
PHquintic Software Library: User Manual

Bohan Dong and Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA

1 Software packages

Two software packages have been prepared. The first package, found in the
file PHquintic.c, is written in plain C language and offers a set of modular
functions that execute each of the basic PH curve construction and analysis
computations described in the paper. The function prototypes are specified
below. This package allows a software developer to “pick and choose” those
functions of primary interest in a specific application context, and incorporate
them in an existing software system with minimum effort. The main program
accompanying these functions provides some sample data and function calls
to test the various functions, but no graphics capability.

The second package, contained in the zip file InteractivePHquintic, is
implemented in C++ for compatibility with the MFC and OpenGL libraries,
and provides interactive graphical construction, manipulation, and analysis
capabilities (these libraries are required to compile and run the package). The
unzipped package can be compiled and run by opening a VC++ project file in
Microsoft Visual Studio. The basic functions in PHquintic.c are included
in this package, but the interfaces are modified to meet the requirements of
C++ and the MFC and OpenGL libraries. This package offers a more visual
and intuitive user interface, but is perhaps less well–suited to the purpose of
porting individual functions to an existing software system.

2 Function prototypes

The prototype for each function in PHquintic.c is described below.

2.1 PH quintic representation

The data defining a single PH quintic segment is encapsulated in the following
C struct.

struct PHquintic {

complex double p[6] ; /* Bezier control points of PH quintic */

complex double w[3] ; /* Bernstein coefficients of w polynomial */

double sigma[5] ; /* parametric speed Bernstein coefficients */

double s[6] ; /* arc length Bernstein coefficients */

} ;

1

The complex arrays p[6] and w[3] store the Bézier control points p
0
, . . . ,p5

of the curve, and coefficients w0,w1,w2 of the quadratic polynomial w(t).
The real arrays sigma[5] and s[6] store the coefficients of the parametric
speed and arc length polynomials, σ(t) and s(t). Note that this specification
is redundant, since p1, . . . ,p5, σ0, . . . , σ4, and s0, . . . , s5 can be determined
from p0 and w0,w1,w2 alone. However, pre–computing the entire contents
of a PHquintic struct can save considerable effort in subsequent usage of the
PH quintic segment it defines.

2.2 PH quintic offset curve

The prototype for the function that computes the offset to a PH quintic
segment is as follows. The struct curve passes the data that defines the PH
quintic to the function, the value d defines the signed1 offset distance, and
the homogeneous coordinates of the control points for the degree 9 rational
offset curve are returned in the arrays W[], X[], Y[].

void PHquintic offset(double d ,

struct PHquintic *curve ,

double W[] , double X[] , double Y[])

2.3 PH quintic elastic bending energy

The prototype for the function that computes the bending energy of a PH
quintic segment is as follows. The struct curve passes the data defining the
PH quintic to the function, and the computed bending energy is returned as
the value of the function.

double PHquintic energy(struct PHquintic *curve)

2.4 First–order Hermite interpolants

The prototype for the function that constructs a PH quintic segment is as
follows. The complex variables p0, p1, p4, p5 pass the initial and final pairs
of control points to the function, and the data defining the constructed PH
quintic are returned in the struct curve.

1The offset distance is positive to the right of the curve r(t), relative to the sense of
increasing parameter t.

2

void construct PHquintic(complex double p0 ,

complex double p1 ,

complex double p4 ,

complex double p5 ,

struct PHquintic *curve)

2.5 C2 PH quintic spline curves

Although the algorithms to compute open and closed C2 PH quintic splines
have much in common, they also differ in numerous details. To avoid the use
of many conditional statements accommodating the end conditions, they are
implemented in separate functions. The prototypes are as follows.

void open PHquintic spline(int n ,

complex double q[] ,

struct PHquintic spline[])

void closed PHquintic spline(int n ,

complex double q[] ,

struct PHquintic spline[])

Here the integer n defines the number of interpolation points (namely, n+1),
passed to the function through the array of complex values q[] — these
points are labelled q[0],. . ., q[n]. The n PH quintic segments defining the
constructed spline curve are returned through the struct array spline[] —
these segments are labelled spline[1],. . .,spline[n].

The functions tridiag open() and tridiag closed() are called to solve
the tridiagonal system arising in each Newton–Raphson iteration. The inputs
to these functions are the dimension n of the system, arrays a[], b[], c[]
defining the lower, main, and upper diagonal matrix elements, and the array
d[] of right–hand side values. The solutions are returned in the array x[].

The function beval() is another basic utility, that receives as input the
degree n and array of Bernstein coefficients b[] of a polynomial, and an
independent variable value t, and returns the polynomial value computed by
the de Casteljau algorithm. The parameter MAXDEGREE sets that maximum
polynomial degree that beval() can accommodate.

3

3 Interactive implementation

The interactive implementation allows the user to input the point data that
defines a single PH quintic segment or a C2 PH quintic interpolating spline
by mouse, and to modify the resulting curve in real time by using the mouse
to move these points. Key properties of the resulting PH curves (arc length,
bending energy, etc.) are reported, and offset curves can also be constructed.
For applications in which the point data must be precisely specified, the user
can type in the point coordinates.

Individual PH quintic curve segments are defined by the PHquintic struct,
and PH quintic splines are defined as arrays of these structs. Class PlanarPH
defines basic functions for computing and analyzing these curves. To ensure
a high level of precision, all complex variables in the class are type double.

PlanarPH(const CPointPH m pt[]);

PlanarPH(const CPointPH m pt[], int index);

The overloading constructors (for a single PH quintic Hermite interpolant and
a PH quintic spline, respectively) convert the point coordinates specified by
the user from type CPointPH to complex double. The CPoint type captured
in the window display is long int, so the point type is redefined as CPointPH,
which gives a representation of plane coordinates in type double.

The beval() function is used to plot PH curves. This function is over–
loaded to evaluate polynomials with complex Bernstein coefficients, to obtain
the curve points directly. The friend function is a non–member function, but
can access the private and protected members. Friend utility functions are
typically used to allow mutual access to private or protected members of dif-
ferent classes. It also allows other classes to invoke functions using a concise
syntax — e.g., iter = getIter(pph), rather than iter = pph.getIter().

friend double beval(int n, const double b[], double t);

friend complex<double> beval(int n, const complex<double> b[],

double t);

The function Spline() computes a C2 PH quintic spline interpolating num+1
points labelled 0, . . . , num under specified end conditions. The coordinates of
these points are stored in the complex array q[]. The data that defines the
num PH quintic segments of the constructed spline curve are returned in the
PHquintic struct array spline[]. The Boolean parameter closed specifies

4

the end conditions (cubic end spans or periodic end conditions, for open and
closed curves, respectively). To obtain a closed C2 spline, the user types “c”
after entering the last point with the mouse. The functions tridiag open()

and tridiag closed() solve the tridiagonal systems for these two cases.

void Spline(BOOL closed);

friend void tridiag open(. . .);

friend void tridiag closed(. . .);

The following functions define various interfaces for passing data. External
functions must call getCtrlPt to obtain the complex values that define the
control points. getIter returns the number of Newton–Raphson iterations
employed in the spline construction, stored in the variable iter. Similarly,
the functions getParaSpeed, getArcLength, and getEnergy compute the
parametric speed, arc length, and bending energy.

friend complex<double> getCtrlPt(const PlanarPH &pph, int i, int j);

friend int getIter(const PlanarPH &pph);

friend double getParaSpeed(const PlanarPH &pph, int i, double t);

friend double getArcLength(const PlanarPH &pph, int i, double t);

friend double getEnergy(const PlanarPH &pph, int j);

In order to plot the constructed PH curves on the screen, OpenGL must first
be initialized in the view class of MFC — this is named PlanarPH mfcView,
inherited from the base class CView.

int index, status, pointing;

CPointPH o ActRF, o ActRFTrans;

CPointPH ptActRF[Max+1];

CPointPH getAbsCoord(CPointPH pt);

CPointPH getActCoord(CPointPH pt);

double Distance(CPointPH p1, CPointPH p2);

The variable index (=num+1) records the number of input points, and status
tracks the program mode (plotting, analyzing, translating, etc). The variable
pointing identifies a point selected by the user after the curve is plotted,
and the selected point is highlighted (pointing = −1 if no point is selected).

The program employs two coordinate systems, absolute and relative, to
solve translation and display problems. For absolute coordinates, the window

5

display selects the left upper window corner as the origin, with a downward
ordinate direction. However, OpenGL selects the left lower corner as origin,
with an upward ordinate direction. In both cases, the abscissa direction is to
the right. The origin of the relative coordinates, in the absolute coordinate
system, is defined by o ActRF. All calculations are performed in the relative
coordinates, including cursor location and PH curve computations. The array
ptActRF[] stores the relative coordinates of the input points. By calling the
functions getAbsCoord() and getActCoord, the coordinates of any point
can be transformed between the relative and absolute systems. The function
Distance() returns the distance between two points.

PlanarPH pph;

void InitPH();

void DrawLine(int nIndex, int flag);

Before rendering, the function InitPH() should be called in most cases
to initialize pph, which is an object of class PlanarPH. The plotting function
DrawLine is called to plot a single point, a whole curve, or an offset, according
to whether flag is equal to plotPoint, plotSpline, or plotOffset. nIndex
indicates the number of points to be plotted when flag equals plotPoint.
Otherwise, nIndex is the number of the last point which should be plotted.

BOOL isMenuPh, isMenuCubic, isMenuPhCtrl, isMenuCubicCtrl;

//Status of Menu

BOOL isLBDown;

CPointPH LBDownPt;

GLfloat margin;

The program also offers the ability to compare the C2 PH quintic spline
and the “ordinary” C2 cubic spline with analogous end conditions, and the
user may control the display status of each spline. The variables isMenuPh,
isMenuCubic, isMenuPhCtrl, and isMenuCubicCtrl monitor the status of
the menu. They are TRUE if the corresponding menu is checked, and the
program then calls the Drawline function to plot the spline curves and their
control polygons. isLBDown and LBDownPt specify the status of the left mouse
button, and record the coordinates of the point where it is pressed down.

Color List offers an efficient and flexible means to render the scene in the
window. With a pointer to an array that contains red, green, and blue (RGB)

6

values, OpenGL functions such as glColor3fv make the current brush color
as needed. Each color in the Color List should be described in RGB format,
with three floats between 0 and 1 defining the red, green, and blue values.
In order to display the points and lines smoothly on the screen, the program
uses OpenGL functions to enable the blending option and smooth option.

As the Graphical User Interface (GUI) for the program, the window has a
title bar, menu bar, plotting area, and a status bar. The status bar shows the
cursor coordinates before plotting, the iteration number, the arc length and
bending energy, and the selected point after plotting. Each menu option has
an accelerator (i.e., an alternative keyboard input: see Table 1). In the Edit
menu, the user can plot a Hermite interpolant or spline curve, edit multiple
points, translate the curve, and construct an offset. The program offers two
approaches to editing points: right–clicking on a single point to change it, or
selecting Edit Multiple Points in the menu to change all the points.

New Spline N
Edit Multiple Points ctrl+E
Translate Spline T
Offset O
Hermite H
PH P
PH(Ctrl) ctrl+P
Cubic C
Parametric Speed shift+A
Arc Length A

Table 1: Accelerator keyboard inputs for menu items.

Figures 1–5 present examples of the program in use. Figure 1 illustrates
the construction of a single PH quintic Hermite interpolant from initial and
final pairs of control points specified by the user. Figure 2 shows a planar
C2 PH quintic spline interpolating a sequence of points freely selected by the
user with the mouse. For this plot, the View menu options PH and PH(Ctrl)
have been checked, so the control polygons of each PH quintic spline segment
are also shown. Figure 3 presents the same C2 PH quintic spline, but in this
case the View menu options PH and Cubic are checked, to compare the PH
spline with the ordinary cubic spline — note the rather poor shape of the
latter, as compared to the former.

7

Figure 1: A single PH quintic segment, constructed as a Hermite interpolant
from user mouse input specified as initial and final pairs of control points.

Figure 2: An example of an open C2 PH quintic spline curve interpolating a
sequence of points (large dots) specified interactively with the mouse. The
control polygons for each of the PH quintic spline segments are also shown.

8

Figure 3: Comparison of the C2 PH quintic spline (black curve) in Figure 2
and the “ordinary” C2 cubic spline (red curve) interpolating the same points
with uniform parameterizations, and equivalent end conditions (quadratic
end spans for the cubic spline, and cubic end spans for the PH quintic spline).

Figure 4: Parametric speed plot for the C2 PH quintic spline in Figure 2.

9

In Figure 4, the parametric speed variation for the C2 PH spline shown
in Figure 1 is plotted. Finally, Figure 5 shows the construction of offsets to a
C2 PH quintic spline, for several (positive and negative) values of the offset
distance d. The offsets can be cleared from the display by setting d = 0.

Figure 5: Construction of the rational offsets to a planar C2 PH quintic spline
curve for several — positive and negative — values of the offset distance d.

10

