Documentation for C use of Messy

A Remark for ACM TOMS, August, 2016
Richard J. Hanson, Fred T. Krogh, and Philip W. Sharpﬂ

Abstract

This document gives additional information on use of the Fortran code messy ()
described in [2] but called from C routines using the name cmessy (). A C test driver
illustrates several ways of using the code in that environment. Library versions are
created for C that support float and double floating point data formats. Equivalent
functionality is maintained for the C and Fortran versions in those precisions. Cre-
ating a library usable by C routines requires the use of inter-operable Fortran and C
compilers. A preliminary step requires using a Fortran compiler to create a library or
equivalent object files.

Contents
1__Introduction| 1
2 Getting Started for C Use 2
[3 Getting Started, Microsoft Visual Studio| 2
4
1.1 Setting the Number of Structs and Threads| 6
1.2 Using Named Output Filesin C 6
7
6 With Threads| 7
7 Acknowledgments| 7

1 Introduction

This interface is provided so that C programmers can take advantage of the features in
messy (), without a conversion of the Fortran source code. Several ideas in Chap. 10, [I] were
used in designing this interface. A “direct” call to messy() is made using an intermediate
wrapper routine, callmessy().

Although C and Fortran are now inter-operable, some features in Fortran used in messy ()
are currently missing in C:

!Prepared at Math & la Carte.com by fkrogh@mathalacarte.comk, richard.koolhans@gmail.com,
sharp@math.auckland.ac.nz

e C has nothing equivalent to assumed-shape arrays in Fortran, Chap. 12.3-6, [3]. But C

does have assumed-size arrays, Appx B.3, [3].

e C and Fortran do not have inter-operable functionality of optional arguments.

e C and Fortran manage equivalent string and character data in different ways.

The design of messy () uses assumed-shape arrays and optional arguments to yield an easy-
to-use message processor. This functionality is implemented in our C code, but it requires a
different look and feel for the routine cmessy().

a.
b.

2

The C code cmessy () calls the Fortran wrapper code, callmessy().

The Fortran intrinsic subprogram c_f pointer () converts the assumed-size C arrays
and their sizes to assumed-shape Fortran arrays. These are the actual arguments in
calls to messy ().

Optional arguments in C are implemented as variable lists of enumerated groups of
arguments. These provide the array data type, its rank and size, and a pointer to the
data.

Conversion of C string variables to Fortran character variables is handled by passing
the lengths of the C strings and constructing an intermediate Fortran character variable
to pass to messy ().

. The set of Fortran wrapper routines with C bindings are found in the Fortran module

cmessycall m.F90: allocate_cmessy_interface, deallocate_cmessy_interface,
get_cmessy_defaults, callmessy, open_cmessy_files, and close_cmessy_files.

Getting Started for C Use

In the accompanying file messy_doc.pdf note the subdirectory C. Unzipping the distribution
file shows its contents. On Linux systems the make process will test the C installation and
compare the inter-language call to messy (). For Microsoft Visual Studio users, different
testing is required:

3

Getting Started, Microsoft Visual Studio

This section is specific to the use of the Intel C+4 compiler packaged within the Microsoft
Visual Studio environment. We present the tests with instructions for creating separate
Visual Studio Solutions using the double precision version of cmessy ().

cmessylib Creates a static library cmessylib.1lib for double precision use.

1. Open a new Visual Studio project. Under the template Intel (R) Visual C++
choose Empty Project. Give the project the name cmessylib.

2. Under the Project Properties menu item, choose the Configuration Properties tab.
The choose General > Configuration Type > Static library.

August 18, 2016 Krogh/Hanson: C Calls Messy Page 2

3. Under the Configuration Properties tab choose General > Platform Tool Set >
Intel C++ Compiler Close the Project Properties window.

4. Add source files to the project. These are the header file cmessy.h and the source
file cmessy. c, found in C\Srec.

5. Under the Project Properties menu item, and the Configuration Properties >
C/C++ tab, enable the preprocessor. Add the additional Preprocessor Defini-
tions, CTYP_=CTYP_d and maxt_=2.

6. Under the Configuration Properties > C/C++/Language [Intel ...] tab, enable
parallel OpenMP and C99 support.

7. Build the project. This step compiles the code and creates the static library
cmessylib.1ib.

8. The full path name to this file is needed in the testing or application use. Abbre-
viate this as: <ctpath> = ...\Projects\cmessylib\Debug.

ctmessy Calls cmessy () in many ways and compares results with the distribution file
C\Drivers\Results\result.d. If you are assured that cmessylib.lib is correctly
configured this project step can be skipped.

1. Open a new Visual Studio project. Under the template Intel (R) Visual C++
choose Empty Project. Give the project the name ctmessy.

2. Under the Project Properties menu item, choose the Configuration Properties tab.

3. Under the Configuration Properties tab choose General > Platform Tool Set >
Intel C++ Compiler Close the Project Properties window.

4. Add the header files cmessy.h and csample.h, and the source files ctmessy.c
and csample.c to the project. These are in the distribution directories C\Src
and C\Drivers.

5. Add the distributed data file to the project: C\Drivers\Results\result.d. This
is used to check results.

6. Under the Project Properties menu item, and the Configuration Properties >
C/C++ tab, enable the preprocessor. Add the additional Preprocessor Defini-
tions, CTYP_=CTYP_d , maxt_=1 and MSWin.

7. Under the Configuration Properties > C/C++/Language [Intel ...] tab, enable
C99 support.

8. Under the Project Properties set the path name for the linker to find the libraries
containing messy () and cmessy(): Linker > General > Additional Library Di-
rectories are set to <ctpath>. The second path name is for <tpath>, as noted in
messy_doc.pdf.

9. Under the Project Properties set the path name for the linker to use the libraries
containing messy () and cmessy(): Linker >Input > Additional Dependencies is
set to dmessylib.1lib; cmessylib.1lib.

10. Build and execute ctmessy. The results are written to the file . . .Results/result.d.

August 18, 2016 Krogh/Hanson: C Calls Messy Page 3

1. Open a second Visual Studio project within the Solution, ctmessy. Under the
template Intel (R) Visual Fortran choose Console Application and next
choose Empty Project. Name the project checkctmessy.

2. Add the source file checkctmessy.c to the checktmessy project. This is in the
distribution directory C\Drivers\MSWin.

3. Add the MS DOS batch file checkctmessy.bat to the checkctmessy project as
a Resource. This is in the distribution directory C\Drivers\MSWin.

4. Build and execute checkctmessy. The results in file ...Results\result.d.are
compared with those of result.d.

4 C Usage

The usage in C is similar to that in Fortran, but the specification of optional arguments
uses the C variable argument list macros. The Text argument parameters have the identical
meanings as with Fortran calls to messy ().

#include "cmessy.h" // <This file is in the package.>

struct cmessy_ty e; // < Your name could be different.>

<Declare other types that you need.>

allocate_cmessy_interface (int maxcstructs, int maxcthreads);
get_cmessy_defaults(&e); // In this order!

<Make changes desired in components of e.>

cmessy(&e,“Text defining what you want, as in a call to messy.”,

<optional arguments (see below)>, 0); //Trailing 0 says the list is complete.

Listing 1: Sample use of cmessy () to print four digits of two complex numbers

#include ”cmessy.h”
int main(void)
{struct cmessy_ty e;
allocate_cmessy_interface (1,1); get_cmessy_defaults(&e);
ck w, z, r[2];
w=I;z=csqrt(w); r[0]=w; r[l]=z;
cmessy(&e, ¢ ‘$D4The square—root of the complex number $ZR = $ZR* *
m_zdat ,2,r, 0);
// The square—root of the complex number (0.,1.000) = (.7071,.7071)
}

The type cmessy_ty has a C binding and the following public components. The indicated
defaults are set by the call get_cmessy_defaults().

character(c_char) :: ename[32]="Undefined" ! Name printed in error messages.
integer(c_int) :: fpprec = numdig ! Default for floating point precision
integer(c_int) :: kdf = numdig! Current default real precision.
integer(c_int) :: 1line_len = 128! Default for line length

integer(c_int) :: munit = QUTPUT_UNIT ! Message unit number

integer(c_int) :: eunit = OUTPUT_UNIT

August 18, 2016 Krogh/Hanson: C Calls Messy Page 4

integer(c_int) :: maxerr = 0! Max value of 1000 * (10*stop + print) + |error index]|

integer(c_int) :: 1stop = 3! Stop indexes < this don’t stop

integer(c_int) :: 1lprint = 3! Print indexes < this don’t print

integer(c_int) :: errcnt = 0! Count of the number of error messages, incremented
! by 1000000 for internal errors inside messy.

integer(c_int) :: dblev = 3! If 0, an immediate return is made (unless text

! starts with "$E”), else a $K<integer> will behave

! as if reaching the end of text if <integer> is > dblev.
integer(c_int) :: cinit = 1234565 ! Note if get_cmessy defaults(&e) was called
integer(c_int) :: cstruct ! Index of internal copy of messy_ty used to call messy

The next table shows the correspondence between how things look in a call to the For-
tran routine messy() compared to calling the C routine cmessy(). We use “dim’ for the
dimension of a rank-1 array, “rdim’ and “cdim’ for the row and column dimensions of a
rank-2 array.

Fortran Args. C Arg. Groups
idat=idat m_idat, dim, idat
rdat=rdat m_rdat, dim, rdat
zdat=zdat m_zdat, dim, zdat
imat=idat m_imat, rdim, cdim, idat
rmat=rdat m_rmat, rdim, cdim, rdat
zmat=zdat m_zmat, rdim, cdim, zdat
ix=ix m_ix, dim, ix
ptext=ptext m_ptext, ptext

Note that 0 must be the last argument after all groups. This signals the end of the
list of variable arguments. The leading integer flag in each group is defined in a sequential
enumeration, located in the header file cmessy.h. The value of the flag indicates the type,
rank and size of the array that is to be printed by messy (). The C integer dimensions are
passed to Fortran by value. To print a single value pass it by pointer reference.

Listing 2: Call to cmessy() that prints eight digits of a matrix with 0-based subscripts

#include ”cmessy.h”
int main(void)
{struct cmessy_ty e;
allocate_cmessy_interface (1,1); get_cmessy_defaults(&e);
rk rmatrix [2][3]={{1,2,3},{4,5,6}};
for (int i=0;i <2;i++){
for (int j=0;j <3;j++){rmatrix[i][j]=sqrt(rmatrix[i][]j]);}}
cmessy(&e,” $D8rmatrix : SNSASO0$00$0” ;m_rmat , 2,3 ,rmatrix, 0);
cmessy(&e,”rmatrix [0][1]=$R” ,m_rdat,1,&rmatrix [0][1],0);
Ve
rmatriz:
Col 0 Col 1 Col 2
Row 0 1.0000000 1.7320508 2.2360680
Row 1 1.4/142136 2.0000000 2.4494897
rmatric[0][1]=1.4142136 */

August 18, 2016 Krogh/Hanson: C Calls Messy Page 5

The call to the Fortran routines allocate_cmessy_interface and get_cmessy_defaults,
in this order, are required before any call to cmessy (). These calls set the initial state in the
wrapper code callmessy() and return initial values for the C structure e.

4.1 Setting the Number of Structs and Threads

Arrays in the wrapper routine callmessy () are allocated with an initial call
allocate _cmessy_interface (int maxcstructs, int maxcthreads);

The first argument maxcstructs is an upper bound for the number of different copies of
the structure cmessy_ty used within an application. The second argument maxcthreads is
an upper bound on the number of OpenMP threads created in parallel sections or loops. If
there are no calls to cmessy () within OpenMP parallel sections, use maxcthreads=1.

To reset the number of structures and threads, deallocate and then allocate again with
the new numbers:

deallocate _cmessy_interface (void);
allocate _cmessy_interface (int new maxcstructs, int new maxcthreads);

4.2 Using Named Output Files in C

Associated with each structure e that is used in calls to cmessy (), one can designate output
to be placed in a named file. Note that this cannot be done directly in the C code, as it has
no access to the Fortran I/O libraries. Following the call to get_cmessy_defaults(&e), and
prior to cmessy(), call the routine,

open_cmessy_files(&e, Task, File).

Task Defines what output is associated with File: 1 for regular messages, 2 for error mes-
sages, 3 for both, and 0 to set the error unit to the Fortran ERROR_UNIT (File not
used).

File A character string, giving the desired name. This can be a full path name.

All cmessy () files opened may be closed with

close_cmessy_files(&e).

The facility for writing messages to a named file may be useful in a parallel computing
environment where only one node is able to process I/O. Each processor assigns different
units to itself, and messages for each processor would go to different units. The one node
capable of doing I/O could pick up the messages from each of these output units without
messages from different processes getting mixed together in a confusing way.

August 18, 2016 Krogh/Hanson: C Calls Messy Page 6

5 Testing

The code has been tested on the following systems.

Gentoo Linux: gfortran/gce 4.9.2, 5.1.0, 5.4.0, 6.1.0
Ubuntu Linux: gfortran/gec 5.3.1 and 5.4.0
Ubuntu Linux: NAG 6.1 gcc 5.3.1

Red Hat Enterprise Linux: ifort 13.0.1

6 With Threads

We intended to provide a C testing code for using OpenMP threads. Its design was similar to
the test code thrdtmessy, documented in messy_doc.pdf. We have had difficulty in geting
this part of the project to work in a portable way, and thus this is not included in the current
code.

7 Acknowledgments

The authors are indebted to W. Van Snyder for answering many questions about the Fortran
standard, and for suggestions on alternative ways of doing things to take advantage of what
the latest versions of Fortran have to offer. Tim Hopkins has helped by locating problems
in using the NAG compiler in earlier versions.

References

[1] Hanson, R. J., AND Hopkins, T. Numerical Computing with Modern Fortran. STAM
Publications, Philadelphia, PA, USA, 2013.

2] KrocH, F. T. A Fortran message processor. ACM Trans. Math. Softw. 40, 2 (Feb
2014), Article 15.

[3] METCALF, M., REID, J., AND COHEN, M. Modern Fortran Ezplained. Oxford Univer-
sity Press, Oxford, UK., 2011.

August 18, 2016 Krogh/Hanson: C Calls Messy Page 7

	Introduction
	Getting Started for C Use
	Getting Started, Microsoft Visual Studio
	C Usage
	Setting the Number of Structs and Threads
	Using Named Output Files in C

	Testing
	With Threads
	Acknowledgments

