
Bertini real

Software for Real Algebraic Sets

A Comprehensive Guide

This manual compiled September 29,
2017

c©2014–2017 Dani Brake

Manual written by

Dani Brake
Pierce Cunneen

Elizabeth Sudkamp
Christopher Lembo

Brought to you by the power of numerical algebraic geometry

Contents

1 Introduction 1
1.1 About this manual . 1
1.2 Bertini real product description . 1
1.3 Where Bertini real can be found . 1
1.4 Who is developing Bertini real? . 1
1.5 Contact . 2
1.6 Acknowledgements . 2

2 Quick Summary 3

3 Input Files 4
3.1 On Bertini input syntax . 6

4 Preliminary: running Bertini 7
4.1 Numerical Irreducible Decomposition . 7
4.2 Necessary Bertini output files for Bertini real . 8

5 Running Bertini real 9
5.1 Files Needed for Input . 9
5.2 Command prompt, options . 9
5.3 Parallelism . 11
5.4 Projections and spheres of interest . 11

5.4.1 The user-defined projection, pi . 12
5.4.2 The sphere of interest, sphere . 12

6 Running Sampler 14
6.1 Curves . 14

6.1.1 Running Sampler (Using an Example) . 14
6.1.2 Available curve sampling algorithms . 15

6.2 Surfaces . 18
6.2.1 Running sampler on a surface (Using an Example) 18
6.2.2 Available surface sampling algorithms . 19
6.2.3 Known issues with surface sampler . 24

7 Visualization 25
7.1 Visualizing in Matlab . 25

7.1.1 Matlab visualization options . 25
7.2 Visualizing in Python . 26
7.3 3D Printing . 27

8 Troubleshooting 28
8.1 Helpful help . 28

8.1.1 Compilation fails, with an error due to send calls for MPI 28
8.1.2 had a critical failure . 28
8.1.3 sh: matlab: command not found . 29
8.1.4 Calling Bertini real from within Matlab . 29

9 Examples 30
9.1 Curves . 30

i

9.1.1 Circle . 30
9.1.2 Astroid . 33

9.2 Surfaces . 36
9.2.1 Solitude . 36
9.2.2 Plane . 39

A The Decomposition Algorithms 44
A.1 Decomposing curves . 44

A.1.1 Critical points . 45
A.1.2 Intersect with bounding object . 45
A.1.3 Slice . 45
A.1.4 Connect the dots . 45
A.1.5 Merge [optional] . 45
A.1.6 Sample [optional] . 46

A.2 Decomposing surfaces . 46
A.2.1 Critical curves . 47
A.2.2 Bounding curve . 48
A.2.3 Slice . 48
A.2.4 Connect the dots . 48
A.2.5 Merge [optional] . 49
A.2.6 Sample [optional] . 49

B Install 50
B.1 Dependencies . 50

B.1.1 Symbolic engine . 51
B.2 Instructions for GNU/Linux . 52
B.3 Instructions for OSX . 53

B.3.1 Preliminary Work . 53
B.3.2 Installation . 53

B.4 Instructions for Windows . 54
B.4.1 Install Cygwin . 54
B.4.2 Selecting packages for Cygwin . 56
B.4.3 Initializing Paths . 57
B.4.4 Organizing Cygwin . 57
B.4.5 Installing Dependencies . 58
B.4.6 Linking Cygwin Environment Paths . 58
B.4.7 Building and Installing Packages . 59
B.4.8 Installing Bertini and Bertini real . 60
B.4.9 Setting up MATLAB . 60

B.5 Testrun – the Cayley Cubic . 61

C Output Files 63
C.1 Regardless of dimension . 63

C.1.1 output/decomp . 64
C.1.2 output/run metadata . 64
C.1.3 output/V.vertex . 65
C.1.4 output/vertex types . 65
C.1.5 output/witness set . 66
C.1.6 /Dir Name . 66

C.2 Curve files . 67
C.2.1 output/curve.cnums . 67

ii

C.2.2 output/E.edge . 67
C.2.3 output/samp.curvesamp . 67

C.3 Surface files . 69
C.3.1 F.faces . 69
C.3.2 S.surf . 69
C.3.3 output/samp.surfsamp . 70

Glossary 71

iii

1 INTRODUCTION

1 Introduction

Welcome to Bertini real, software for real algebraic geometry. This manual is intended to help
the user operate this piece of numerical software, to obtain useful and high-quality results from
decomposing real algebraic curves and surfaces.

Bertini real is compiled software, links against a parallel version of Bertini 1 compiled as a library
(libbertini-parallel, and requires Matlab and the Symbolic Computation toolbox. It also re-
quires several other libraries, including a few from Boost, and an installation of MPI. All libraries
should be compiled using the same compilers and dependent libraries.

1.1 About this manual

The purpose of this manual is to provide a robust, orderly, and easy to understand instructions
on how to use Bertini real. This manual has three roles: it first serves as a description of what
Bertini real is, followed by instructions on Bertini real’s installation on Mac, Linux, and PC oper-
ating systems, and finally as a general reference manual for Bertini real.

This manual is here to help guide a user through the installation process, as well as act as the user’s
manual for Bertini real. If there is a section that might not be entirely clear, or is confusing to a
reader, please contact us (see below for contact information), and we will try to resolve the problem.
Such feedback is welcome!

1.2 Bertini real product description

Bertini real is an implementation of several numerical algorithms [8, 3], to decompose the real part
of a complex curve or surface in any (tractible) number of variables. Some of the important features
of Bertini real include :

• It is a command line program for numerically decomposing the real portion of a one- or two-
dimensional complex irreducible algebraic set in any reasonable number of variables.

• It seeks to automate the visualization and computation of algebraic curves and surface.

1.3 Where Bertini real can be found

The tarball for Bertini real can be downloaded at Bertini real.com. The visualization codes for
MATLAB, they can be found at GitHub.

1.4 Who is developing Bertini real?

Bertini real is under ongoing development by the development team, which consists of Dani Brake
(University of Notre Dame), Daniel Bates (Colorado State University), Jonathan Hauenstein (Uni-
versity of Notre Dame), Wenrui Hao (Penn State), Andrew Sommese (University of Notre Dame),
Charles Wampler (General Motors. R&D), and Pierce Cunneen (University of Notre Dame)

1

http://www.bertinireal.com/download.html
https://github.com/ofloveandhate/bertini_real/tree/master/matlab_codes

1 INTRODUCTION 1.5 Contact

This manual was written by Dani Brake, Pierce Cunneen, Chris Lembo, and Elizabeth Sudkamp.

1.5 Contact

Dani Brake: danielthebrake@gmail.com – Main implementer
Daniel Bates: bates@math.colostate.edu – Advisory
Jonathan Hauenstein: hauenstein.edu – Advisory
Wenrui Hao: hao.50@mbi.osu.edu – Advisory
Andrew Sommese: sommese@nd.edu – Advisory
Charles Wampler: charles.w.wampler@gm.com – Advisory
Pierce Cuneen: pcuneen@nd.edu – Users manual
Elizabeth Sudkamp: esudkamp@nd.edu – Users manual

1.6 Acknowledgements

The development of Bertini real has been supported generously by a number of sources, including

• the Vincent J. and Annamarie Duncan Professor of Mathematics, at the University of Notre
Dame,

• the University of Notre Dame,
• the National Science Foundation grants DMS-1025564 , DMS-1115668, and DMS-1262428,
• the Air Force Office of Scientific Research grant FA8650-13-1-7317,
• Mathematical Biosciences Institute,
• the Sloan Research Fellowship,
• the Army Young Investigators Project, and
• the Defense Advanced Research Projects Agency Young Faculty Award.

Finally, funding for shared facilities used in this research was provided by the Division of Computer
and Network Systems: an NSF grant under award number CNS-0923386.

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation or any
other organization.

2

mailto:danielthebrake@gmail.com
mailto:bates@math.colostate.edu
mailto:hauenstein.edu
mailto:hao.50@mbi.osu.edu
mailto:sommese@nd.edu
mailto:charles.w.wampler@gm.com
mailto:pcuneen@nd.edu
mailto:esudkamp@nd.edu

2 QUICK SUMMARY

2 Quick Summary

Here’s a super brief description of how to use Bertini real.

1. Open a terminal or command prompt. Navigate to the directory containing the input file.

2. Run Bertini on an input file using the tracktype:1 setting. This is done by typing in the
command line: bertini with an input file named input. Bertini will produce a Numerical
Irreducible Decomposition that will be used by Bertini real.

3. Run Bertini real on the same input file. Similarly, just type bertini real in the command
line. Bertini real will provide a cellular decomposition of the real portion of a one- or two-
dimensional complex algebraic set.

4. Consider running the sampler to smooth your decomposition.

5. Visualize the results of Bertini real in Matlab. Enter Matlab and call gather br samples,
which parses the output results of into a .mat file, and then call bertini real plotter,
which will plot the curve or surface in Matlab.

Notes

Please note that

• either the Matlab executable must be on the path, with the symbolic toolbox;

• or, you have Python installed with supporting modules as necessary. I don’t remember what
those modules are right now. pip install is your friend. Decompose Whitney and install
dependencies til it works ;)

Bertini real can be

• downloaded from http://bertinireal.com/download.html, or

• cloned from https://github.com/ofloveandhate/bertini_real.

Use of Bertini real depends on Bertini, which itself has several important dependencies (see Sec-
tion B). Once installed, you can run Bertini real from the command line.

3

http://bertinireal.com/download.html
https://github.com/ofloveandhate/bertini_real

3 INPUT FILES

3 Input Files

The instructions provided go through how to create input files, run these files through Bertini
and Bertini real, and view a graphical representation of the results using MATLAB. Most of this
information about Bertini, its input files, and syntax will be taken or paraphrased from the slightly-
out-of-date Bertini User’s Manual, which can be read here.

The input file has two parts, grouped as follows (where the % symbol is the comment character in
the input file, as usual):

CONFIG
% L i s t s o f c o n f i g u r a t i o n s e t t i n g s (op t i ona l)
t racktype : 1 ; % needed in order to run B e r t i n i r e a l
END;
INPUT
% Symbol d e c l a r a t i o n s
% Optional ass ignments (parameters , constants , e t c .)
% Function d e f i n i t i o n s
END;

File 1: Adapted from [1]

The upper portion of the file consists of a list of configuration settings. Any configuration that is not
listed in the input file will be set to its default value. A table of all configuration settings that may
be changed, along with their default settings and acceptable ranges, may be found in the Appendix.

The syntax for the configuration lines is straightforward. It consists of the name of the setting (in
all caps), followed by a colon, a space, the setting, and a semicolon. For example, to change the
tracking type to 1 (the default is 0), simply include the following line in the CONFIG portion of the
input file:

TRACKTYPE: 1 ;

File 2: Adapted from [1]

The lower portion of the input file begins with a list of symbol declarations (for the variables,
functions, constants, and so on). All such declarations have the same format:

KEYWORD a1 , a2 , a3 ;

File 3: Adapted from [1]

where KEYWORD depends upon the type of declaration. All symbols used in the input file must be
declared, with the exception of subfunctions. Here are details regarding each type of symbol that
may be used in the input file:

• FUNCTIONS: Regardless of the type of run, all functions must be named, and the names
must be declared using the keyword function. Also, the functions must be defined in the
same order that they were declared.

• VARIABLES In all cases except user-defined homotopies, the variables are listed by group
with one group per line, with each line beginning with either the keyword variable group

4

https://bertini.nd.edu/BertiniUsersManual.pdf

3 INPUT FILES

(for complex variable groups against which the polynomials have not been homogenized) or
the keyword hom variable group (for variable groups against which the polynomials have
been homogenized). Note that the user must choose one type of variable group for the entire
input file, i.e., mixing of variable groups is not allowed in this release of Bertini. Also, only
one variable group may be used for a positive-dimensional run. For example, if there are two
nonhomogenized variable groups, the appropriate syntax would be

va r i ab l e g roup z1 , z2 ;
va r i ab l e g roup z3 ;

File 4: Adapted from [1]

In the case of user-defined homotopies, the keyword is variable, and all variables should be
defined in the same line.

• CONSTANTS: Bertini will accept numbers in either standard notation (e.g., 3.14159 or 0.0023)
or scientific notation (e.g., 3.14159e1 or 2.3e-3). No decimal point is needed in the case of an
integer. To define complex numbers, simply use the reserved symbol I for

√
−1, e.g., 1.35 +

0.98*I. Please note that the multiplication symbol * is always necessary, i.e. concatenation
does not mean anything to Bertini. Since it is sometimes useful to have constants gathered in
one location (rather than scattered throughout the functions), Bertini has a constant type.
If a constant type is to be used, it must be both declared and assigned to. Here is an example:

. . .
g1 = 1 . 2 5 ;
g2 = 0.75 − 1 .13∗ I ;
. . .

File 5: Adapted from [1]

Bertini will read in all provided digits and will make use of as many as possible in computations,
depending on the working precision level. If the working precision level exceeds the number of
digits provided for a particular number, all further digits are assumed to be 0 (i.e., the input is
always assumed to be exact). This seems to be the natural, accepted implementation choice,
but it could cause difficulty if the user truncates coefficients without realizing the impact of
this action on the corresponding algebraic set.

• SUBFUNCTIONS: Redundant subexpressions are common in polynomial systems coming from
applications. For example, the subexpression x^ 2 + 1.0 may appear in each of ten polyno-
mials. One of Bertini’s advantages is that it allows for the use of subfunctions. To use a
subfunction, simply choose a symbol, assign the expression to the symbol, and then use it in
the functions. There is no need to declare subfunctions (and no way to do so anyway).

. . .
V = x/2 + 1 . 0 ;
. . .
f 1 = 2∗Vˆ2 + 4 . 0 ;
. . .

File 6: Adapted from [1]

• SIN, COS, PI, AND EXP: Starting with Bertini v1.2, the sine function sin, cosine function

5

3 INPUT FILES 3.1 On Bertini input syntax

cos and exponential function exp are built into Bertini. Additionally, Bertini uses Pi for the
constant π. To avoid confusion with scientific notation, the constant e is not specifically built
in Bertini, but the user can define their own constant and set it equal to exp(1), as shown
below.

. . .
constant EN; % Euler ’ s number e
EN = exp (1) ;
. . .

File 7: Adapted from [1]

It is important to note that Bertini will return an error if the argument of sin, cos, or exp

depends upon a variable when trying to solve a polynomial system. There is no such restriction
for user-provided homotopies.

3.1 On Bertini input syntax

Common complaints about Bertini are that (a) the parser that reads in the input is very picky and
(b) the error messages are often to general. The development team agrees and will continue to work
on this (especially during an upcoming complete rewrite). In the meantime, here is a list of syntax
rules that are commonly broken, resulting in syntax errors:

• All lines (except CONFIG and INPUT, if used) must end with a semicolon.

• Bertini is case-sensitive.

• The symbol for
√
−1 is I, not i. If you prefer to use i, you may define i as a subfunction by

including the statement i = I;.

• In scientific notation, the base is represented by e or E, e.g., 2.2e-4.

• For multiplication, * is necessary (concatenation is not enough).

• Exponentiation is designated by ˆ.

• All symbols except subfunctions must be declared prior to use. You cannot combine declaration
and definition, sadly.

• No symbol can be declared twice. This error often occurs when copying and pasting in the
creation of the input file.

• A pathvariable and at least one parameter are needed for user-defined homotopies. Please
refer to the previous section for details.

• White space (tabs, spaces, and new lines) is ignored.

6

4 PRELIMINARY: RUNNING BERTINI

4 Preliminary: running Bertini

4.1 Numerical Irreducible Decomposition

Bertini real takes as input a Numerical Irredicible Decomposition (NID) of the complex algebraic
variety for your problem. The NID is computed by Bertini, tracktype: 1, and is stored in a file
called witness data.

Once your input file describing the system you want to solve is created, you need to run Bertini.
Navigate in the command line to the directory of the input file and type bertini or bertini

your input file name. Bertini assumes the input file is named input unless told otherwise, by
passing the name as the first argument. No, you do not currently use flags to specify input file name
with Bertini 1.

Cygwin users: A user may also use bertini-serial.exe (or bertini parallel.exe). This will
run Bertini, creating the Numerical Irreducible Decomposition needed for Bertini real. You may
need to type in the entire pathway to where Bertini is located, if it’s not in the same folder, so the
command line read
/cygdrive/path/to/BertiniSource v1.5/bertini-serial.exe input

If the NID run is successful, you should see a summary of the decomposition print to the screen. It
should look something like this:

∗∗∗∗∗∗∗∗∗∗∗∗∗ Witness Set Decomposition ∗∗∗∗∗∗∗∗∗∗∗∗∗

| dimension | components | c l a s s i f i e d | u n c l a s s i f i e d
−−−
| 2 | 1 | 7 | 0
−−−

∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Decomposition by Degree ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Dimension 2 : 1 c l a s s i f i e d component
−−−

degree 7 : 1 component

∗∗∗

File 8: Example NID screen output, tracktype 1 in Bertini 1

If there are path failures or unclassified points, change Bertini settings, and re-run the problem.
Consult the Bertini book or user’s manual for more information about available settings, and their
impact on computing the NID.

7

4 PRELIMINARY: RUNNING BERTINI 4.2 Necessary Bertini output files for Bertini real

4.2 Necessary Bertini output files for Bertini real

The main output file of interest from Bertini to feed into Bertini real is called witness data, a file
suited for automated reading by a program. It’s terribly formatted for humans. See the Bertini
book [2] for information about what is contained in witness data.

Shortly, witness data contains all of the information needed to describe the witness sets for the
irreducible components of your variety. In particular, it has the information used for regeneration
used in Bertini real, as well as component sampling and membership testing.

Do not rename witness data. Bertini real will do its best to preserve this file against loss. If your
witness data took a lot of effort to compute, you are encouraged to not use the original data file
as input to Bertini real, or any other program. Archive the original, and use a duplicate.

8

5 RUNNING BERTINI REAL

5 Running Bertini real

Bertini real is called from the command line. This is done simply by calling bertini real (or
bertini real.exe for Cygwin users) from the command line. If the input file is called anything
other than input, than the -input or -i option followed by the filename must be used.

It is important to note that for Bertini real to run, the MATLAB executable must be on the path.

Bertini real uses the tracker options for Bertini, which are set at the top of the input file, in the
CONFIG section.

We suggest the following configuration options in the input file for Bertini real:

• sharpendigits ≈ 30

helps keep regeneration start points on target, and helps identify points which are supposed
to be the same point.

Other options can improve performance and tighten up the produced decomposition.

5.1 Files Needed for Input

In order to sucessfully run Bertini real, the program needs to be able to access the original input
file that was used in Bertini, as well as the witness data file generated by Bertini.

5.2 Command prompt, options

There are a number of inline commands that can be used while running Bertini real. Below is a
table that describes these options:1

Table 1: Bertini real command line options

Option Alter Command Line Description

-component integer index
of the

component

bertini real -component

1

Decomposes only one
component of the entire

figure

-debug n/a bertini real -debug If used, program will pause
for 30 seconds before running

for debugging purposes

Continued on next page

1This table prepared by Beth Sudkamp. Thanks Beth!

9

5 RUNNING BERTINI REAL 5.2 Command prompt, options

Table 1: Continued from previous page

Option Alter Command Line Description

-dim or -d target
dimension of

solution

bertini real -d 2 Sets a target dimension to be
used for the solution

-gammatrick

or -g
1 (if you’d like
Bertini real to

use the
gamma trick)
or 0 (if not)

bertini real -g 1 Indicator for whether
Bertini real should use the
gamma trick in a particular

solver

-help or -h n/a bertini real -h Displays a help message
containing the version of

Bertini real, where
Bertini real can be found

online, support information,
and finally the command line

options.

-input or -i filename bertini real -i myfile Used if input file is named
something other than ‘input’

-mode or -m bertini real

(default) or
crit

bertini real -m crit Sets the mode of Bertini real
to be used

-nostifle or
-ns

n/a bertini real -ns If used, screen output will
not be stifled

-nomerge or
-nm

n/a bertini real -nm Indicates that Bertini real
should not merge ends

-output or
-out or -o

name of the
output

directory

bertini real -out

bertinir results

Places the output files in a
different directory

Continued on next page

10

5.3 Parallelism 5 RUNNING BERTINI REAL

Table 1: Continued from previous page

Option Alter Command Line Description

-projection

or -pi or -p
desired
filename

bertini real -p

myprojection

Indicator for whether to read
the projection from a file,

rather than randomly choose
it

-quick or -q n/a bertini real -q Solves problem quickly, but
not as robust

-veryquick

or -vq
n/a bertini real -vq Solves problem very quickly,

but not as robust

-sphere or -s the name of
the file for

Bertini real to
read

bertini real -sphere

mysphere

Sets indicator that
Bertini real should use

sphere created by user rather
than just compute sphere

-verb the level of
the verbosity

bertini real -verb 2 Shows or hides output text

-version or
-v

n/a bertini real -version Displays the version of
Bertini real running on your

computer

5.3 Parallelism

Bertini real is parallel-enabled, using MPI (but not OpenMP or threads). To use multiple processors,
call it as you would any other MPI program: mpiexec [options] bertini real.

5.4 Projections and spheres of interest

Here we describe the pi file in Section 5.4.1, and a sphere of interest in Section 5.4.2.

11

5 RUNNING BERTINI REAL 5.4 Projections and spheres of interest

5.4.1 The user-defined projection, pi

The pi file, defining a specific projection to use for decomposing your curve or surface, has a simple
format. You indicate the number of variables, and then give the projection. No punctuation or
delimiters necessary.

Using a particular projection, contained in a file of arbitrary name, is indicated to Bertini real by
passing the -pi flag. For example, bertini real -pi my projection.

By default, Bertini real uses a randomly generated projection to decompose the object. This is so
that the object is in general position, which is required for set-of-measure-zero guarantees that all
elements of the critical space lie in the distinct fibers of the projection.

For decomposing surfaces, if you feel the need to supply your own projection, please consider using
two projections π1 and π2 such that π1 · π2 = 0. That is, orthogonal projections tend to produce
cleaner decompositions.

num coords <−−− the number o f v a r i a b l e s in the problem

p i 1 1 <−−− curves and s u r f a c e s need at l e a s t one p r o j e c t i o n
p i 1 2
. . .
p i 1 N

p i 2 1 <−−− only s u r f a c e s need a second p r o j e c t i o n
p i 2 2
. . .
p i 2 N <−−− as many e n t r i e s in each p r o j e c t i o n as the re are

coo rd ina t e s

File 9: A file describing a user-defined projection used to decompose a real object
in 4 dimensions. The first number indicates the number of coordinates, which
must match the number in the object’s ambient space. Then, the values for
the projection. Try to use orthogonal projections for surfaces.

5.4.2 The sphere of interest, sphere

While Bertini real will happily compute a bounding sphere for you, containing all the interesting
parts of your object, it may be very large, or kind of wonky in the case of some projections. Hence,
we allow the user to specify their sphere of interest by way of plain text file.

The sphere file allows the user to bound the space in which to decompose their object. If there is
a region of space you are interested in, you can compute your object inside a sphere of interest.

To inform Bertini real that you are using your own sphere rather than the computed one, use the
-sphere flag. For example, bertini real -sphere my sphere file. This generally will not speed
up computation at all, since there’s no way to know prior to point computation whether the endpoint
will be in or out of the sphere. All it will change is the bounded region.

12

5.4 Projections and spheres of interest 5 RUNNING BERTINI REAL

rad iu s

x 1 c e n t e r
x 2 c e n t e r
. . .
x N center

File 10: A file describing a sphere of interest to Bertini real. The radius appears
first, followed by the coordinates of the center of the sphere. Real coordinates
only, omit the imaginary part.

13

6 RUNNING SAMPLER

6 Running Sampler

• If you are happy with the results of the Bertini real decomposition, you may wish to refine the
triangulation of the surface or curve. This can be acheived using the sampler program after
calling bertini real. Sampler can be used on both curves and surfaces.

• This section will show you how to:

1. Properly run sampler, with visual examples

2. Use the different algorithms to shape curves and surfaces

3. Use matlab to better visualize curves and surfaces

6.1 Curves

6.1.1 Running Sampler (Using an Example)

In order to show how to properly run sampler, I will be using an example of a curve, going through
each step to make sure the basics of sampler are covered.2

Instructions Screen Shot

First, choose the curve you wish to produce.
(In this case I am choosing the

eistute sphere, which is found in the
intersections file which can be found in the

zoo file)

Invoke bertini and bertini real by entering
in each on the command line individually

Continued on next page
2This content prepared by Chris Lembo. Thanks Chris!

14

6.1 Curves 6 RUNNING SAMPLER

Table 2: Continued from previous page

Instructions Screen Shot

Invoke sampler by entering it in on the
command line

Now use Matlab to produce the image of the
curve

1. Go to the folder that holds your curve,
then type gather br samples

2. To produce the image, type in
bertini real plotter

3. you should end up with a figure along
with matlab’s display of viewing options

6.1.2 Available curve sampling algorithms

There are three curve sampling algorithms available in the Sampler module for Bertini real.

1. -m [a] – Adaptive – by movement of a predicted point. Default choice.

2. -m d – Adaptive – by distance between consective samples

3. -m f – Fixed – every edge gets the same number of points

The modes are accessed by calling sampler with the appropriate mode switch.

Curve sampling algorithm: Adaptive by movement This algorithm refines edge-by-edge
until the predicted point, and the computed point, are close to each other. It reduces sample density
in regions of the curve which are flat, and has higher density in regions of high curvature.

15

6 RUNNING SAMPLER 6.1 Curves

Bisect intervals
until new sample points
close to estimated

•
Fewer samples if
less curvature

•

1. estimate new point
 as midpoint

2. stop when distance
 |estimated - computed| <

• Resulting sampling is
non-uniform in
projection value

Figure 1: Sampling a curve using movement-adaptive method. New points are computed on the curve
by bisecting intervals until the distance between the estimated midpoint and actual midpoint is less
than convergence threshold τ .

Figure 2: This is an example of sampling a curve using the adaptive by movement mode. To replicate
this, when invoking sampler, type in sampler -m a

Curve sampling algorithm: Adaptive by distance The adaptive-by-distance refinement al-
gorithm refines the edge by bisection until the distance between consecutive samples is less than
some user-set threshold, or a maximum number of refinement iterations has been computed. This
algorithm works well, but over-samples flat regions of the curve, where relatively few points should
be necessary.

16

6.1 Curves 6 RUNNING SAMPLER

sample density
about the same
regardless of curvature

Non-uniform in
projection value

bisect intervals
until no two points
are more than
apart from each other

•

•

results in over-sampling of
flat regions of curve

• •

Figure 3: Sampling a curve using distance-adaptive method. New points are computed on the curve by
bisecting intervals for which the distance between consecutive samples is larger than the convergence
threshold τ .

Figure 4: This is an example of sampling a curve using the adaptive by distance mode. To replicate
this, when invoking sampler, type in sampler -m d

Curve sampling algorithm: Fixed number This curve sampling algorithm produces a fixed
(by the user) number of sample points per edge of the decomposed curve.

Additional samples
perfectly uniform
in projection value

Discretize
so each edge
has same number
of total points

Resulting sampling
is uneven in space

••

•

Figure 5: Fixed-number sampling of a curve. The midpoint is homotoped so that a fixed number of
sample points are computed on each edge of the curve. The sample points are spaced uniformly in
projection value, not in space.

17

6 RUNNING SAMPLER 6.2 Surfaces

Figure 6: This is an example of sampling a curve using fixed mode. To replicate this, when invoking
sampler, type in sampler -m f

6.2 Surfaces

6.2.1 Running sampler on a surface (Using an Example)

This section will guide you through running sampler using a surface.3 One thing to note is that it
may take longer to invoke the sampler when using it on surfaces due to the amount of computation
being done.

Instructions Screen Shot

First, choose the surface you wish to produce.
(In this case I am choosing the sphere, which

is just found in the surfaces file. Once you
enter into this file, you are ready to invoke:
• bertini

• bertini real

• sampler

Continued on next page

3This content prepared by Chris Lembo. Thanks Chris!

18

6.2 Surfaces 6 RUNNING SAMPLER

Table 3: Continued from previous page

Instructions Screen Shot

Once sampler has been invoked, go to matlab
and follow the same steps layed out for the

sampler curve process, by gathering and
plotting. Depending on refinements, you will

end up with a sphere with fewer or more
points. Here are the two matlab commands:
• gather br samples

• bertini real plotter

6.2.2 Available surface sampling algorithms

There are currently about two surface sampling algorithms, one of which is generally far superior
to the other. The inferior method is still maintained for posterity, because it produces interesting
patterns on some surfaces, and is useful for instruction.

1. -m [a] – Adaptive-movement – Default choice. Will be adaptive on distance moved, once it’s
implemented. Sorry, we’re not there yet on this one.

2. -m f – Fixed – every edge of every critical-like curve gets the same number of points, and
slices and ribs are sampled distance-adaptively.

3. -m [d] – Adaptive-distance – Also default choice, because adaptive-movement collapses to
the adaptive-distance method, until movement is implemented. The sampling of critical-like
curves are non-uniform, having somewhat-uniformly spaced samplings in terms of projection
value across the entire curve. Slices and ribs are distance-adaptively sampled.

In short, the difference between distance-adaptive and fixed sampling is twofold:

• Fixed sampling has the same number of ‘ribs’ on each face, regardless of size.

• Fixed sampler currently linearly spaces sampled ribs. Adaptive sampling spaces the ribs by
cycle number, better approximating regions of the surface coming together at a singularity or
critical point.

19

6 RUNNING SAMPLER 6.2 Surfaces

Top

Bottom

Right

Left

0: Raw face and edges 1. Refine the edges

2. Add ribs Finish: Triangulate

Midpoint

Figure 7: Refining a surface, using the built-in refinement algorithms. Edges of bounding curves are
sampled, then the face is ribbed, then the triangulation stitched together. A more familiar adaptive
triangulation method from, e.g. computer vision, is not used because this can happen in higher
ambient dimensions.

Commonalities The current surface sampling algorithms are two-step methods:

1. Sample the curves using some combination of methods

2. Sample the faces themselves using some method

Current methods also use what Dani calls ‘ribs’. These are curves of samples across the interior
of a face, all lying in the same fiber of π0, so named because they look like ribs on an animal.
There are certainly better ways to sample a face. However, the literature almost entirely describes
3D triangulations, and how to optimally form them. Bertini real can compute triangulations in
more coordinates, where many of the necessary ingredients are missing. Research is necessary.
Collaborate!

In all surface sampling algorithms, new points in the surface are computed by exploiting the ho-
motopy (6) from Section A.2.4. We will first discuss the weaker of the two methods, because it is
briefer and easier to explain.

Surface sampling algorithm: Fixed This surface sampler uses the following parameters:

• numsamples

• tol

• minits

• maxits

In the fixed-number surface sampling algorithm,

1. Each edge of each crit-like curve is sampled so it has the same number of points, numsamples.
The samples are spaced evenly in terms of projection value, not space, linearly.

20

6.2 Surfaces 6 RUNNING SAMPLER

2. Each mid- and critslice is refined using distance-adaptive curve sampler, until tol distance is
reached, or min/maxits refinement iterations are used.

3. The faces are sampled using the distance-adaptive curve method, again using tol and min/maxits

This method produces mediocre samplings around singularities, because there is too much space
between ribs near the challenge points. The adaptive methods are much better at producing a
“smooth” sampling, because they use the cycle number of the critical points.

Figure 8: This is an example of sampling a surface using the fixed numsamples mode. To replicate this,
when invoking sampler, type in sampler -m f numsamples 5 -tol 0.7

Figure 9: This is an example of sampling a surface using the fixed minits mode. To replicate this, when
invoking sampler, type in sampler -m f minits 5 -tol 0.3

Surface sampling algorithm: Adaptive by distance This surface sampler uses the following
parameters:

• minribs

• maxribs

21

6 RUNNING SAMPLER 6.2 Surfaces

Figure 10: This is an example of sampling a surface using the fixed maxits mode. To replicate this,
when invoking sampler, type in sampler -m f maxits 5 -tol 0.9

• minits

• maxits

• tol

In the distance-adaptive surface sampler:

1. The crit-like curves are refined using a modified fixed-number sampler. The number of samples
per edge is uniform within a particular π0 crit-interval, but different intervals will have different
numbers of samples in them. The number of samples m in an interval is computed as

m1 = max estimated length of crit edge/tol

m2 = min(m1,maxribs)

m = max(m2,minribs)

This means that wider edges will have more samples, narrower will have few.

We allow the capping of a max number of samples, because small tol will lead to insanely
large samplings of a complete surface. We also allow a min number of samples, so that even
small faces will get refined to some minimal level, which can be important around singularities.

The samples on the crit-like edges are non-linearly spaced, using the cycle number of the edge
to space them. That is, there is a special number, the cycle number c, which can be used to
regularize a path. This number is computed as a matter of course while curve decomposing,
and hence we store it for use in the sampler routines. Cycle number 2 means, approaching the
boundary of an edge, each sample is square root as distant as the previous. Cycle number 3
means it goes as the cube root. Cycle number 1 produces linearly-spaced samples. Ideally the
cycle number used to space the samples, and hence ribs on faces, should me an integer multiple
of all possible cycle numbers generated by all possible paths on the face, walking toward the
boundary.

22

6.2 Surfaces 6 RUNNING SAMPLER

Presently, the cycle number is forced to be uniform across all edges of the entire surface,
because allowing it to vary causes problems when adjoining adjacent faces with disparate cycle
numbers. If you want this feature, please consider collaborating with Dani to add it.

Also, the cycle number is presently hard-coded at 2. Changing this to be a runtime-set
parameter value should be pretty easy. Let Dani know if this is a pressing issue for you.

2. The mid- and critslices are refined using the distance-adaptive curve sampler.

3. The faces are ribbed at the π0 projection values for the samples on the crit-like edges forming
the top and bottom boundaries of the face. The ribbing process is distance-adaptive, with
a min and max number of allowable refinement iterations (minits, maxits) to achieve the
desired tolerance tol.

Figure 11: This is an example of sampling a surface using the adaptive by distance minribs mode. To
replicate this, when invoking sampler, type in sampler -m d minribs 10 -tol 0.9

Figure 12: This is an example of sampling a surface using the adaptive by distance maxribs mode. To
replicate this, when invoking sampler, type in sampler -m d maxribs 10 -tol 0.7

23

6 RUNNING SAMPLER 6.2 Surfaces

Figure 13: This is an example of sampling a surface using the adaptive by distance minits mode. To
replicate this, when invoking sampler, type in sampler -m d minits 10 -tol 0.5

Figure 14: This is an example of sampling a surface using the adaptive by distance maxits mode. To
replicate this, when invoking sampler, type in sampler -m d maxits 10 -tol 0.3

6.2.3 Known issues with surface sampler

The method for triangulating the faces can sometimes produce janky results. It is known. You’ll
know it too, when you see it. If you want to help fix this, please contact Dani. They’re ready to
collaborate with you!

24

7 VISUALIZATION

7 Visualization

7.1 Visualizing in Matlab

After running Bertini real, the output results can be visualized in Matlab. This section assumes
that the Matlab codes for Bertini real are already on the Matlab path.

1. First, open Matlab, move to the folder in which you decomposed your object, and call gather br samples.
This parses the output from Bertini real into a .mat file.

2. Then, call bertini real plotter, which creates a handle class object and facilitates selection
of parts of the decomposition to view. There are many options, all of which are documents
and displayed via help bertini real plotter in Matlab.

3. To run bertini real plotter with a specific option, type in Matlab
bertini real plotter(‘option’, ‘option argument’), where the option argument will vary
depending on the option you decide to alter. The options are listed below.

7.1.1 Matlab visualization options

Table 4: MATLAB Visualization Options

Option Default Alter Command Line Description

‘autosave’ ‘on’ ‘false’,
‘0’

bertini real plotter

(‘autosave’, ‘false’) off
Users can

automatically save a
figure to the working

directory or not.

‘colormap’ ‘jet’ full list
here

bertini real plotter

(‘colormap’, @summer)

summer colormap

Users can change the
colormap by

changing the handle.

‘curve’

or
‘curves’

‘true’ ‘n’, ‘no’,
‘none’,
‘false’,

‘0’

bertini real plotter

(‘curve’, ‘false’) disables
the curves option

bertini real plotter-

by default lets the
user display the

figure’s raw curves.

‘faces’ ‘true’ ‘n’, ‘no’,
‘none’,
‘false’,

‘0’

bertini real plotter

(‘faces’, ’none’) makes
only the option to display the

raw curves will be given.

By default, the figure
created in MATLAB

will show both the
raw curves and faces.

Continued on next page

25

http://www.mathworks.com/help/matlab/ref/colormap.html

7 VISUALIZATION 7.2 Visualizing in Python

Table 4: Continued from previous page

Option Default Alter Command Line Description

‘filename’

or ‘file’
bertini real plotter

(‘filename’,

‘Example File Name.mat’)

bertini real plotter-

first searches files
named BRinfo∗.mat;

if more than one,
uses most recent

‘labels’ ‘on’ ‘n’,‘no’,
‘none’,
‘false’,

‘0’

bertini real plotter

(‘labels’, ‘none’) off
bertini real plotter-

by default lets user
apply labels to the

figure.

‘linestyle’ ‘-’ (solid
line)

line
options

listed here

bertini real plotter

(‘linestyle’, ‘:’)

Used to change the
line style of lines in

the MATLAB figure.

‘monocolor’

or ‘mono’
‘off’ RGB

triples
listed here

bertini real plotter

(‘mono’, ‘r’) creates a red
figure

Used to create a
mono-color figure.

‘proj’ Use a function
handle to pre-process

the data, before
plotting. Lets you

plot arbitrary
projections of your

data

‘vertices’

or ‘vert’
‘on’ ‘n’, ‘no’,

‘none’,
‘false’,

‘0’

bertini real plotter

(‘vertices’, 0) off
MATLAB can allow

the user to place
vertex markers and
labels on the figure.

7.2 Visualizing in Python

This portion of visualization code is under active development. There is some helper code currently
available in bertini real/python/bertini real. Add the folder bertini real/python to your

26

http://www.mathworks.com/help/matlab/ref/primitiveline-properties.html
http://www.mathworks.com/help/matlab/ref/colorspec.html

7.3 3D Printing 7 VISUALIZATION

Python path $PYTHONPATH environment variable to access it from your Python environment.

7.3 3D Printing

We realized some time ago that the decomposition of surfaces produces triangulations, suitable for
3d printing with some post-processing. Here’s a rough overview of this:

1. Convert data from plaintext to stereolithography (stereolithography (STL)) file. This may
involve a projection

2. If necessary, re-orient normals and solidify

3. Process in your favorite model repair service to resolve any geometry problems you may have
created in solidifying

4. Print

Dani has been successful in printing a number of algebraic surfaces, including those either compact
and unbounded, those which are everywhere smooth, those having cusp singularity points, and even
those with singular curves.

For examples of these, and advice on how to print surfaces, please take a gander at Dani’s online
gallery.

27

http://www.danielthebrake.org/gallery/
http://www.danielthebrake.org/gallery/

8 TROUBLESHOOTING

8 Troubleshooting

8.1 Helpful help

8.1.1 Compilation fails, with an error due to send calls for MPI

You are probably using OpenMPI, and their implementation does not use const-correctness. Dani
needs to modify the code in bertini extensions to cast away constness for these send calls. Send
him an email to poke him. Or, use a different implementation of MPI. MPICH2, versions 3.04 and
up are known to compile using the code as written.

8.1.2 had a critical failure

Missing critical points, or curve slicing problems Sometimes when decomposing an object,
Bertini real will display something like

had a critical failure moving left was deficient 2 points trying to recover the failure...

tracktolBEFOREeg: 1e-07 tracktolDURINGeg: 1e-08

This is generally due to a missing critical point. Bertini real uses linear product regeneration to
compute critical points, and a missing critical point will cause errors as above.

The solution to this problem is to get Bertini to not miss any critical points. This means understand-
ing the path tracker, and what settings influence tracking success. I generally find several settings
can positively influence computation of critical points:

• securitymaxnorm, securitylevel

This is the norm of path truncation during the endgame, during path tracking in Bertini. If
two successive approximations of points on a path exceed this norm, the path will be truncated,
unless securitylevel is set to 1. Setting the security level to 1 will make tracking take longer,
as all paths which end at∞ are tracked all the way to the end. So level 0 spares computation.
However, during computation of critical points, synthetic variables representing nullspaces of
Jacobians are used, and these can have large norms, resulting in truncation of paths which we
need to succeed to fully decompose the object.

Hence, we recommend setting securitymaxnorm to something large but not crazy large. This is
naturally problem dependent. Somewhere around 1e14 has proven useful in our experiments.
YMMV.

To prevent any paths from being truncated, use securitylevel 1.

• condnumthreshold

The post-processor in Bertini classifies endpoints of paths as singular on several criteria, in-
cluding multiplicity, and on condition number of the Jacobian. To prevent classification of
endpoints as singular, raise this threshold. Sometimes large values are needed, upwards of
perhaps 1e30 or beyond.

28

8.1 Helpful help 8 TROUBLESHOOTING

• sharpendigits

After tracking, for nonsingular endpoints Newton’s method can be run to increase the accuracy
of approximations. This setting sets the number of digits you wish for. You are not guaranteed
this number, because numerical conditioning may prevent sharpening from completing.

8.1.3 sh: matlab: command not found

If you get the message sh: matlab: command not found from running Bertini real, then Matlab
is not on your shell path. Bertini real currently requires Matlab to run properly, and thus failure to
include the Matlab executable on the path will cause bertini real to fail. Below is an example of the
terminal output displayed when Bertini real is unable to locate the Matlab executable:

Permanently fixing this error involves editing your profile, e.g. bash profile. From your home direc-
tory, open .bash profile and add the following line: export PATH=/PATH/TO/MATLAB.app/bin:$PATH

where PATH/TO/MATLAB.app points to the location of the Matlab executable. If you do not have, type
touch .bash profile, which will create .bash profile, and then add export PATH=/PATH/TO/MATLAB.app/bin:$PATH.
This should result in the Matlab executable being added to the path whenever opening terminal.

8.1.4 Calling Bertini real from within Matlab

Note that you cannot run Bertini real from within Matlab, even with the use of !, because Bertini real
currently calls Matlab using a system() call.

Removing dependency on Matlab’s symbolic toolbox

Removal of Matlab as a dependency is ongoing work. Please consider helping me move to Python
or another open source language for the symbolic computations, required for deflation of singular
curves, and the writing of the input file for critical curves of surfaces.

29

9 EXAMPLES

9 Examples

About: This section will run the user through some examples of what this program is capable
of along with some higher level discussion about what is going on in each step. Note that these
examples are here to demonstrate bertini and bertini real using the instructions prior to this, so
there will not be any step by step analysis here.

9.1 Curves

9.1.1 Circle

Input file

CONFIG

tracktype : 1 ;
mptype : 2 ;
END;

INPUT

var i ab l e g roup x , y ;
f unc t i on f1 ;
f 1=xˆ2+yˆ2−1;

END;

File 11: Presents an input file from circle that instructs Bertini to use all default
settings to compute the numerical irreducible decomposition of the sphere in
two dimensions

30

9.1 Curves 9 EXAMPLES

Figure 15: Running Bertini using the Circle input file

Figure 16: Running Bertini real using the Circle input file

Decomposition

31

9 EXAMPLES 9.1 Curves

Figure 17: Refining the Circle input file by invoking sampler

Figure 18: Gathering and Plotting using MATLAB

32

9.1 Curves 9 EXAMPLES

Figure 19: Final Circle plotted

Refinement

Notes

9.1.2 Astroid

Input file

CONFIG

tracktype : 1 ;

imagthresho ld : 1e−5;
END;

INPUT

var i ab l e g roup X1 , X2 ;

func t i on f1 ;

f 1 = (X1ˆ2 + X2ˆ2 −1)ˆ3 + 27∗X1ˆ2∗X2ˆ2 ;

END;

File 12: Presents an input file from astroid that instructs Bertini to use all default
settings to compute the numerical irreducible decomposition of the sphere in
one dimension

33

9 EXAMPLES 9.1 Curves

Figure 20: Running Bertini using the astroid input file

Figure 21: Running Bertini real using the astroid input file

34

9.1 Curves 9 EXAMPLES

Decomposition

Figure 22: Refining the astroid input file by invoking sampler

Figure 23: Gathering and Plotting using MATLAB

35

9 EXAMPLES 9.2 Surfaces

Figure 24: Final astroid plotted

Refinement

Notes

9.2 Surfaces

9.2.1 Solitude

Input file

CONFIG
randomseed : 1 ;
t r a c k t o l b e f o r e e g : 1e−8;
t racktype : 1 ;
securitymaxnorm : 1 e16 ;
condnumthreshold : 1 e160 ;
SINGVALZEROTOL: 1e−140;
s h a r p e n d i g i t s : 24 ;
END;

INPUT
var i ab l e g roup x , y , z ;
f unc t i on f ;
f = xˆ2∗y∗z +x∗yˆ2+yˆ3+yˆ3∗z−xˆ2∗ z ˆ2 ;

END;

File 13: Presents an input file from solitude that instructs Bertini to use all default
settings to compute the numerical irreducible decomposition of the sphere in
two dimensions

36

9.2 Surfaces 9 EXAMPLES

Figure 25: Running Bertini using the solitude input file

Figure 26: Running Bertini real using the solitude input file

Decomposition

37

9 EXAMPLES 9.2 Surfaces

Figure 27: Refining the solitude input file by invoking sampler using adaptive by distance

Figure 28: Gathering and Plotting using MATLAB

38

9.2 Surfaces 9 EXAMPLES

Figure 29: Final solitude plotted

Refinement

Notes ———————

9.2.2 Plane

Input file

CONFIG
tracktype : 1 ;

END;

INPUT
var i ab l e g roup x , y , z ;
f unc t i on f ;
f = x+y+z−1;

END;

File 14: Presents an input file from plane(note to make this in code writing)
that instructs Bertini to use all default settings to compute the numerical
irreducible decomposition of the sphere in two dimensions

39

9 EXAMPLES 9.2 Surfaces

Figure 30: Running Bertini using the plane input file

Figure 31: Running Bertini real using the plane input file

Decomposition

40

9.2 Surfaces 9 EXAMPLES

Figure 32: Refining the plane input file by invoking sampler

Figure 33: Gathering and Plotting using MATLAB

41

9 EXAMPLES 9.2 Surfaces

Figure 34: Final plane plotted

Refinement

Notes

42

REFERENCES REFERENCES

References

[1] Dan Bates and Jon Hauenstein. Bertini Manual, 2013.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Numerically solving polynomial
systems with Bertini, volume 25. SIAM, 2013.

[3] G.M. Besana, S. Di Rocco, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Cell decompo-
sition of almost smooth real algebraic surfaces. Numerical Algorithms, 63(4):645–678, 2013.

[4] Daniel Brake, Daniel Bates, Wenrui Hao, Jonathan Hauenstein, Andrew Sommese, and Charles
Wampler. On computing a cell decomposition of a real surface containing infinitely many singu-
larities. 2014.

[5] Daniel Brake, Daniel Bates, Wenrui Hao, Jonathan Hauenstein, Andrew Sommese, and Charles
Wampler. Algorithm xxx: Bertini real: Numerical decomposition of real algebraic curves and
surfaces. February 2015.

[6] Daniel A. Brake, Daniel J. Bates, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese,
and Charles W. Wampler. Mathematical Software – ICMS 2014: 4th International Congress,
Seoul, South Korea, August 5-9, 2014. Proceedings, chapter Bertini real: Software for One-
and Two-Dimensional Real Algebraic Sets, pages 175–182. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[7] J.D. Hauenstein and C.W. Wampler. Isosingular sets and deflation. Foundations of Computa-
tional Mathematics, 13(3):371–403, 2013.

[8] Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real points of a complex
curve. Contemporary Mathematics, 448:183–205, 2007.

[9] MartyMacGyver. How to install a newer version of gcc, July 2011.

43

A THE DECOMPOSITION ALGORITHMS

A The Decomposition Algorithms

This section of the manual describes, hopefully without too much techinical detail, the curve and
surface decomposition algorithms. The main academic paper on this is [3], while the paper on
Bertini real implementing it is [5]. Two additional extended abstracts discussing it are [6, 4].

We invite you to play with the software and visualization routines, to experience these algorithms
first-hand. Dani in particular thinks of these algorithms as implementations of the implicit function
theorem. Enjoy!

A.1 Decomposing curves

Decomposing an algebraic curve numerically can be summarized easily in six steps:

1. Compute critical points
2. Intersect with bounding object
3. Slice at projection interval midpoints
4. Connect the dots
5. Merge [optional]
6. Sample [optional]

A curve is decomposed with respect to projection onto a (randomly chosen) real linear projection,
π0(x).

What does it mean to decompose a curve? To turn compute a set of edges that describe the curve.
An edge is a 1-dimensional object, having two points as boundary, and a general point in the middle,
together with a homotopy which can be used to track the midpoints between the boundary points.
Phew. See Figure 35.

Figure 35: An edge, a 1-cell, as a component of a curve decomposition.

44

A.1 Decomposing curves A THE DECOMPOSITION ALGORITHMS

A.1.1 Critical points

Critical points of a curve satisfy the following system: f(x)

det

(
Jf(x)
Jπ0

) = 0. (1)

These points include singular points (trivially, and independently of projection). This is solved by
a 2-homogeneous regeneration procedure.

A.1.2 Intersect with bounding object

To capture the behaviour of the curve as it goes to∞, we intersect the curve with a bounding object,
and ignore all outside points. In Bertini real, we use a sphere centered at the centroid of the critical
points, with radius 3 times the distance to the furthest critical point. The user can choose their own
sphere of interest.

A.1.3 Slice

Let the set of critical points just computed be χ. Then, take π0(χ), the set of critical projection
values. We slice at midpoints of projection intervals defined by this set. This computes the set of
midpoints for (unmerged) edges computed by the next step.

A.1.4 Connect the dots

Connecting the dots for a curve simply means to track each midpoint to the left and right bounding
critical projection values, and see what critical points match. This forms an edge. The homotopy

(1− t)
[

f(x)
π0(x)− pcj

]
+ t

[
f(x)

π0(x)− pmi

]
= 0 (2)

is used.

Some midpoints may track to points in critical fibers which have not yet been previously computed.
In software, these are classified as semicritical.

A.1.5 Merge [optional]

Merging edges combines two edges which meet at a non-critical point. These points occur when
tracking midpoints toward critical projection values yields a new point, one in the fiber of a true
critical point. A simpler curve decomposition can be obtained by merging such edges. There are
times when merging is great (most of the time) and times when merging is not the right thing to do
(some points in the surface decomposition algorithm).

Merging can be disabled when decomposing a curve in Bertini real with the -nomerge flag.

45

A THE DECOMPOSITION ALGORITHMS A.2 Decomposing surfaces

A.1.6 Sample [optional]

Suffice it to say for now that a midpoint is tracked using (2) within the bounds of its edge, producing
additional points on the edge. This section is described in much greater detail in Section 6.1.

A.2 Decomposing surfaces

Decomposing an algebraic surface numerically is similar to that of a curve, and can also be summa-
rized in about six steps:

1. Compute critical curves
2. Intersect with bounding object
3. Slice at projection interval midpoints. The slices are curve decompositions
4. Connect the dots to form faces
5. Merge [optional]
6. Sample [optional]

To decompose a surface is to compute a set of faces. A face is a 2-cell, containing a set of bounding
edges, and a general point in the middle, which can be tracked using a homotopy, staying within
the boundary. See Figure 36

 top
edge

 bottom
edgeleft

edges

right
 edges

Figure 36: A face, a 2-cell, as a component of a surface decomposition. Its boundary consists of edges
from curve decompositions.

A surface is decomposed with respect to projection onto a pair of (randomly chosen) real linear
projections, π0(x) and π1(x), together which may be referred to as π(x).

46

A.2 Decomposing surfaces A THE DECOMPOSITION ALGORITHMS

1. Decompose
 critical curve

2. Decompose
 singular curves

3. Intersect with
 sphere

4. Slice5. Connect the dots6. Refine

Figure 37: Numerical cellular decomposition of the Whitney Umbrella using Bertini real.

A.2.1 Critical curves

Critical curves can be separated into two categories. First, those which are an artifact of the
projection being used to decompose. Second, those which appear regardless of the projection. In
this manual and software, we refer to the former simply as the non-singular critical curve or simply
critical curve, and the second as singular curves, although they both are formally part of the critical
curve (and so is the bounding curve).

Nonsingular critical curve The non-singular critical curve satisfies this system, nonsingularly:

F (x) =

f(x)

det

Jf(x)
Jπ0
Jπ1

 = 0. (3)

In current implementation using Bertini1 as the homotopy engine, we use a symbolic engine to
compute a new text Bertini input file. There are several options for the symengine, described in
Section 5. A curve decomposition is run on this curve. But first, we have to have all of the critical
points of all critical curves, including non-singular, singular, and bounding.

Singular curves Not every surface has singular curves, but many do. Perhaps the easiest to see
at first is the Whitney Umbrella.

f = x2 − y2z = 0 (4)

This equation describes a degree 3 surface. The z-axis is singular. Observe the Jacobian:

Jf =
[
2x −2yz −y2

]
(5)

47

A THE DECOMPOSITION ALGORITHMS A.2 Decomposing surfaces

On the z-axis, x = y = 0. So, Jf is singular. Hence the determinant in (3) is 0, which means
the critical curve system is in some sense trivially satisfied. What is needed here is to deflate the
system. This is accomplished in current implementation using isosingular deflation [7]. Basically,
sub-determinants of the system are recursively added until the rank of the Jacobian stabilizes, where
this rank is computed using a witness point for the component being deflated.

The singular curves are decomposed using the curve algorithm, after obtaining all critical points of
all critical-like curves.

A.2.2 Bounding curve

To capture the behaviour of surfaces which are not closed or bounded, we intersect the surface with
a bounding object. The implemented type in Bertini real is sphere. Initially, we had implemented
a bounding box, and it was neat, but for higher dimensions, it meant doing more and more curve
decompositions, with each of the 2N planes. It got messy. So, surfaces are used. They are easier,
because the entire bounding curve satisfies a single system, which is merely the original system
supplemented with a single degree 2 equation – that of the sphere. It eases not only implementation
but also runtime.

We compute the sphere automatically, after having computed the critical points of the critical and
singular curves (but before decomposing them, for algorithmic reasons). The sphere is centered at
the centoid of all critical points, and its radius is arbitrarily chosen to be 3 times the distance from
the center to the furthest critical point. The user may also supply their own sphere of interest (See
Section 5).

A.2.3 Slice

Having decomposed all formal parts of the critical curve, we slice the surface. Where?

Consider all critical points of all thus-far computed curves. Call this set χ. Then we project onto the
first projection coordinate, computing π0(χ). This set of values produces the critical slices. Taking
midpoints of all intervals defined by π0(χ) defines the mid slices. Each of these slices is computed
using a regular curve decomposition.

A.2.4 Connect the dots

This is a fun piece of the puzzle. In this part of the algorithm, midpoints of edges of midslices
are connected to midpoints of edges of critslices. We track the mid-midpoints using a very special
homotopy, the midtrack homotopy:

f(x)
π0(x)− [(1− u)π0(ci) + uπ0(ci+1)]

fbottom(y)
π0(y)− [(1− u)π0(ci) + uπ0(ci+1)]

ftop(z)
π0(z)− [(1− u)π0(ci) + uπ0(ci+1)]
π1(x)− [(1− v)π1(y) + vπ1(z)]

= 0. (6)

48

A.2 Decomposing surfaces A THE DECOMPOSITION ALGORITHMS

The homotopy is somewhat hidden in (6) – as written the t-dependence is implicit. To track the
homotopy, we use: [

u
v

]
=

[
(1− t)utarget + t ustart
(1− t) vtarget + t vstart

]
. (7)

The values of u and v lie in the unit square, and we must only track inside this square. The
purpose of this homotopy is to ensure that the midpoint never crosses an edge of the critical curve,
which bounds the in-construction face to the top and bottom. That is, if we just did a straight-line
homotopy in πi coordinates, we would likely cross this critical boundary, and all bets would be
off. Paths would cross, real points would become complex, and the decomposition would not work.
Hence, this homotopy. It’s used during sampling, too.

Anywho, the midpoints are connected to midpoints. The midpoints of midslice edges become mid-
points of faces in the cell decomposition. Critslice edges bound the face to the left and right (π0),
while critcurve edges bound to the top and bottom (π1). There may be any number of left and right
edges bounding a face, but exactly one top and bottom edge.

A.2.5 Merge [optional]

The algorithm for merging faces does not yet appear in the literature, though it has been described
verbally by Charles Wampler. Let’s write it! Should be a short paper, probably targeting a confer-
ence proceedings. Contact Dani Brake to co-author it with them.

A.2.6 Sample [optional]

This section is described in much greater detail in Section 6.2. For now, suffice it to say that (6) is
used to track around the midpoint of each face, producing additional points on the face, and that a
proper triangulation is maintained. There are choices about how to sample. One might think this
a trivial problem. Indeed, in three dimensions, there are many many algorithms for adaptively and
optimally triangulating surfaces. However, in higher dimensions the normal vector doesn’t exist,
and cross-products cannot be taken, so much of the machinery from 3d breaks. Bummer. Go check
out the section on sampler for more.

49

B INSTALL

B Install

This section of the manual focuses on how to install the necessary dependencies and programs needed
to run Bertini real on a user’s computer. The instructions provided describe the process for Linux,
Mac, and Windows operating systems. If you need help or encounter an problem, please file an issue
on Github at github.com/ofloveandhate/bertini real/issues. This is preferred over email.

When installing Bertini real, there are a number of steps required in order to successfully install and
run the program. They are:

1. Installing the dependencies

2. Installing Bertini

3. Installing Bertini real

B.1 Dependencies

Before installing Bertini and then Bertini real, there are a number of packages that need to be
installed. The method used to install these dependencies changes depending on the operating system,
so please be sure to read the section that describes your particular system. Except for Bertini, you
should be able to install all of these using a package manager. It’s there to help.

Bertini dependencies

• Multiple Precision Floating-Point Reliable (MPFR)
• GNU Multiple Precision Arithmetic Library (GMP)
• MPI (whatever implementation you want)
• flex
• bison

Bertini real dependencies

• a C++ compiler capable of the C++11 standard
• Bertini, parallel version compiled from source and installed as library.
• Message Passing Interface (MPI) (same one as Bertini was compiled with)
• Boost >= 1.53
• autoconf, automake, make, libtool. Please use your package manager. Also, maybe pkg-config.

If you hate the autotools, please set up CMake for Bertini real, and do a pull request.

Bertini real is parallel-enabled, using MPI. You cannot build Bertini real without support for
MPI at the current time. To use multiple processors to decompose a real object, call Bertini real
as you would any other MPI program: mpiexec [options] bertini real. It also works in serial,
without being hosted by the mpi executor. But you still have to have MPI.

50

https://github.com/ofloveandhate/bertini_real/issues

B.1 Dependencies B INSTALL

B.1.1 Symbolic engine

One additional piece of software must be installed in order to decompose surfaces – something to do
symbolic work for us. Two options are available at this time (spring 2017): Matlab, and Python.
Matlab has much stronger visualization routines for Bertini real, and some nice options for improving
produced Bertini input files.

MATLAB One option for symbolic engine for Bertini real is Matlab. Instructions on how to
install the program are not provided here. However, if you are associated with a university, or a
research facility, they probably have download instructions on their technology support website.
Ensure you have access to the symbolic toolbox. It’s required.

Python Bertini real was improved in Fall 2016 to use Python as its symbolic engine, in addition
to Matlab. This allows for fully free software to do the decompositions. Visualization routines in
Python are in progress. You need the following packages, ideally from pip:

• sympy

• scipy

• numpy

• algopy

• mpmath

and for visualization

• dill

• matplotlib

51

B INSTALL B.2 Instructions for GNU/Linux

B.2 Instructions for GNU/Linux

1. Install dependencies. You are very strongly encouraged to use the package manager provided,
such as apt or yum, to install the dependencies. See Section B.1 for a list of dependencies.

2. Build and install Bertini1, ensuring that you are building the parallel version. This will happen
automatically if you install MPI as a dependency. Remember, you must install from source,
simply downloading the pre-built executable will not get you the built libraries.

(a) ./configure

(b) make -j 4

(c) sudo make install

3. Build and install Bertini real.

(a) Clone from repo, git clone https://github.com/ofloveandhate/bertini real.

(b) libtoolize

(c) autoreconf -i if you know how to eliminate these steps by writing a bootstrap file
which works on all systems, please contribute by way of a pull request. PR’s gladly
acccepted to develop.

(d) ./configure

(e) make -j 4

(f) sudo make install

(g) eat something delicious, and give thanks for this peaceful day

* If using Matlab for symbolic engine, ensure it is installed an on the path for the command line.

In bash, touch ~/.bash_profile, then edit it, adding export PATH=/PATH/TO/MATLAB/bin:$PATH.4

* If using Python for symbolic engine, install your favorite version, pip, and the necessary
modules via pip.

If anything went wrong, please file an issue on Github. I want this to be an easy experience.

4Note that there are several possible files into which to place this, and this particular method of using export is
shell specific. The csh is a little different, for example. Too lazy to Google it? I gotcha: search on da googs here

52

~/.bash_profile
https://www.google.com/#q=add+to+path+linux&*

B.3 Instructions for OSX B INSTALL

B.3 Instructions for OSX

B.3.1 Preliminary Work

• Compilers &c: Install XCode 8 from the App Store. Open it at least once. In terminal, type
xcode-select --install (you must open XCode at least once before doing this)

• Homebrew: It is highly recommended that Mac users install the program Homebrew to use to
install these packages. Once that has been done, installing the previously listed dependencies
becomes simple. In terminal, type brew search to list packages related to , where
is your search (for example, GMP, Boost, or MPI). To download new software via Homebrew,
type in terminal brew install

• Matlab: make sure to have it installed, and on the path for the command line.

• Python: use pip to install ‘dem dependencies

B.3.2 Installation

• Install parallel Bertini from source

1. Download the source tarball (.tar.gz) from bertini.nd.edu

2. Unpack the tarball (just double click it, if you’re into mousing)

3. If you didn’t already, now use Homebrew to install the dependencies for Bertini1
brew install autoconf automake libtool mpfr gmp boost mpich

ok, Bertini1 doesn’t depend on Boost, but Bertini real does

4. In the terminal, move to the unpacked tarball for Bertini1

5. ./configure

6. make -j 4 && make install

• Install Bertini real

1. which git if it’s emtpy, then brew install git

2. mkdir code && cd code

3. git clone https://github.com/ofloveandhate/bertini real

4. cd bertini real

5. autoreconf -i

6. ./configure

7. make -j 4 && make install

Problems? Raise an issue on GitHub, please.

53

http://brew.sh
http://bertini.nd.edu

B INSTALL B.4 Instructions for Windows

B.4 Instructions for Windows

Unlike Linux or Mac computers, Windows users have additional pre-requisites that they need to
install in order to use Bertini and Bertini real — they need to first install the program Cygwin.5

Or, maybe MinGW. Alternatively, with Windows 10 and Bash support upcoming, consider using
Chocolatey or bash itself. Last checked (fall 2016), Chocolatey did not provide Boost, so that was
a bummer.

The other two operating systems that were discussed above were developed with some flavor of *nix,
while Windows was not. So, in order to run applications like Bertini that appear to need Linux, we
need an intermediary program. Cygwin is a Linux-like environment for Windows.

B.4.1 Install Cygwin

Cygwin can be found at cygwin.com/install.html. Please make sure to choose the version (either
32-bit or 64-bit) that is appropriate for your laptop. After the setup-x86.exe (or setup-x86 64.exe)
has downloaded, run it, and follow the instructions.

Instructions Screen Shot

Click ‘next’ on the first screen.

Select the ‘Install from Internet’ option; click
‘next’.

Continued on next page

5These Windows install instructions prepared by Beth Sudkamp. Thanks Beth!

54

https://cygwin.com/install.html

B.4 Instructions for Windows B INSTALL

Table 5: Continued from previous page

Instructions Screen Shot

Enter the preferred installation directory; click
‘next’.

Choose a temporary installation folder; click
‘next’.

Select the ‘Direct Connection’ option; click
‘next’.

Continued on next page

55

B INSTALL B.4 Instructions for Windows

Table 5: Continued from previous page

Instructions Screen Shot

Choose a download site; click ‘next’.

Select the packages that you will need. , then
click ‘next’. See below for more instructions

If during the course of installation, a message
pops up and says that certain dependencies
are required for the packages, click the ‘yes’
button. When it has installed everything,

select ‘finish’.

You’re done!

B.4.2 Selecting packages for Cygwin

The list of packages that you will need for Bertini real can be found below. To find the packages, a
user can type the name into the search in the top left of the menu, which will then show the packages
containing that name (e.g. ‘libtool’). To choose a package click on the text that says ‘Skip’ until it
changes to a version number (e.g. ‘2.4.6-1’).

56

B.4 Instructions for Windows B INSTALL

autoconf automake
bash bison
boost (all the C and C++ libraries) bzip2
X-11 emacs (or nano or some other text editor that you prefer)
flex vim
mingw-gcc-g++-4.7.3-1 cygutils-X11
gmp gcc
mpc mpfr
libzip2 xinit
libtool openmpi
openssl openssh
tar

B.4.3 Initializing Paths

In order to properly run Cygwin, you need to add Cygwin to the PATH variable. In order to do so,
follow these steps:

1. Open the Control Panel and select ‘System’.

2. Select the ‘Advanced System Settings’, and then the ‘Environment Variables’ option.

3. In the window that appears, select the system variable ”PATH’ and append ; C:\cygwin\bin
to the end of the PATH variable. When you are doing this, you can also append ; C:\path\to\matlab.exe
to the end of the PATH as well.

After installing MATLAB, please be sure to add C:\User\username\...\matlab.exe to your
PATH variable.

B.4.4 Organizing Cygwin

Once Cygwin and MATLAB have been added to the PATH variable, you are now ready to open and
run Cygwin. For users who are not familiar with Cygwin, a good reference sheet can be found here.

As part of the installation process, Cygwin will automatically configure and install the packages
you selected. This is useful, since it saves a lot of time for the user. However, this also allows a
Cygwin user to go and be able to automatically use some of these applications, such as ‘libtoolize’.
Libtoolize, one of the packages that was installed with setup86x.exe allows a user to set up a shared
library format. In other words, a user doesn’t have to call each different library; they are already
set up and in the same place.

When I set up Cygwin, I created a new folder located in \usr\local that would contain any
downloaded files from the Internet that would be used with Cygwin.

When setting up Cygwin, I found that in order to install the dependencies that are needed for Bertini
and Bertini real, they had to be downloaded from the Internet. The following instructions describe
how to install these dependencies and finish setting up Cygwin, and were paraphrased from How to
Install a Newer Version of GCC.

57

http://faculty.nps.edu/kmsquire/cs2900/cygwin/fwcygwinref.pdf
http://cygwin.wikia.com/wiki/How_to_install_GCC_4.3.0
http://cygwin.wikia.com/wiki/How_to_install_GCC_4.3.0

B INSTALL B.4 Instructions for Windows

B.4.5 Installing Dependencies

As stated earlier, the dependencies that need to be downloaded are:

C++ compiler gcc(Cygwin) X
MPI openmpi(Cygwin) X
Boost boost(Cygwin) X
GMP gmp(Cygwin) X
MPFR here
GNU Multiple Precision Complex Library (MPC) here

Once you have downloaded the programs from the sites, put the zipped files in the folder that you
created in
\usr\local\your folder. Then, in Cygwin, enter your folder.

B.4.6 Linking Cygwin Environment Paths

After logging into Cygwin, a user needs to set up their environment paths inside the terminal before
they set up the files they downloaded. In order to see how the paths currently are set up, either
type the following code into the terminal, or copy it and paste it into the terminal:

echo ;\
echo LD LIBRARY PATH=${LD LIBRARY PATH} ; \
echo LIBRARY PATH=${LIBRARY PATH} ; \
echo CPATH=${CPATH} ; \
echo PATH=${PATH} ; \
echo \ c i t e { instal lnewerGCC}

File 15: Adapted from [9]

Some things to keep in mind while setting up the environment variables LD LIBRARY PATH,
LIBRARY PATH, and CPATH:

• LD LIBRARY PATH and LIBRARY PATH should contain /usr/local/lib (LIBRARY PATH
shall not be set on Enterprise Linux Enterprise Linux Server release 5.5 (cartage))

• CPATH should contain /usr/local/include

• If PATH contains c:/windows/system32 (or /cygdrive/c/windows/system32; case-insensitive),
it should be after /bin and /usr/bin. Otherwise the scripts will try to run Windows sort.exe
instead of the Unix command with the same name.

To change or modify the different variables, you can use the code below (or you can change the
variables in the Control Panel, as shown earlier):

setenv LD LIBRARY PATH / usr / l o c a l / l i b
setenv LIBRARY PATH / usr / l o c a l / l i b
setenv CPATH / usr / l o c a l / in c lude

File 16: Adapted from [9]

58

http://www.mpfr.org/index.htm
http://www.multiprecision.org

B.4 Instructions for Windows B INSTALL

However, if Cygwin shows a message such as -bash: setenv: command not found, then you
need to use the code below:

export LD LIBRARY PATH=/usr / l o c a l / l i b
Depending on system , LIBRARY PATH s h a l l not be s e t −
export LIBRARY PATH=

export LIBRARY PATH=/usr / l o c a l / l i b
export CPATH=/usr / l o c a l / in c lude

File 17: Adapted from [9]

B.4.7 Building and Installing Packages

Now that the environment variables are set up, we can now build and set these packages.

Perform the following build/install steps for the MPFR and MPC packages in that order:

1. cd to your workspace directory (above, e.g., cd \usr\local\your folder)

2. Extract the tarball using tar (e.g., tar -xf mpfr-3.1.3.tar.bz2). This will create a sub-
folder with the source for the given package cd into that source folder (e.g., cd mpfr-3.1.3)

3. Type libtoolize into the command line and press enter. This will add the files, once they
have been compiled, to the shared library.

4. Generate configure, by running the command autoreconf -i.

5. Read the README and/or INSTALL file if present

6. Note that for the current version of mpc (0.9) there is a change that may need to be made
to have the build work successfully. You need to edit the line of ”mpc.h”

#if defined(MPC WITHIN MPC) && GMP LIBGMP DLL to #if defined

GMP LIBGMP DLL

7. run ./configure (this will check the configuration of your system for the purpose of this pack-
age)(you also need specify --enable-static --disable-shared when compiling the library)

8. run make (this will build the package; -j can speed things up here)

9. run make check (strongly recommended but optional; this will check that everything is correct)

10. run make install (this will install all the relevant files to the relevant directories)

11. run make clean (optional; this will erase intermediate files - important if you are re-attempting
a broken build!)

59

B INSTALL B.4 Instructions for Windows

B.4.8 Installing Bertini and Bertini real

Once all of the dependencies have been installed, now Bertini and Bertini real can be installed. The
zip file for Bertini can be found here, while the download site for Bertini real can be found there

Move these downloads to your terminal, and unzip and install the two programs. To unpack the
directory, just run tar -zxvf FILE NAME into the command line while in the folder that the .tar.gz
is located. (For Cygwin users, this means going through the same steps as you did for GMP, MPFR,
and MPC.) Be sure to install Bertini before Bertini real!!

B.4.9 Setting up MATLAB

After you have set up Bertini and Bertini real, you probably want to be able to see a 3D rendering
of your solutions. In order to do so, go to the GitHub Bertini real site and download the .zip file.
I recommend that a new folder is created and that the zip folder goes inside this ‘master folder’.
Unfortunately, the user also has to download each of the functions that are on the same level as the
zip folder- e.g. dehomogenize.m, find constant vars.m, etc. and save those in the ‘master folder’
as well. Make sure that this ‘master folder’ is linked to the folder where the Bertini and Bertini real
solutions will be located. Once all of these functions and the zip folder are downloaded and saved,
then you will be able to successfully use MATLAB in conjunction with Bertini and Bertini real.

Note: if you simply clone the repo, you get the matlab codes, no fuss, no muss. Just
use git.

Congratulations, you have now made it through the installation process. There are some additional
features that can also be installed if you so desire, as well as a practice run in order to verify that
everything installed correctly.

60

http://bertini.nd.edu/download.html
http://www.bertinireal.com/download.html
https://github.com/ofloveandhate/bertini_real/tree/master/matlab_codes

B.5 Testrun – the Cayley Cubic B INSTALL

B.5 Testrun – the Cayley Cubic

Now that everything has been installed, we can now do a test run, to make sure that everything
is working properly. To test this program, we will try to generate a Cayley Cubic using the above
programs, following a number of steps. The first step is to create an input file. Open up a text
editor in your terminal and create a file called input.

Below is the text for this input file.. A key feature to notice is the second line, where the tracktype

configuration is set to 1. This configuration setting is necessary for Bertini real to run.

CONFIG
tracktype : 1 ;

END;
INPUT
var i ab l e g roup x , y , z ;
f unc t i on f ;
f = 4 ∗ (xˆ2 + yˆ2 + z ˆ2) + 16∗x∗y∗z − 1 ;
END;

File 18: input for the Cayley Cubic

Once the input file is created, we can now run Bertini. Simply navigate in the command line to the
directory of the input file and type bertini or bertini input. You may need to type in the entire
pathway to where Bertini is located, if it’s not in the same folder, so the command line read
/cygdrive/path/to/BertiniSource v1.5/bertini-serial.exe input

Cygwin users: A user may also use bertini-serial.exe (or bertini parallel.exe). This will
run Bertini, creating the Numerical Irreducible Decomposition needed for Bertini real. The following
should print to the terminal or shell:

Once Bertini is finished, the output can be verified as satisfactory (or not). Then, Bertini real can
be run by calling bertini real in the command line. Cygwin users, the same rules that applied to
Bertini also apply to Bertini real, so be sure to include that ‘.exe’ at the end! However, if the input
file used was named ‘input’, no file name is needed at the end of the command line. This program
should run for roughly 20-30 seconds, with the final terminal/shell output appearing below:

61

B INSTALL B.5 Testrun – the Cayley Cubic

Finally, MATLAB can be used to visualize the result from the Bertini real run. Open MATLAB
and enter the ‘master file’, which must be linked to the folder where the Bertini real solutions
are located. This can be done by first making sure that you are currently in the ‘master folder’,
then typing addpath(‘C:\cygwin64\path\to\solutions folder’) into the command window and
pressing enter. Then you can call gather br samples in the command window, which generates a
.mat file. Then, call bertini real plotter. This will create a MATLAB figure, pictured below.

If you’ve been able to reproduce the above figure, then you’ve mastered the basics of Bertini real.

62

C OUTPUT FILES

C Output Files

In this section, we describe the formats of the plain-text output files from Bertini real. We document
abstractly, and let the user explore concretely by generating data.

By default, the output from Bertini real is dumped into a folder named output dim D comp C, where
D and C are the dimension and component numbers. This can be overridden by specifying option -o

at runtime.

C.1 Regardless of dimension

Some files are produced regardless of object dimension:

• decomp – C.1.1

• input dim D comp C deflated – a plain copy from Bertini real’s input in the containing folder.

• run metadata – C.1.2

• V.vertex – C.1.3

• vertex types – C.1.4

• witness data – a plain copy from Bertini’s output in the containing folder.

• witness set – C.1.5

Additional important files written NOT into the output folder:

• Dir Name – C.1.6

63

C OUTPUT FILES C.1 Regardless of dimension

C.1.1 output/decomp

i npu t f i l ename
number vars dimension // number vars i n c l u d e s homvar

FOR // # i s dimension
number va r s i n p ro j e c t i on
FOR

p r o j c o o r d r e a l pro j coord imag
END FOR

END FOR

number patches

FOR // # i s number patches
number vars in patch
FOR

p a t c h c o o r d r e a l patch coord imag
END FOR

END FOR

s p h e r e r a d i u s r e a l sphe r e rad iu s imag
num sphere vars // # i s number na tura l v a r i a b l e s
FOR // # i s number na tura l v a r i a b l e s

s p h e r e c e n t e r c o o r d r e a l sphe r e c en t e r coo rd imag
END FOR

n u m b e r c r i t f i b e r s
FOR // # i s numb e r c r i t f i b e r s

c r i t f i b e r c o o r d r e a l c r i t f i b e r c o o r d i m a g
END FOR

File 19: output/decomp

C.1.2 output/run metadata

b e r t i n i r e a l v e r s i o n
/path/ to / conta in ing / f o l d e r
t iming s t a t i s t i c s from Boost . Chrono

File 20: output/decomp

64

C.1 Regardless of dimension C OUTPUT FILES

C.1.3 output/V.vertex

num vert i ces num project ions num var iables num fi lenames //
number vars i n c l u d e s homvar

FOR // num i s num projec t ions
FOR // num i s num coords i n c l homvar

p r o j c o o r d r e a l pro j coord imag
END FOR

END FOR

FOR // each f i l ename
num chars in f i l ename
f i l ename

END FOR

FOR // each v e r t e x
num coords // may inc l ude s y n t h e t i c v a r i a b l e s
FOR

c o o r d r e a l coord imag
END FOR

num pro j ec t i on va lue s
FOR

p r o j v a l r e a l p ro j va l imag
END FOR

i n p u t f i l e n a m e i n d e x
ve r t ex type // see f i l e v e r t e x t y p e s

END FOR

File 21: output/V.vertex

C.1.4 output/vertex types

num vertex types

FOR
VertexType value

END FOR

File 22: output/vertex types

Versions of Bertini real prior to 1.4 used sequential type indices rather than binary values, to vertex
types. We converted to binary indices to allow vertices to have multiple types, and represent this
compactly. The Matlab visualization code takes advantage of this, and can plot points in each of
the type categories they appear in. The purpose of this file is to let one write code which self-adapts
to any future vertex types.

65

C OUTPUT FILES C.1 Regardless of dimension

C.1.5 output/witness set

num points dimension component number

FOR // each po in t
FOR // each v a r i a b l e

c o o r d r e a l coord imag
END FOR

END FOR

num l inears num vars
FOR // each l i n e a r

FOR // each coord ina te
l i n e a r c o e f f r e a l l i n e a r c o e f f i m a g

END FOR
END FOR

num patches num vars
FOR // each patch

FOR // each coord ina te
p a t c h c o e f f r e a l pa t ch coe f f imag

END FOR
END FOR

File 23: output/witness set

C.1.6 /Dir Name

/path/ to / output / f o l d e r
MPType // why? I don ’ t know , i t seemed important e a r l y on .
dimension

File 24: output/V.vertex

66

C.2 Curve files C OUTPUT FILES

C.2 Curve files

There are several files written for every curve decomposed, into the containing folder. For surfaces,
each sub-curve is written to its own sub-folder, appropriately named.

• output/curve.cnums – C.2.1

• output/E.edge – C.2.2

• output/samp.curvesamp – C.2.3

C.2.1 output/curve.cnums

This file contains the cycle numbers of the paths, tracked from the generic midpoint to the left and
right points. Degenerate edges get 0’s because there is no path. Otherwise, the numbers are at least
1.

number edges

FOR // each edge
g o i n g l e f t g o i n g r i g h t

END FOR

File 25: output/curve.cnums

C.2.2 output/E.edge

These are 0-based indices into V.vertex.

number edges

FOR // each edge
l e f t mid r i g h t

END FOR

File 26: output/E.edge

C.2.3 output/samp.curvesamp

The curve sampling file contains points in order, on edges. The points are referred to by 0-based
indices into a new V.vertex file created, preserving the initial one from the decomposition.

67

C OUTPUT FILES C.2 Curve files

num edges

FOR // each edge
num samples on edge
FOR // each sample on edge

sample index
END FOR

END FOR

File 27: output/samp.curvesamp

68

C.3 Surface files C OUTPUT FILES

C.3 Surface files

• output/F.faces – C.3.1

• output/S.surf – C.3.2

• output/samp.surfsamp – C.3.3

C.3.1 F.faces

number faces

FOR // each face
midpoint
c r i t s l i c e i n d e x
top edge index bottom edge index
system name top system name bottom

num le f t edge s
FOR // each l e f t edge

edge index
END FOR

num right edges
FOR // each r i g h t edge

edge index
END FOR

END FOR

File 28: output/F.faces

C.3.2 S.surf

number faces 0 num mids l ices n u m c r i t s l i c e s

number s ingu la r curves
FOR // each s i n gu l a r curve

s i n g c u r v e m u l t i p l i c i t y index
END FOR

File 29: output/S.surf

69

C OUTPUT FILES C.3 Surface files

C.3.3 output/samp.surfsamp

num faces

FOR // each face
n u m t r i a n g l e s o n f a c e
FOR // each t r i a n g l e

v e r t 1 v e r t 2 v e r t 3
END FOR

END FOR

File 30: output/samp.surfsamp

70

Glossary Glossary

Glossary

colormap

The set of colors that are used to vivify a figure in MATLAB. 25

CPATH

A list of directories to be automatically searched for libraries, but are searched after all libraries
tagged with I. 58

dependency

A program (or programs) that need(s) to be installed in order for a different program to run.
50

LD LIBRARY PATH

LD is the name of the unix linker. This environment variable is a colon-separated set of
directories where libraries should be searched for first, before the standard set of directories
and is useful when debugging a new library or using a nonstandard library for special purposes..
58

LIBRARY PATH

The value of LIBRARY PATH is a colon-separated list of directories, much like PATH. When
configured as a native compiler, GCC tries the directories thus specified when searching for
special linker files. 58

PATH

The PATH environment variable is used by Cygwin applications as a list of directories to
search for executable files to run.. 29

RGB triple

A row vector with three columns with each entry ranging from zero to one used to identify a
color. 26

[type=acronym]

71

Glossary Glossary

thanks for reading!

72

	Introduction
	About this manual
	Bertini_real product description
	Where Bertini_real can be found
	Who is developing Bertini_real?
	Contact
	Acknowledgements

	Quick Summary
	Input Files
	On Bertini input syntax

	Preliminary: running Bertini
	Numerical Irreducible Decomposition
	Necessary Bertini output files for Bertini_real

	Running Bertini_real
	Files Needed for Input
	Command prompt, options
	Parallelism
	Projections and spheres of interest
	The user-defined projection, pi
	The sphere of interest, sphere

	Running Sampler
	Curves
	Running Sampler (Using an Example)
	Available curve sampling algorithms

	Surfaces
	Running sampler on a surface (Using an Example)
	Available surface sampling algorithms
	Known issues with surface sampler

	Visualization
	Visualizing in Matlab
	Matlab visualization options

	Visualizing in Python
	3D Printing

	Troubleshooting
	Helpful help
	Compilation fails, with an error due to send calls for MPI
	had a critical failure
	sh: matlab: command not found
	Calling Bertini_real from within Matlab

	Examples
	Curves
	Circle
	Astroid

	Surfaces
	Solitude
	Plane

	The Decomposition Algorithms
	Decomposing curves
	Critical points
	Intersect with bounding object
	Slice
	Connect the dots
	Merge [optional]
	Sample [optional]

	Decomposing surfaces
	Critical curves
	Bounding curve
	Slice
	Connect the dots
	Merge [optional]
	Sample [optional]

	Install
	Dependencies
	Symbolic engine

	Instructions for GNU/Linux
	Instructions for OSX
	Preliminary Work
	Installation

	Instructions for Windows
	Install Cygwin
	Selecting packages for Cygwin
	Initializing Paths
	Organizing Cygwin
	Installing Dependencies
	Linking Cygwin Environment Paths
	Building and Installing Packages
	Installing Bertini and Bertini_real
	Setting up MATLAB

	Testrun – the Cayley Cubic

	Output Files
	Regardless of dimension
	output/decomp
	output/run_metadata
	output/V.vertex
	output/vertex_types
	output/witness_set
	/Dir_Name

	Curve files
	output/curve.cnums
	output/E.edge
	output/samp.curvesamp

	Surface files
	F.faces
	S.surf
	output/samp.surfsamp

	Glossary

