

• Purpose: matrix multiplication C = alpha ⋆ op(A) ⋆ op(B) + beta ⋆ C

• Synopsis:

– parallel gemm(transa , transb , ma global , na global , a global , &

&mb global , nb global , b global , mc global , nc global , c global &

&, alpha , beta)

• Inputs:

- transa (character*1): indicates if a global has to be transposed or not

- transb (character*1): indicates if b global has to be transposed or not

- ma global (integer): number of rows of the matrix a global

- na global (integer): number of columns of the matrix b global

- a global (real array of size ma global × na global): matrix A

- mb global (integer): number of rows of the matrix b global

- nb global (integer): number of columns of the matrix b global

- b global (real array of size mb global × nb global): matrix B

- mc global (integer): number of rows of the matrix c global

- nc global (integer): number of columns of the matrix c global

- alpha (real): number alpha

- beta (real): number beta

• Inputs/outputs:

- c global (real array of size mc global × nc global): matrix C

• Outputs: none

• Calls:

- parallel pregrid: from parallel

- parallel predistribute: from parallel

- parallel postdistribute: from parallel

4 MODULES. 35

- parallel postgrid: from parallel

- psgemm: from PBLAS

- pdgemm: from PBLAS

- dgemm: from BLAS

- sgemm: from BLAS

• Comments: this subroutine is a wrapper of the pdgemm and psgemm subroutines

4.7.11 parallel operator.

• Purpose: parallelization of certain loops including operators using the master-slave strat-
egy. The different options are:

- ’tangmodelT’: it applies the tangent model to each row of matrixin and stores the
result in each column of matrixout

- ’tangmodelN’: it applies the tangent model to each column of matrixin and stores
the result in each column of matrixout

- ’tangobsopT’: it applies the tangent observation operator to each row of matrixin
and stores the result in each column of matrixout

- ’tangobsopN’: it applies the tangent observation operator to each column of
matrixin and stores the result in each column of matrixout

- ’modelN’: it applies the model to each column of matrixin and stores the result to
each column of matrixout

- ’obsopN’: it applies the observation operator to each column of matrixin and stores
the result to each column of matrixout

• Synopsis:

– parallel operator(l , matrixin , matrixout , option)

• Inputs:

- l (integer): step time index

- matrixin (real array): matrix before operator is applied

- option (character*): option to choose the operator

• Inputs/outputs: none

• Outputs:

- matrixout (real array): matrix after operator is applied

• Calls:

- mpi recv: from MPI

- mpi send: from MPI

- mpi bcast: from MPI

4 MODULES. 36

- model tangmodel: from model

- model model: from model

- observations tangobsop: from observations

- observations obsop: from observations

4.7.12 parallel gesvd.

• Purpose: it performs a singular value decomposition A = U ⋆ SIGMA ⋆ VT

• Synopsis:

– parallel gesvd(jobu , jobvt , ma global , na global , a global , &

&mu global , nu global , u global , mvt global , nvt global , &

&vt global , msv global , sv global)

• Inputs:

- ma global (integer): number or rows of A

- na global (integer): number or columns of A

- mu global (integer): number of rows of U

- nu global (integer): number of columns of U

- mvt global (integer): number of rows of VT

- nvt global (integer): number of columns of VT

- msv global (integer): number of singular values

• Inputs/outputs:

- jobu (character*1): flag to determine if parts of the decomposition are skipped

- jobvt (character*1): flag to determine if parts of the decomposition are skipped

- a global (real array of size ma global × na global): matrix A

• Outputs:

- u global (real array of size mu global × nu global): matrix U

- vt global (real array of size mvt global × nvt global): matrix VT

- sv global (real array of size msv global): vector of singular values

• Calls:

- parallel pregrid: from parallel

- parallel predistribute: from parallel

- parallel postdistribute: from parallel

- parallel postgrid: from parallel

- pdgesvd: from SCALAPACK

- psgesvd: from SCALAPACK

4 MODULES. 37

- dgesvd: from LAPACK

- sgesvd: from LAPACK

• Comments: this subroutine is a wrapper of the psgesvd and pdgesvd subroutines

4.7.13 parallel svdcut.

• Purpose: given a matrix of size rows× colsin, the subroutine reduces its rank to colsout
(colsin ≥ colsout) taking the directions associated with the leading singular values

• Synopsis:

– parallel svdcut(rows , colsin , colsout , matrixin , matrixout)

• Inputs:

- rows (integer): number of rows of the matrix matrixin

- colsin (integer): number of columns of the matrix matrixin

- colsout (integer): number of columns of the reduced matrix matrixout

- matrixin (real array of size rows × colsin): matrix to be cut

• Inputs/outputs: none

• Outputs:

- matrixout (real array of size rows × colsout): matrix matrixin reduced to
colsout columns

• Calls:

- parallel gemm: from parallel

- parallel gesvd: from parallel

• Comments: In [8] the traditional reduction step using the SVD is explained, and a new
reduction strategy is proposed “focusing on specific characteristics of a stochastic system
with an atmospheric chemistry model”. In [9] the same strategy using SVD is imple-
mented in the LOTOS model.

Given a square root matrix S1 ∈ Rn×m1, the idea is to find a matrix S2 ∈ Rn×m2 with
n≫ m1 ≥ m2, such that S1S1

T ≈ S2S2

T . A SVD of S1 is:

S1 = UDVT , U ∈ Rn×n, D ∈ Rn×m1 , V ∈ Rm1×m1. (15)

The elements of D are the singular values in descending order. If we compute S1S1

T =
(UD) (UD)T , then UD(1:n,1:m2) is a possible square root with the rank limited to m2

columns, getting rid of the columns associated to the lower singular values. The problem
is that for large scale applications, we could not store the U matrix. Notice that from
equation (15) we have that S1V = UD. If we compute S1

TS1 = VDTDVT we can get
the matrix V computing a SVD of S1

TS1 (a matrix of dimension m1 ×m1). Thus, the
reduced matrix S2 can be defined as:

S2 = S1V(1:n,1:m2). (16)

4 MODULES. 38

4.8 Module ekf.

This module implements the Extended Kalman filer.

• Name: ekf

• Dependencies:

- precision

- model

- observations

- parallel

- initialize

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- from model: modesmodel, modelerror, sqrtmodelerror

- from observations: modesobs, numberobs, ifobs, obsvalue, covobs, sqrtcovobs

- from parallel: ierror, rank, nproc, block size, nprow, npcol, context, myrow,
mycol

- from initialize: dimspacestate, numbersamples, modesanalysis, first

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4.8.1 ekf predictor.

• Purpose: it makes the prediction step of the Extended Kalman filter from time step index
l to time step index l+1

• Synopsis:

– ekf predictor(l , state , covariance)

• Inputs:

- l (integer): time step index

• Inputs/outputs:

- state (real array of size dimspacestate): on input the analysis at time step index
l, on output the forecat at time step index l+1

- covariance (real array of size dimspacestate × dimspacestate): on input the
covariance matrix of analysis errors at time step index l, on output the covariance
matrix of forecast errors at time l+1

• Outputs: none

4 MODULES. 39

• Calls:

- model model: from model

- model modelerror: from model

- parallel operator: from parallel

4.8.2 ekf corrector.

• Purpose: it makes a correction step of the Extended Kalman filter at time step index l+1

• Synopsis:

– ekf corrector(l , state , covariance)

• Inputs:

- l (integer): time step index

• Inputs/outputs:

- state (real array of size dimspacestate): on input the forecast at time step index
l+1, on output the analysis at time step index l+1

- covariance (real array of size dimspacestate × dimspacestate): on input the
covariance matrix of forecast errors at time step index l+1, on output the covariance
matrix of analysis errors at time step index l+1

• Outputs: none

• Calls:

- parallel operator: from parallel

- parallel getrf: from parallel

- parallel gemm: from parallel

- observations covobs: from observations

- observations obsop: from observations

- dgetrs: from LAPACK

- sgetrs: from LAPACK

• Comments:

- numberobs in this context is the number of observations at time step index l+1

- obsvalue in this context is the vector of observation values at time step index l+1

- covobs is set to the covariance matrix of observation errors at time step index l+1

during execution, and at the end is destroyed

4 MODULES. 40

4.9 Module enkf.

This module implements the Ensemble Kalman filer.

• Name: enkf

• Dependencies:

- precision

- random

- model

- observations

- parallel

- initialize

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- from random: idum

- from model: modesmodel, modelerror, sqrtmodelerror

- from observations: modesobs, numberobs, ifobs, obsvalue, covobs, sqrtcovobs

- from parallel: ierror, rank, nproc, block size, nprow, npcol, context, myrow,
mycol

- from initialize: dimspacestate, numbersamples, modesanalysis, first

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4.9.1 enkf predictor.

• Purpose: it makes the prediction step of the Ensemble Kalman filter

• Synopsis:

– enkf predictor(l , state , covariance , samples)

• Inputs:

- l (integer): time step index

• Inputs/outputs:

- state (real array of size dimspacestate): on input the analysis at time step index
l, on output the forecast at time step index l+1

- covariance (real array of size dimspacestate × dimspacestate): on input the
covariance matrix of analysis errors at time step index l, on output the covariance
matrix of forecast errors at time step index l+1

4 MODULES. 41

- samples (real array of size dimspacestate × numbersamples): on input the mem-
bers of the ensemble representing posible states of the analysis at time step index l,
on output the members of the ensemble representing posible states of the forecast
at time step index l+1

• Outputs: none

• Calls:

- random normal1dmatrix: from random

- random meanestimator1d: from random

- random covarianceestimator1d: from random

- model modelerror: from model

- parallel operator: from parallel

4.9.2 enkf corrector.

• Purpose: it makes the correction step of the Ensemble Kalman filter

• Synopsis:

– enkf corrector(l , state , covariance , samples)

• Inputs:

- l (integer): time step index

• Inputs/outputs:

- state (real array of size dimspacestate): on input the forecast at time step index
l+1, on exit the analysis at time step index l+1

- covariance (real array of size dimspacestate × dimspacestate): on input the
covariance matrix of forecast errors at time step index l+1, on output the covariance
matrix of analysis errors at time step index l+1

- samples (real array of size dimspacestate × numbersamples): on input the mem-
bers of the ensemble representing posible states of forecast at time step index l+1,
on output the members of the ensemble representing posible states of analysis at
time step index l+1

• Outputs: none

• Calls:

- observations covobs: from observations

- parallel operator: from parallel

- parallel gesv: from parallel

- parallel gemm: from parallel

- random normal1dmatrix: from random

4 MODULES. 42

- random meanestimator1d: from random

- random covarianceestimator1d: from random

• Comments:

- numberobs in this context is the number of observations at time step index l+1

- obsvalue in this context is the vector of observation values at time step index l+1

- covobs is set to the covariance matrix of observation errors at time step index l+1

during execution, and at the end is destroyed

4.10 Module rrsqrtkf.

This module implements the Reduced Rank Square Root Kalman filter.

• Name: rrsqrtkf

• Dependencies:

- precision

- model

- observations

- parallel

- initialize

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- from model: modesmodel, modelerror, sqrtmodelerror

- from observations: modesobs, numberobs, ifobs, obsvalue, covobs, sqrtcovobs

- from parallel: ierror, rank, nproc, block size, nprow, npcol, context, myrow,
mycol

- from initialize: dimspacestate, numbersamples, modesanalysis, first

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4.10.1 rrsqrtkf predictor.

• Purpose: it makes the prediction step of the Reduced Rank Square Root Kalman filter

• Synopsis:

– rrsqrtkf predictor(l , state , sqrtcov , sqrtcovfor)

• Inputs:

- l (integer): time step index

4 MODULES. 43

- sqrtcov (real array of size dimspacestate× modesanalysis): reduced rank square
root of the covariance matrix of analysis errors at time step index l

• Inputs/outputs:

- state (real array of size dimspacestate): on input the analysis at time step index
l, on output the forecast at time step index l+1

• Outputs:

- sqrtcovfor (real array of size dimspacestate×(modesanalysis + modesmodel)):
on output the reduced rank square root of the covariance matrix of forecast errors
at time step index l+1

• Calls:

- model model: from model

- model sqrtmodelerror: from model

- parallel operator: from parallel

4.10.2 rrsqrtkf corrector.

• Purpose: it makes the correction step of the Reduced Rank Square Root Kalman filter

• Synopsis:

– rrsqrtkf corrector(l , state , sqrtcov , sqrtcovfor)

• Inputs:

- l (integer): time step index

- sqrtcovfor (real array of size dimspacestate×(modesanalysis + modesmodel)):
on input the reduced rank square root of the covariance matrix of forecast errors
at time step index l+1, on output the reduced rank square root of the covariance
matrix of analysis errors at time step index l+1 without reducing rank

• Inputs/outputs:

- state (real array of size dimspacestate): on input the forecast at time step index
l+1, on exit the analysis at time step index l+1

• Outputs:

- sqrtcov (real array of size dimspacestate× modesanalysis): reduced rank square
root of the covariance matrix of analysis errors at time step index l+1

• Calls:

- observations sqrtcovobs: from observations

- observations obsop: from observations

- parallel operator: from parallel

4 MODULES. 44

- parallel gemm: from parallel

- parallel gesv: from parallel

- parallel svdcut: from parallel

• Comments:

- numberobs in this context is the number of observations at time step index l+1

- obsvalue in this context is the vector of observation values at time step index l+1

- sqrtcovobs is set to the reduced rank square root of the covariance matrix of obser-
vation errors at time step index l+1 during execution, and at the end is destroyed

4.11 Module rrsqrtenkf.

This module implements the Reduced Rank Square Root Ensemble Kalman filter.

• Name: rrsqrtenkf

• Dependencies:

- precision

- random

- model

- observations

- parallel

- initialize

• Global variables:

- from precision: low, high, plo, pch, pin, pre

- from random: idum

- from model: modesmodel, modelerror, sqrtmodelerror

- from observations: modesobs, numberobs, ifobs, obsvalue, covobs, sqrtcovobs

- from parallel: ierror, rank, nproc, block size, nprow, npcol, context, myrow,
mycol

- from initialize: dimspacestate, numbersamples, modesanalysis, first

• Adding code: the user does not need to edit this module

The subroutines/functions associated to this module are:

4 MODULES. 45

4.11.1 rrsqrtenkf predictor.

• Purpose: it makes the prediction step of the Reduced Rank Square Root Ensemble
Kalman filter

• Synopsis:

– rrsqrtenkf predictor(l , state , sqrtcov , samples , sqrtcovaux)

• Inputs:

- l (integer): time step index

- sqrtcov (real array of size dimspacestate× modesanalysis): reduced rank square
root of the covariance matrix of analysis errors at time step index l

• Inputs/outputs:

- state (real array of size dimspacestate): on input the analysis at time step index
l, on output the forecast at time step index l+1

- samples (real array of size dimspacestate × numbersamples): on input the mem-
bers of the ensemble representing posible states of analysis at time step index l, on
output the members of the ensemble representing posible states of forecast at time
step index l+1

• Outputs:

- sqrtcovaux (real array of size dimspacestate × numbersamples): on output the
reduced rank square root of the covariance matrix of forecast errors at time step
index l+1

• Calls:

- random normal1dsqrtmatrix: from random

- random meanestimator1d: from random

- random sqrtcovestimator1d: from random

- parallel operator: from parallel

- model sqrtmodelerror: from model

4.11.2 rrsqrtenkf corrector.

• Purpose: it makes the correction step of the Reduced Rank Square Root Ensemble
Kalman filter

• Synopsis:

– rrsqrtenkf corrector(l , state , sqrtcov , samples , sqrtcovaux)

• Inputs:

- l (integer): time step index

5 HOW TO USE THE PACKAGE. 46

• Inputs/outputs:

- state (real array of size dimspacestate): on input the forecast at time step index
l+1, on exit the analysis at time step index l+1

- samples (real array of size dimspacestate × numbersamples): on input the mem-
bers of the ensemble representing posible states of forecast at time step index l+1,
on output the members of the ensemble representing posible states of analysis at
time step index l+1

- sqrtcovaux (real array of size dimspacestate × numbersamples): on input the
reduced rank square root of the covariance matrix of forecast errors at time step
index l+1, on output the reduced rank square root of the covariance matrix of
analysis errors at time step index l+1 without reducing rank

• Outputs:

- sqrtcov (real array of size dimspacestate× modesanalysis): reduced rank square
root of the covariance matrix of analysis errors at time step index l+1

• Calls:

- parallel operator: from parallel

- parallel gemm: from parallel

- parallel gesv: from parallel

- parallel svdcut: from parallel

- observations sqrtcovobs: from observations

- random normal1dsqrtmatrix: from random

- random meanestimator1d: from random

- random sqrtcovestimator1d: from random

• Comments:

- numberobs in this context is the number of observations at time step index l+1

- obsvalue in this context is the vector of observation values at time step index l+1

- sqrtcovobs is set to the reduced rank square root of the covariance matrix of observation
errors at time step index l+1 during execution, and at the end is destroyed

5 How to use the package.

In order to set up an assimilation run, there are optional and mandatory modules, as well as
subroutines. We will distinguish the cases according to the Kalman filter method:

5 HOW TO USE THE PACKAGE. 47

5.1 Case ekf.

The mandatory modules are: precision, model, observations, parallel, initialize and
ekf. The user has to edit the following subroutines:

• model model(l , statein , stateout): first define rank and size of statein and
stateout. Then set stateout as the model (going from time step index l to time step
index l+1) applied to statein.

• model tangmodel(l , statein , stateout): first define rank and size of statein
and stateout. Then set stateout as the tangent model (going from time step index l

to time step index l+1) applied to statein.

• model modelerror(l): set variable modelerror as the covariance matrix of model
errors at time step index l. No allocation required because it is performed in the ekf

module.

• observations ifobservations(l): set variable ifobs. This flag is TRUE in case there
are observations at time step index l and FALSE if not.

• observations numberobs(l): set variable numberobs as the number of observations
at time step index l.

• observations obsvalue(l): set variable obsvalue as a vector (or array) containing
observation values at time step index l. No allocation is required because it is performed
in the main program.

• observations tangobsop(l , vectorin , vectorout): first define rank and size of
vectorin and vectorout. Then set vectorout as the tangent observation operator at
time step index l) applied to vectorin.

• observations obsop(l , vectorin , vectorout): first define rank and size of
vectorin and vectorout. Then set vectorout as the observation operator at time
step index l) applied to vectorin.

• observations covobs(l): set variable covobs as the covariance matrix of observation
errors at time step index l. No allocation required because it is performed in the ekf

module.

• initialize parametersup(): set variable dimspacestate as the size of the state vector.

• initialize initialize1(state , covariance): set state as the initial state vector
and covariance as the initial covariance matrix.

The remaining subroutines that are included in the modules and not mentioned above should
be kept without code in the subroutine body.

5 HOW TO USE THE PACKAGE. 48

5.2 Case enkf.

The mandatory modules are: precision, random, model, observations, parallel and
initialize. The user has to edit the following subroutines:

• model model(l , statein , stateout): modify in the same way as in the ekf case.

• model modelerror(l): modify in the same way as in the ekf case.

• observations ifobservations(l): modify in the same way as in the ekf case.

• observations numberobs(l): modify in the same way as in the ekf case.

• observations obsvalue(l): modify in the same way as in the ekf case.

• observations tangobsop(l , vectorin , vectorout): modify in the same way as
in the ekf case.

• observations obsop(l , vectorin , vectorout): modify in the same way as in the
ekf case.

• observations covobs(l): modify in the same way as in the ekf case.

• initialize parametersup(): set variable dimspacestate as the size of the state vector,
set variable numbersamples as the number of samples in the ensemble, and set variable
first to TRUE.

• initialize initialize1(state , covariance): modify in the same way as in the
ekf case.

The remaining subroutines that are included in the modules and not mentioned above should
be kept without code in the subroutine body.

5.3 Case rrsqrtkf.

The mandatory modules are: precision, model, observations, parallel and initialize.
The user has to edit the following subroutines:

• model parametersup(): set variable modesmodel as the number of modes considered for
the covariance matrix of model errors.

• model model(l , statein , stateout): modify in the same way as in the ekf case.

• model tangmodel(l , statein , stateout): modify in the same way as in the ekf

case.

• model sqrtmodelerror(l): set variable sqrtmodelerror as the square root of the
covariance matrix of model errors.

• observations parametersup(): set variable modesobs as the number of modes consid-
ered for the covariance matrix of observation errors.

• observations ifobservations(l): modify in the same way as in the ekf case.

5 HOW TO USE THE PACKAGE. 49

• observations numberobs(l): modify in the same way as in the ekf case.

• observations obsvalue(l): modify in the same way as in the ekf case.

• observations tangobsop(l , vectorin , vectorout): modify in the same way as
in the ekf case.

• observations obsop(l , vectorin , vectorout): modify in the same way as in the
ekf case.

• observations sqrtcovobs(l): set variable sqrtcovobs as the square root of the co-
variance matrix of observation errors.

• initialize parametersup(): set variable dimspacestate as the size of the state vector,
set variable modesanalysis as the number of modes for the covariance matrix of analysis
errors.

• initialize initialize2(state , sqrtcov): set state as the initial vector and
sqrtcov as the initial square root of the covariance matrix.

The remaining subroutines that are included in the modules and not mentioned above should
be kept without code in the subroutine body.

5.4 Case rrsqrtenkf.

The mandatory modules are: precision, random, model, observations, parallel and
initialize. The user has to edit the following subroutines:

• model parametersup(): modify in the same way as in the rrsqrtkf case.

• model model(l , statein , stateout): modify in the same way as in the ekf case.

• model sqrtmodelerror(l): modify in the same way as in the rrsqrtkf case.

• observations parametersup(): modify in the same way as in the rrsqrtkf case.

• observations ifobservations(l): modify in the same way as in the ekf case.

• observations numberobs(l): modify in the same way as in the ekf case.

• observations obsvalue(l): modify in the same way as in the ekf case.

• observations tangobsop(l , vectorin , vectorout): modify in the same way as
in the ekf case.

• observations obsop(l , vectorin , vectorout): modify in the same way as in the
ekf case.

• observations sqrtcovobs(l): modify in the same way as in the rrsqrtkf case.

• initialize parametersup(): set variable dimspacestate as the size of the state vec-
tor, set variable numbersamples as the number of samples in the ensemble, set variable
modesanalysis as the number of modes for the covariance matrix of analysis errors and
set variable first to TRUE.

5 HOW TO USE THE PACKAGE. 50

• initialize initialize2(state , sqrtcov): modify in the same way as in the
rrsqrtkf case.

5.5 An example of a main program.

Once the user has set all the subroutines related to the Kalman filter implementation to be
used, a main program is required in order to set the simulation. Below there is a description
of a general main program using ekf module. For other implementations the main program is
very similar. For specific details, please refer to the files attached to this documentation.

program main

!* INCLUDING MODULES

use precision

use random

use model

use observations

use parallel

use initialize

use ekf

...

implicit none

!* DECLARATION OF VARIABLES

...

!* INITIALIZATION OF PARALLELIZATION

call parallel_init()

!* GETTING PARALLELIZATION PARAMETERS

call parallel_ranksize()

!* SETTING PARAMETERS AND BROADCASTING

if (rank == 0_pin) then

call initialize_parametersup()

end if

call mpi_bcast(...)

...

!* ALLOCATIONS

allocate(...)

...

!* INITIALIZATION

if (rank == 0_pin) then

call initialize_initialize1(state , covariance)

5 HOW TO USE THE PACKAGE. 51

end if

call mpi_bcast(...)

!* LOOP

do l = 1 , ...

!* PREDICTION

call ekf_predictor(l , state , covariance)

!* SET IFOBS

if (rank == 0_pin) then

call observations_ifobservations(l + 1_pin)

end if

call mpi_bcast(...)

if (ifobs) then !* IN CASE THERE ARE OBSERVATIONS

!* SET NUMBEROBS

if (rank == 0_pin) then

call observations_numberobs(l + 1_pin)

end if

call mpi_bcast(...)

!* ALLOCATE OBSVALUE

allocate(obsvalue(numberobs))

!* SET OBSVALUE

if (rank == 0_pin) then

call observations_obsvalue(l + 1_pin)

end if

call mpi_bcast(...)

!* CORRECTION

call ekf_corrector(l , state , covariance)

!* DEALLOCATE OBSVALUE

deallocate(obsvalue)

end if

end do

!* DEALLOCATIONS

...

!* END PARALLELIZATION

6 EXAMPLES. 52

call parallel_finalize()

end program

6 Examples.

This section presents four examples of application of the package. In the first example the
model is the Euler’s method for solving ordinary differential equations and we assimilate the
numerical solution. In the second example a finite difference explicit scheme to solve a partial
differential equation is considered as the model and the numerical solution is assimilated. In
the third example we consider the model MATCH [10] and CO concentrations are assimilated.
Finally, the fourth example is devoted to the model POLAIR [11] and O3 concentrations are
considered for assimilation.

The tests were compiled with the following compilers: g95, GNU Fortran, Intel Fortran
Compiler and Portland Fortran Compiler. The examples run sequentially in a PC running
linux, Pentium 4, 2.4 GHz., and 512MB of RAM. The examples were also tested in a cluster
with 16 nodes, 2 Intel(R) Itanium(TM) 2 CPU 1.6 GHz with 4 GB RAM, the operative system
is Rocks 4.2.1 IA64, data interconnect is 2 × GB Ethernet (Cooper) and compute interconnect
is infiniband DDR 4 × 10 Gbps.

6.1 Example 0D.

6.1.1 Problem.

We will consider an ordinary differential equation:
{

ẋ (t) = f (t, x) , t > a,
x (a) = xa.

(17)

If in (17) we set:

a = 0, (18)

xa = 2, (19)

f(t, x) = cos(t), (20)

we can check that the exact solution of (17) is:

xsol(t) = 2 + sin(t). (21)

6.1.2 Domain.

Let us choose ∆t positive and let us define a number of time steps nt. Therefore, the time
domain is discretized as:

tl = a + (l − 1)∆t, l = 1 : nt. (22)

In the experiment, the setting is:

nt = 250, (23)

∆t = 0.1. (24)

6 EXAMPLES. 53

6.1.3 State vectors.

The state vector will be of size 1 and it is defined as xl = [x] where x ∈ R represents an
estimation of xsol(tl).

The true state at time step index l is defined as: xt

l = [x(tl)].

6.1.4 Model.

Using the Euler’s method the model that propagates the state forward in time can be defined
as:

M l→l+1 (x) = [x + ∆t f (tl, x)] . (25)

It can be easily deduced that the tangent model is:

Ml→l+1 (x) =

[

1 + ∆t
∂f

∂x
(tl, x)

]

. (26)

6.1.5 Model errors.

Using a Taylor’s expansion, it is easy to obtain an approximation of the model error:

Ml→l+1

(

xt

l

)

− xt

l+1
.
= [ql] ≈

≈
[

−(∆t)2

2

(

∂f

∂t
(tl, xsol (tl)) +

∂f

∂x
(tl, xsol (tl)) f (tl, xt (tl))

)

]

. (27)

Then, the covariance matrix of model errors can be set as:

Ql =
[

q2
l

]

. (28)

If we consider the square root of the covariance matrix of model errors, we should set:

Sm

l = [|ql|] . (29)

6.1.6 Observations.

We define the observation vector as y. We will observe the same state vector. The observations
will be given each 5 time steps. The number of observations numberobs for each observation
step is 1. The observation values are built from a perturbation of the exact solution, that is,

yl ∈ N (xsol (tl) , σl) , σl = c |xsol (l)| , (30)

where c is a positive constant. Thus σl represents a fraction of the absolute value of the exact
solution. In the experiment we set c = 0.3.

6.1.7 Observation errors.

We can set the covariance matrix of observation errors to:

Rl =
[

σ2
l

]

. (31)

If we consider the square root of the covariance matrix of observation errors, we should set:

So

l = [|σl|] . (32)

6 EXAMPLES. 54

6.1.8 Observation operator and the tangent observation operator.

As we observe the same state vector, the observation operator as well as the tangent observation
operator is the identity function:

Hl (x) = x = Hl (x) . (33)

6.1.9 Initialization.

The state vector will be initialized with a perturbation of xa. The objective is to apply the
assimilation in order to get a better estimation of the exact solution. In the experiment, the
initial conditions were:

x = [4] , P = [4] , S = [|2|] . (34)

6.1.10 Experiment.

A comparison between the exact solution, the numerical solution (with and without assimila-
tion), and the observations, is shown in the figure 1. This figure is a clear example of the need of
performing data assimilation. The errors in the initial conditions can take the model far away
from the solution. That is why we need to correct the numerical solution using observations.
Notice that reduced rank methods give the same results than the full methods because we are
in 0D. Some auxiliary settings are listed below:

!* precision parameters

plo = 4

pch = 1

pin = 4

pre = 8

!* random parameters

idum = -1

!* model parameters

modesmodel = 1

!* observation parameters

modesobs = 1

!* initialization parameters

dimspacestate = 1

numbersamples = 100

modesanalysis = 1

first = .TRUE.

6 EXAMPLES. 55

0 5 10 15 20 25
0

1

2

3

4

5

6

TIME

 V
A

LU
E

S
 O

F

TRUTH
MODEL
OBSERVATIONS
EKF
RRSQRTKF
ENKF
RRSQRTENKF

Figure 1: Comparisons of the exact, model, and assimilation solution.

6.2 Example 2D.

6.2.1 Problem.

The problem consists of solving the following equation:






∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
− α

∂2c

∂x2
− β

∂2c

∂y2
= f, x ∈ Ω, t ∈ [0,∞),

c = g, x ∈ ∂Ω, t = 0,
(35)

where the functions u, v, α, β, f and g, and the space domain Ω are known.
If in (35) we set:

u = 1, (36)

v = 1, (37)

α = 1, (38)

β = 1, (39)

f(t, x, y) = 1000 cos(1000t) sin(5xy)e−
1

2
x + 10 sin(1000t) cos(5xy)ye−

1

2
x −

− 3

4
sin(1000t) sin(5xy)e−

1

2
x + 5 sin(1000t) cos(5xy)xe−

1

2
x +

+ 25 sin(1000t) sin(5xy)y2e−
1

2
x + 25 sin(1000t) sin(5xy)x2e−

1

2
x, (40)

g(t, x, y) = 3 + sin(1000t) sin(5xy)e−
1

2
x. (41)

we can check that the exact solution of (17) for any Ω is:

csol(t, x, y) = 3 + sin(1000t) sin(5xy)e−
1

2
x. (42)

6 EXAMPLES. 56

In the experiment we choose:

Ω = [−1, 1]× [−1, 1]. (43)

6.2.2 Domain.

Let us set ∆t, ∆x and ∆y positive numbers, and let us define the number of time steps nt and
the number of nodes nx and ny in x and y directions respectively. The domain is discretized
as:

tl = (l − 1) ∆t, l = 1 : nt, (44)

xi = −1 + (i− 1) ∆x, i = 1 : nx, (45)

yj = −1 + (j − 1)∆y, j = 1 : ny. (46)

In the experiment we set:

nt = 1110, (47)

nx = 21, (48)

ny = 21. (49)

6.2.3 State vectors.

The state vector will be of size nxny and it is defined as a matrix of size nx × ny representing
an estimation of the exact solution in the discretized domain. That is, at time step index l the
true state is given by:

xt

ij = csol(tl, xi, yj), i = 1 : nx, j = 1 : ny (50)

The dimension of the space state is nxny.

6.2.4 Model.

To solve the problem, we use an explicit finite difference scheme. Thus, we can define the model
that propagates the state as:

[Ml→l+1 (xl)]ij = xlij −
ulij∆t

2∆x

(

xli+1j − xli−1j

)

− vlij∆t

2∆y

(

xlij+1 − xlij−1

)

+

+
αlij∆t

(∆x)2
(

xli+1j − 2xlij + xli−1j

)

+

+
βlij∆t

(∆y)2

(

xlij+1 − xlij + xlij−1

)

+ flij∆t,

l = 1 : nt − 1, i = 2 : nx − 1, j = 2 : ny − 1. (51)

In the border the model will be a perturbation of the exact boundary condition at time step
l + 1, that is,

[Ml→l+1 (xl)]ij ∈ N
(

csol(tl+1, xi, yj), σ
b
l+1ij

)

, σb
l+1ij = c |csol(tl+1, xi, yj)| , (52)

i = 1, j = 1 : ny, (53)

i = nx, j = 1 : ny, (54)

i = 1 : nx, j = 1, (55)

i = 1 : nx, j = 1 : ny, (56)

6 EXAMPLES. 57

where c is a positive constante. Thus σb
l+1ij represents a fraction of the absolute value of the

exact solution. In the experiment we set c = 0.5.
The tangent model is the same as the model, but in the boundary is set to zero.

6.2.5 Model errors.

If we make an analysis of the discretization errors (for example, using a Taylor’s expansion),
we deduce that the model error for an interior node (i, j) is given by:

[

Ml→l+1

(

xt

l

)

− xt

l+1

]

ij

.
= qlij ≈

≈ (∆t)2

2

∂2csol

∂t2
(tl, xi, yj) + ulij

∆t∆x2

6

∂3csol

∂x3
(tl, xi, yj) + (57)

+ vlij

∆t∆y2

6

∂3csol

∂y3
(tl, xi, yj)− αlij

∆t∆x2

12

∂4csol

∂x4
(tl, xi, yj)− (58)

− βlij

∆t∆y2

12

∂4csol

∂y4
(tl, xi, yj). (59)

For a boundary node, the model error is given by:

[

Ml→l+1

(

xt

l

)

− xt

l+1

]

ij
= σb

l+1ij

2
. (60)

For the case of the square root of the covariance matrix of model errors we consider 200 modes.

6.2.6 Observations.

For the example, we set the following measuring stations:

• Station 1 located at nodes i1 = 6 and j1 = 3.

• Station 2 located at nodes i2 = 14 and j2 = 3.

• Station 3 located at nodes i3 = 3 and j3 = 6.

• Station 4 located at nodes i4 = 10 and j4 = 6.

• Station 5 located at nodes i5 = 18 and j5 = 6.

• Station 6 located at nodes i6 = 6 and j6 = 10.

• Station 7 located at nodes i7 = 14 and j7 = 10.

• Station 8 located at nodes i8 = 3 and j8 = 14.

• Station 9 located at nodes i9 = 10 and j9 = 14.

• Station 10 located at nodes i10 = 18 and j10 = 14.

• Station 11 located at nodes i11 = 6 and j11 = 18.

• Station 12 located at nodes i12 = 14 and j12 = 18.

6 EXAMPLES. 58

We define the observation vector as y, where y is of size 12 containing the measurement of
each station. We will observe the same variable. The observations will be given each 5 time
steps. The number of observations numberobs for each observation step is 12. The observation
values are built from a perturbation of the exact solution, that is,

yls ∈ N (csol(tl, xis , yjs
), σo

ls) , σo
ls = c |csol(tl, xis , yjs

)| , s = 1 : 12, (61)

where c is a positive constant. Thus σo
ls represents a fraction of the absolute value of the exact

solution. In the experiment we set c = 0.3.

6.2.7 Observation errors.

We can set the covariance matrix of observation errors to a diagonal matrix, that is:

Rlss = σo
ls

2, s = 1 : 12. (62)

The number of observation modes is set to 12, that is:

So

l ss = |σo
ls| , s = 1 : 12. (63)

6.2.8 Observation operator and the tangent observation operator.

As we are observing the same type of variables, the observation operator is simply a projection:

Hl (x) =









































xi1j1

xi2j2

xi3j3

xi4j4

xi5j5

xi6j6

xi7j7

xi8j8

xi9j9

xi10j10

xi11j11

xi12j12









































(64)

The tangent observation operator is the same as the observation operator because it is linear.

6.2.9 Initialization.

The state vector will be initialized with a perturbation of the exact solution at t = 0. That is,
for a node (i, j):

xij ∈ N
(

csol(t0, xi, yj), σ
I
ij

)

, σI
ij = c |csol(t0, xi, yj)| , i = 1 : nx, j = 1 : ny. (65)

The covariance matrix at initial time is defined as a diagonal matrix. In the row corresponding
to the node (i, j) we set the covariance matrix element as σI

ij

2
. For the square root of the initial

covariance matrix we take 200 modes.

6 EXAMPLES. 59

6.2.10 Experiment.

A list of auxiliary settings is listed below:

!* precision parameters

plo = 4

pch = 1

pin = 4

pre = 8

!* random parameters

idum = -1

!* initialization parameters

dimspacestate = 441

numbersamples = 50

first = .TRUE.

We can see a comparison of the methods in figure 2. The graphics show the percentage of
the relative error of the model and assimilation against the true solution in the last step. For
example, for the case of the Extended Kalman filter, the figure 2 shows a plot of

∣

∣

∣

∣

∣

x
ekf
ij − xt

ij

xt

ij

∣

∣

∣

∣

∣

∗ 100. (66)

The maximum values of the plots are:

• Model: 77%

• EKF: 10%

• ENKF: 15%

• RRSQRTKF: 26%

• RRSQRTENKF: 27%

We see that without assimilation the model produces an error of 77%. The EKF gives the best
results, as well as the ENKF. The EKF is a little better than ENKF, because the ENKF uses
a finite set of possible states. The reduced rank square methods are comparable, and the error
is around 26%. That is because we are getting rid of a certain number of columns in the square
root covariance matrices. From the experiments one can see that the reduced rank methods
need a period of time in order to have an effective reduction of the error. The reason for that
might be that the modes that represent the covariance matrices need to adjust themselves to
represent the dynamical system.

6.3 Example 3D - Assimilation of CO.

The package has been used to assimilate CO concentrations in the area of Santiago de Chile.
The implementation was done using the MATCH model [10]. The version of the filter applied
was the Reduced Rank Square Root Kalman filter with 50 samples.

6 EXAMPLES. 60

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

X−AXIS

MODEL AND TRUTH −− TIME STEP L = 1110

Y−AXIS

 R
E

LA
T

IV
E

 E
R

R
O

R
 (

%
):

 |M
O

D
E

L
−

 T
R

U
T

H
|

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

X−AXIS

EKF AND TRUTH −− TIME STEP L = 1110

Y−AXIS

 R
E

LA
T

IV
E

 E
R

R
O

R
 (

%
):

 |E
K

F
 −

 T
R

U
T

H
|

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

X−AXIS

ENKF AND TRUTH −− TIME STEP L = 1110

Y−AXIS

 R
E

LA
T

IV
E

 E
R

R
O

R
 (

%
):

 |E
N

K
F

 −
 T

R
U

T
H

|

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

X−AXIS

RRSQRTKF AND TRUTH −− TIME STEP L = 1110

Y−AXIS

 R
E

LA
T

IV
E

 E
R

R
O

R
 (

%
):

 |R
R

S
Q

R
T

K
F

 −
 T

R
U

T
H

|

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

X−AXIS

RRSQRTENKF AND TRUTH −− TIME STEP L = 1110

Y−AXIS

 R
E

LA
T

IV
E

 E
R

R
O

R
 (

%
):

 |R
R

S
Q

R
T

E
N

K
F

 −
 T

R
U

T
H

|

Figure 2: Comparison of methods.

A grid of 41 × 41 is considered in the horizontal domain, and 16 levels in the vertical
component. Then, the dimension of the space state is set to 26896. For the initialization, the
model was run for a period of three days considering an atmosphere free of CO at the beginning.
The initial state vector is set to the last output of the MATCH initial run, adding an error of
100%. The simulation period was 13 days starting at June 17th, 1999, and ending at June 30th
of the same year, performing an analysis each 3 hours (the time step for observations). The
meteorological fields were generated using the HIRLAM model [12] with a resolution of 0.01
degrees (≈ 1 km.) and at 1 hour of time resolution.

The CO emissions were generated by MODEM [13]. See figure 3.
There are 8 monitoring stations located at different positions in Santiago. The observations

are taken from the measuring stations at the surface level, at intervals of 3 hours, where the
analysis step was performed. In figure 3 we show the eigth monitoring stations and the domain
of simulation: (1) Seminario, (2) Independencia-Recoleta and (5) Parque OHiggins are in the
city center of Santiago; (3) La Florida takes measurements is in the east and south area; (4)

6 EXAMPLES. 61

Las Condes - Vitacura is monitoring the north-east sector; (6) Pudahuel-Cerro Navia and (7)
Cerrillos register measurements at the west side of the city; and (8) El Bosque is located at the
south. The error in the observations was set to 30% of the measured value.

Figure 3: Emissions generated by MODEM and stations.

After 100 hours of simulation running assimilation, we obtain the figure 4, where we can
see a comparison of the model, observations, truth and assimilation:

6.4 Example 3D - Assimilation of O3.

Polair3D [11] is a 3D Eulerian chemistry transport model developed at ENPC (École Nationale
des Ponts et Chaussées). It has been used for passive transport [14], impact at European
scale, photochemistry [15] and mercury chemistry. The model has been validated through com-
parisons with other models and with measurements provided by campaigns. Several chemical
mechanisms are available like RADM2, RACM, EURORADM, MOCA and CBMIV. All the
parameterizations are computed in preprocessed steps, so Polair3D is a numerical platform for
solving advection-diffusion-reaction partial differential equations.

Polair3D is part of the Polyphemus system, although it can be used independently. Even
when assimilation is already implemented in Polyphemus, we have used the libraries presented
here with very little effort. The Polair3D model has about 65000 lines of Fortran 77 source code,
and in order to implement assimilation, the user needs to write about 1000 lines of Fortran
code, that is, about 1.5% of modifications.

The simulations uses a twin experiment, that is, one simulation is considered as the “truth”,
from which we will build the observations perturbing the solution. Then we perturb some input
data, and the objective is to recover truth using assimilation.

Before the user adds assimilation, it must be understood how the model works, how it is
compiled, and how it is run. For the case of Polair3D, the model is called through a script
called POLAIR written using the Korn Shell, which function is mainly compilation and execution.
Program options are passed through hidden files and symbolic links. Following that script, users
can write a Makefile in order to compile the code and avoid scripting.

6 EXAMPLES. 62

Figure 4: Results of the CO assimilation.

The second thing to be taken into account, is to find in the source code the main pro-
gram, and the subroutine that performs a time step. For Polair3D the main program is called
CTMASTER.f, and its function is simply initialization and calling to the subroutine that runs
the model, namely, ctm.f. This last subroutine has to be edited. The subroutine ctm.f can be
divided into the following parts: (a) declarations, (b) initializations and (c) time loop. In the
time loop we can identify a section which is in charge of the preprocessing, propagation and
preparation for the following time step (for example, writing files).

According to section 5.4 we need to edit the following functions:

• model parametersup: we set 50 model modes.

subroutine model_parametersup()

implicit none

modesmodel = 50_pin

end subroutine model_parametersup

• model model: this a wrapper of the subroutine that propagates the state one step forward
in time.

subroutine model_model(l , statein , stateout)

implicit none

integer(kind = pin) , intent(in) :: l

real(kind = pre) , dimension(nx , ny , nz) :: statein

real(kind = pre) , dimension(nx , ny , nz) :: stateout

dlcg(: , : , : , 50_pin) = statein

6 EXAMPLES. 63

!* this is the subroutine that propagates the concentrations dlcg

call polair_calcconc()

!* the index 50 corresponds to the O3 species

stateout = dlcg(: , : , : , 50_pin)

end subroutine model_model

• model sqrtmodelerror: set the square root of the covariance matrix of model errors.

subroutine model_sqrtmodelerror(l)

implicit none

integer(kind = pin) , intent(in) :: l

integer(kind = pin) :: i

sqrtmodelerror = 0.0_pre

do i = 1 , modesmodel

sqrtmodelerror(i , i) = 1.0_pre

end do

end subroutine model_sqrtmodelerror

• observations parametersup: setting some parameters.

subroutine observations_parametersup()

implicit none

obsstep = 1_pin !* observations at every step

no = 1800_pin / obsstep !* number of time observations

errorobs = 0.05_pre !* observations considered with a 5% of error

modesobs = 35_pin !* we consider 35 observation modes

end subroutine observations_parametersup

• observations ifobservations: set the ifobs variable.

subroutine observations_ifobservations(l)

implicit none

integer(kind = pin) , intent(in) :: l

if (mod(l , obsstep) == 0_pin) then

ifobs = .true.

else

ifobs = .false.

end if

end subroutine observations_ifobservations

• The following subroutine is auxiliar and sets up the location of 35 measuring stations.

subroutine observations_stationsup()

implicit none

integer(kind = pin) :: s

nstat = 35_pin

...

end

6 EXAMPLES. 64

• observations numberobs: set the number of observations as the number of stations.

subroutine observations_numberobs(l)

implicit none

integer(kind = pin) , intent(in) :: l

numberobs = nstat

end subroutine observations_numberobs

• observations obsvalue: the observation values are built from a twin experiment.

subroutine observations_obsvalue(l)

implicit none

integer(kind = pin) , intent(in) :: l

...

...

do s = 1_pin , numberobs

aux = dble(o3_truth(indexstationsx(s) , indexstationsy(s) , &

&indexstationsz(s) , l))

sigmaobs(s) = errorobs * abs(aux)

obsvalue(s) = random_normal0d(aux , sigmaobs(s))

end do

end subroutine observations_obsvalue

• observations obsop:

subroutine observations_obsop(l , vectorin , vectorout)

implicit none

integer(kind = pin) , intent(in) :: l

real(kind = pre) , dimension(nx , ny , nz) :: vectorin

real(kind = pre) , dimension(numberobs) :: vectorout

integer(kind = pin) :: s

do s = 1_pin , numberobs

vectorout(s) = vectorin(indexstationsx(s) , &

&indexstationsy(s) , indexstat&

&ionsz(s))

end do

end subroutine observations_obsop

• observations tangobsop: it is the same as the observation operator because it is linear.

• observations sqrtcovobs: setting the square root of the covariance matrix of observa-
tion errors.

subroutine observations_sqrtcovobs(l)

implicit none

integer(kind = pin) , intent(in) :: l

integer(kind = pin) :: s

6 EXAMPLES. 65

sqrtcovobs = 0.0_pre

do s = 1_pin , modesobs

sqrtcovobs(s , s) = sigmaobs(s)

end do

end subroutine observations_sqrtcovobs

• initialize parametersup(): set assimilation parameters.

subroutine initialize_parametersup()

implicit none

dimspacestate = nx * ny * nz

numbersamples = 50_pin

first = .true.

end subroutine initialize_parametersup

• initialize initialize2: set initializations.

subroutine initialize_initialize2(state , sqrtcov)

implicit none

real(kind = pre) , dimension(dimspacestate) :: state

real(kind = pre) , dimension(dimspacestate , modesana&

&lysis) :: sqrtcov

integer :: i , j , k , m

call polair_init()

m = 1_pin

do k = 1_pin , nz

do j = 1_pin , ny

do i = 1_pin , nx

state(m) = dlcg(i , j , k , 50_pin)

m = m + 1

end do

end do

end do

sqrtcov = 0.0_pre

do m = 1 , modesanalysis

sqrtcov(m , m) = 1.0_pre

end do

end subroutine initialize_initialize

In order that the code is consistent, we need to add three modules:

• module polaircommon.f: it gathers all the common files already existing in the Polair3d
source code,

• module polairformat.f90: it is a set of subroutines to read/write Polair3D input/output
files,

• module polairinit.f90: it is a wrapper of the initialization Polair3D files,

6 EXAMPLES. 66

• module polair.f90: it is a re-writting of the ctm.f file, considering the three main tasks:
preprocessing, propagation and postprocessing.

These four modules have to be included in the main program according to Section 5.5:

program main

use precision

use random

use polair

use model

use observations

use initialize

use rrsqrtenkf

implicit none

!* declarations

...

!* parallel initialization

call parallel_init()

call parallel_ranksize()

!* Polair3d initialization

call polairinit_init()

!* calling all the parameters and broadcasting

call random_parametersup()

...

!* allocations

...

!* filter initialization

call initialize_initialize(state , sqrtcov)

!* time loop

do jt = 1 , nstop

!* preparing propagation / this subroutine is a wrapper

call polair_previous()

!* prediction

if (jt == 1_pin) then

first = .true.

call rrsqrtenkf_predictor(jt , state , sqrtcov , samples , &

&sqrtcovaux)

6 EXAMPLES. 67

else

call rrsqrtenkf_predictor(jt , state , sqrtcov , samples , &

&sqrtcovaux)

end if

!* decide if there are measurements

call observations_ifobservations(jt + 1_pin)

if (ifobs) then

!* getting number of observations

call observations_numberobs(jt + 1_pin)

!* getting observations

allocate(obsvalue(numberobs))

call observations_obsvalue(jt + 1_pin)

!* correction

call rrsqrtenkf_corrector(jt , state , sqrtcov , samples , &

&sqrtcovaux)

deallocate(obsvalue)

end if

!* write for the next step

dlcg(: , : , : , 50_pin) = state

!* postprocess after propagation / this subroutine is a wrapper

call polair_post()

end do

!* deallocations

...

!* finalize parallelization

call parallel_finalize()

end program main

Summarizing, the steps needed for the implementation were: (a) understanding how the
model is compiled and run (b) identification of the subroutine that makes the propagation of
one time step and what it is needed to call it (c) coding of modules if necessary, (d) writing
wrappers of the model, (e) choosing assimilation options, (f) writing the main program and (g)
writing a Makefile.

Even when the settings can be improved in order to have a better assimilation, the expla-
nation above is useful because it serves as a guide to adapt models to assimilation with a very
little lines of source code.

REFERENCES 68

References

[1] http://www.netlib.org/blas/

[2] http://www.netlib.org/lapack/

[3] http://www.netlib.org/blacs/

[4] http://www.netlib.org/scalapack/scalapack home.html

[5] http://www-unix.mcs.anl.gov/mpi/

[6] http://www.nr.com/

[7] D. Treebushny and H. Madsen, On the Construction of a Reduced Rank Square-Root

Kalman Filter for Efficient Uncertainty Propagation, Future Generation Computer Sys-
tems, vol. 21, pp. 1047–1055 (2005).

[8] A. Segers, A. Heemink, M. Verlaan and M. van Loon, A Modified RRSQRT-Filter for As-

similating Data in Atmospheric Chemistry Models, Environmental Modelling & Software,
vol. 15, pp. 663–671 (2000).

[9] M. van Loon and A. Heemink, Kalman Filtering for Non Linear Atmospheric Chemistry

Models: First Experiences, Technical Report MAS-R9711, CWI, Amsterdam (1997).

[10] http://www.smhi.se/sgn0106/if/FoUl/en/models/match/match.html

[11] http://cerea.enpc.fr/polair3d/

[12] http://hirlam.org/

[13] http://www.sectra.cl/contenido/metodologia/transporte medioambiente/estimacion emi-
siones fuentes moviles modem.asp

[14] J. -P. Issartel and J. Baverel, Inverse Transport for the Verification of the Comprehensive

Test Ban Treaty, Atmos. Chem. Phys., 3, 475–486, 2003.

[15] K. N. Sartelet, J. Boutahar, D. Quélo, I. Coll, P. Plion and B. Sportisse, Development

and validation of a 3D Chemistry-Transport Model, POLAIR3D, by comparison with data

from ESQUIF campaign, Proceedings of the 6th Gloream Workshop: Global and Regional
Atmospheric Modelling, 2002.

