
xGESVDQ: A QR–preconditioned QR method for
computing the singular value decomposition

Installation and Testing
User Guide

Zlatko Drmač∗

Department of Mathematics, Faculty of Science, University of Zagreb

September 25, 2017

Abstract

xGESVDQ [6] is a LAPACK–based software for computing the singular value
decomposition (SVD) by a preconditioned QR method. With respect to numer-
ical accuracy, it is superior to the existing implementation of the QR method
(xGESVD), and to the divide and conquer method (xGESDD) from LAPACK [1].
Although it is theoretically not yet entirely understood, based on overwhelming
numerical evidence, the new method can be considered almost as accurate as
the Jacobi SVD [4], [7, 8]. The software has a built in error estimate device and
the result is accompanied with realistic error bounds for both the singular val-
ues and the singular vectors. Numerical experiments show close match between
the measured and estimated errors, which behave as predicted by the pertur-
bation theory: for a full column rank A, the relative errors in the computed
singular values depend on the scaled condition number minD=diag κ2(AD), and
the errors in the singular vectors, in addition, depend on the relative sepa-
rations between the neighboring singular values. At the same time, the new
implementation exploits highly optimized xGESVD in libraries such as the Intel’s
MKL and it can be considered as method of choice for fast and accurate SVD.
Simple modular structure of the new software allows straightforward conversion
to a ScaLAPACK parallel implementation.

This document describes the main properties, using and testing of the im-
plementation of the xGESVDQ subroutines.

∗The author’s work is supported by the Croatian Science Foundation, under grant HRZZ–IP-11-
2013-9345.

1

1 Introduction

The SVD (Singular Value Decomposition) is one of the most important decomposi-
tions in matrix computations, with a variety of applications in sciences and engineer-
ing. State of the art numerical software library LAPACK [1] contains three different
methods for computing the SVD of general matrices:

• xGESVD, which reduces the matrix to bidiagonal form and then it deploys the
zero shift bidiagonal QR SVD;

• xGESDD, which also uses the bidiagonal reduction, but the bidiagonal SVD is
computed via the divide and conquer scheme;

• xGEJSV, xGESVJ which are one-sided Jacobi SVD methods.

Among them, xGESDD is the fastest and least accurate; xGEJSV and xGESVJ are the
most accurate but the slowest, although xGEJSV in some implementations was able
to outperform xGESVD.

xGESVDQ, described in this document, is an enhanced version of xGESVD – at a price
of an extra pivoted QR decomposition (e.g. xGEQP3), the existing QR SVD xGESVD

becomes nearly as accurate as the Jacobi SVD. The numerical details of the method
are given in [6], and it is implemented in the SVD library xGESVDQ which provides
LAPACK-style FORTRAN codes for computing the SVD decomposition of general
matrices in the four data types REAL (SGESVDQ), DOUBLE PRECISION (DGESVDQ),
COMPLEX (CGESVDQ) and DOUBLE COMPLEX (ZGESVDQ).

In §2 we give the necessary details for using the subroutines, and §3 describes instal-
lation and testing.

2 Calling xGESVDQ

The calling sequence of xGESVDQ follows the one of XGESVD, with few differences that
reflect the specific new features of xGESVDQ. For the sake of brevity, we describe the
arguments of CGESVDQ only. For the other three data types, the calling sequences are
obtained mutatis mutandis and will be clear from the comments in the source codes.

2.1 Method and notation

For simpler and more precise description of the code, in Algorithm 1 we first describe
the structure of the method. On input, the (real or complex) matrix A is assumed
m × n with m ≥ n. In applications with m < n, the usage of SVD should be
reformulated in terms of A∗, in the obvious way.

2

Algorithm 1 (U,Σ, V) = xGESVDQ(A,method) (A ∈ Cm×n, m ≥ n)

1: (ΠrA)Πc = Q

(
R
0

)
{Initial row sorting by the permutation matrix Πr and QR factorization with
dynamic column pivoting Πc, e.g. xGEQP3, or simple pre-sorting. Full pivoting is
also an option.}

2: Determine the numerical rank ρ of R and set Rρ = R(1 : ρ, 1 : n).
3: if ρ = n and condition estimate needed then
4: κ ≈ ‖(Rρdiag(1/‖Rρ(:, i)‖2))−1‖2 {Use e.g. xPOCON and adjust to the norm

‖ · ‖2.}
5: end if
6: if method = ”upper” then

7: Compute the SVD Rρ = Û
(

Σ̂ 0ρ,n−ρ

)
V̂ ∗. {Use xGESVD}

8: The SVD of A is A = UΣV ∗ ≡
[
ΠT
r Q
(
Û 0
0 Im−ρ

)](
Σ̂ 0ρ,n−ρ

0m−ρ,ρ 0m−ρ,n−ρ

)
(ΠcV̂)∗

9: else
10: Compute the SVD R∗ρ = Û

(
Σ̂

0m−ρ,ρ

)
V̂ ∗. {Use xGESVD}

11: The SVD of A is A = UΣV ∗ ≡
[
ΠT
r Q
(
V̂ 0
0 Im−ρ

)](
Σ̂ 0ρ,n−ρ

0m−ρ,ρ 0m−ρ,n−ρ

)
(ΠcÛ)∗

12: end if

2.2 Argument list (CGESVDQ)

SUBROUTINE CGESVDQ(JOBA, JOBP, JOBR, JOBU, JOBV, m, n, A, LDA, S, U,

LDU, V, LDV, NUMRANK, IWORK, CWORK, LCWORK, RWORK, LRWORK, INFO)

1. JOBA [input][CHARACTER]

Provides information on the level of accuracy expected for the SVD of A. It
specifies the cutoff threshold for truncating the smallest rows of the computed
upper triangular factor R, thus truncating the smallest singular values. (The
index k described below defines the value of ρ in Line 2. in Algorithm 1; ε is
the roundoff unit.)

’A’ This is the most aggressive option. After the initial QR factorization, the
upper triangular factor will be truncated at the smallest index k such that
the truncated part R(k + 1 : n, k + 1 : n) of R is below ε

√
nmaxi=1:n ‖A(:

, i)‖2 (≡ ε
√
n|R11| in case of column pivoting that brings the largest column

to the fore). In this case, the smallest n− k singular values are flushed to
zero, but the backward error is still within the standard backward stability
parameters as in xGESVD and xGESDD.

3

’M’ Similar as in the previous case, but the cutoff criterion is milder. The
truncation occurs at the smallest index k for which |Rk+1,k+1| ≤ ε|Rkk|.

’H’ High relative accuracy requested. A submatrix R(k + 1 : n, k + 1 : n) will
be truncated only if it is zero.

’E’ This is the expert level. The level of accuracy is the same as with ’H’, and,
in addition, information needed for error estimate in the computed singular
values and vectors is provided. The relevant (scaled) condition number is
estimated and returned in RWORK. If R is computed as singular, the
scaled condition number of its largest leading nonsingular submatrix will
be estimated.

2. JOBP [input][CHARACTER]

Specifies the pivoting in the initial QR factorization, i.e. it determines whether
to use row pivoting. (Permutation matrix Πr in Line 1 of Algorithm 1.)

’P’ Prior to the column pivoted QR factorization, the rows of A are permuted
by a permutation π such that

‖A(π(1), :)‖∞ ≥ ‖A(π(2), :)‖∞ ≥ · · · ≥ ‖A(π(m), :)‖∞.

For high accuracy, this option is recommended if it is expected that A
might have differently scaled rows, and high accuracy is desired.

’N’ No row pivoting is used. The QR factorization in Line 1. of Algorithm 1
is computed only with a rank revealing column pivoting.

3. JOBR [input][CHARACTER] Specifies whether te SVD of R or R∗ is com-
puted. Both choices will work well numerically. This option is left for the
implementor to decide which can be better optimized. Researchers can use this
option for further study of the numerical properties of the bidiagonalization and
the structure of the bidiagonal form.

’T’ The SVD of R∗ is computed and used in assembling the SVD of A.

’N’ The SVD of R is computed and used in assembling the SVD of A. This
may be preferred as it involves less data movement (matrix transpositions).

4. JOBU [input][CHARACTER]

’A’ All m left singular vectors are computed and returned as columns in the
array [U]. See the description of [U].

’S’ or ’U’ The leading n left singular vectors are computed and returned as
the leading n columns in the array [U]. See the description of [U].

4

’R’ The leading r left singular vectors (belonging to the r largest nonzero sin-
gular values) are computed and returned as columns in the array [U]. Here
r = NUMRANK is the numerical rank that is determined by counting
nonzero computed singular values. The value of r can be smaller that ρ, de-
termined after the first QR factorization (depending on JOBA). (CGESVDQ
actually computes ρ vectors, and r < ρ may occur e.g. due to underflowed
singular values.)

’F’ The n left singular values are computed and returned in factored form as
the product of the Q factor from the initial QR factorization and the n
left singular vectors of (R∗, 0)∗. If row pivoting is used, then the necessary
information on the row pivoting is stored in IWORK(N+1:N+M-1). See
the descriptions of A, U, CWORK, IWORK. See §2.3.2.

’N’ The left singular vectors are not computed. The array [U] is not referenced.

5. JOBV [input][CHARACTER]

’A’ or ’V’ All n right singular vectors are computed and returned as conjugate
transposed in the rows of the array [V].

’R’ The leading r right singular vectors are computed and returned as conju-
gate transposed in te rows of the array [V]. Here r = NUMRANK is the
numerical rank that is determined by counting nonzero computed singular
values. The value of r can be smaller that ρ, determined after the first
QR factorization (depending on JOBA). (CGESVDQ actually computes ρ
vectors.) This option is allowed only if the same is set for JOBU, or if
JOBU=’N’. Otherwise, illegal value is declared.

’N’ The right singular vectors are not computed. If JOBA=’E’, the array [V]
might be used as a workspace; see the description of [V].

6. m [input][INTEGER]

The number of rows of the matrix; m ≥ 0.

7. n [input][INTEGER]

The number of columns of the matrix; 0 ≤ n ≤ m.

8. A [input/workspace/output][COMPLEX ARRAY][LDA ×n]

On input, [A] contains the matrix A. After the QR factorization, the part
of [A] below the main diagonal contains the Householder vectors used in the
factorization. If JOBU 6= ’N’, that part of [A] is left unchanged on the output.
If JOBU = ’F’, it will be used to restore or to apply the matrix of the left
singular vectors.

5

9. LDA [input][INTEGER]

The leading dimension of the array [A]. LDA≥ max(1,m).

10. S [output][REAL ARRAY][n× 1]

The computed singular values of A, ordered so that

S(i) ≥ S(i+ 1), i = 1, . . . ,n− 1.

11. U [output] [COMPLEX ARRAY] The dimensions of [U] are determined as
follows:

(i) LDU×m , if JOBU = ’A’; see the description of LDU. In this case, on
exit, [U] contains the m left singular vectors.

(ii) LDU×n , if JOBU ∈ {’S’, ’U’, ’R’} ; see the description of LDU. In
this case, [U] contains the leading n or the leading r left singular vectors,
where r = NUMRANK is the numerical rank. See the description of
JOBU.

(iii) LDU×n , if JOBU = ’F’ ; see the description of LDU. In this case [U]
contains the n×n matrix of the left singular vectors of the upper triangular
matrix R from Line 1. of Algorithm 1. This information can be used to
form the left singular vectors of A.

If JOBU = ’N’, then [U] is not referenced.

12. LDU [input][INTEGER]

The leading dimension of the array [U].

(i) If JOBU ∈ {’A’, ’S’, ’U’, ’R’}, then LDU≥ max(1,m).

(ii) If JOBU = ’F’, then LDU≥ max(1,n).

(iii) Otherwise, LDU ≥ 1.

13. V [workspace/output] [COMPLEX ARRAY] The dimensions of [V] are
determined as follows:

(i) LDV×n, if JOBV = ’A’, or ’V’. In that case [V] contains the n × n
unitary matrix V ∗; if JOBA = ’E’, it is also used as a workspace.

(ii) LDV×n, if JOBV = ’R’. In that case [V] contains the first r = NUMRANK
rows of V ∗ (the right singular vectors, stored rowwise, of the NUMRANK
largest singular values). If JOBA = ’E’, it is also used as a workspace.

(iii) If JOBV =’N’ and JOBA = ’E’, [V] is used only as a workspace.

6

If JOBV = ’N’, and JOBA 6=’E’, [V] is not referenced.

14. LDV [input][INTEGER]

The leading dimension of the array [V].

(i) If JOBV ∈ {’A’, ’V’, ’R’} or JOBA = ’E’, then LDV ≥ max(n, 1).

(ii) Otherwise, LDV ≥ 1.

15. NUMRANK [output][INTEGER]

NUMRANK is first set to the numerical rank determined after the rank reveal-
ing QR factorization, following the strategy determined by te value of JOBA.
If JOBV=’R’, and if JOBU=’R’, only NUMRANK leading singular values
and vectors are then requested in the call of CGESVD. The value of NUMRANK
might be further reduced if some smallest singular values of the triangular fac-
tor are computed by CGESVD as exact zeros. (This is possible, e.g. due to
underflows.)

16. IWORK [workspace/output][INTEGER ARRAY] The length of IWORK
is:

(i) n + m− 1 , if JOBP = ’P’,

(ii) n , if JOBP = ’N’

On exit, IWORK(1 : n) contains column pivoting permutation of the rank
revealing QR factorization. If JOBP = ’P’, IWORK(n + 1 : n + m − 1)
contains the indices of the sequence of row swaps used in row pivoting. These
can be used to restore the left singular vectors in the case JOBU=’F’. See
§2.3.2.

Note: In case of real data type (SGESVDQ, DGESVDQ) the length of IWORK
increases by n in both cases above if JOBA=’E’.

17. CWORK [workspace/output][COMPLEX ARRAY][LCWORK×1]

(i) If, on entry, LCWORK 6= −1, then on exit CWORK(1 : n) contains
parameters needed to recover the Q factor from the QR factorization com-
puted by CGEQP3.

(ii) If, on entry, LCWORK = -1, then a workspace query is assumed and
CWORK must be of length at least two. On exit CWORK(1) contains
the optimal length of CWORK and CWORK(2) contains the minimal
length.

7

18. LCWORK [input/output][INTEGER]

The dimension of the array CWORK.

(i) If, on entry, LCWORK = −1, (workspace query) then the optimal and
the minimal length of CWORK are computed and returned in the first
two entries of CWORK.

(ii) Otherwise, on entry, LCWORK must contain the length of CWORK.
This ensures that the work space of proper length is allocated. The min-
imal and the maximal requirements depend on the workspaces required
for CGEQP3, CGESVD and CUNMQR and are determined as follows: For the
minimal length, define

LWQP3 = n + 1 (minimal workspace length for m× n CGEQP3),1

LWUNQ = (minimal workspace length for ’left’ m× n CUNMQR) =

1. max(n, 1) if JOBU =’R’, ’S’, or ’U’ ;

2. max(m, 1) if JOBU =’A’

LWSVD = max(1, 3n) (minimal workspace length for n×n CGESVD)2

LWSVD2 = max(1, 3(n/2)) (minimal workspace length for n/2×n/2
CGESVD)

LWLQF = max(1,n/2) (minimal workspace length for n/2 × n
CGELQF)

LWQRF = max(1,n/2) (minimal workspace length for n × n/2
CGEQRF)

LWUNLQ = max(1,n) (minimal workspace length for ’right’ n × n
CUNMLQ)

LWUNQ2 = max(1,n) (minimal workspace length for ’right’ n × n
CUNMLQ)

LWCON = 2n (minimal workspace length for n× n CPOCON)3

Then the minimal value of LCWORK is:

Σ ◦ max(n+LWQP3,LWSVD), if only the singular values are needed;

• max(n + LWQP3,LWCON,LWSVD), if the singular values and a
scaled condition estimate are requested;

Σ, U ◦ n + max(LWQP3,LWSVD,LWUNQ), if the singular values and
the left singular vectors are requested;

1In case of real data type, LWQP3 = 3n+ 1.
2In case of real data type, LWSVD = 5n.
3In case of real data type, LWCON = 3n.

8

• n+max(LWQP3,LWCON,LWSVD,LWUNQ), if the singular val-
ues, the left singular vectors and a scaled condition estimate are
requested;

Σ, V ◦ n + max(LWQP3,LWSVD), if the singular values and the right
singular vectors are requested;

• n + max(LWQP3,LWCON,LWSVD), if the singular values, the
right singular vectors and a scaled condition estimate are requested;

Σ, U, V ◦ n+max(LWQP3,LWSVD,LWUNQ), if the full SVD is requested,
JOBV=’R’, and independent of JOBR;

• n + max(LWQP3,LWCON,LWSVD,LWUNQ), if the full SVD
with scaled condition estimate is requested, JOBV=’R’, and in-
dependent of JOBR.

The above specified length of CWORK suffices also if JOBV=’A’
and the numerical rank of A (as seen after the rank revealing QR fac-
torization) is at least n/2. However, if JOBV=’A’ and A is estimated
of low numerical rank, then a more efficient computation is possible
and in that case the length of work is determined as follows:

♦ max(n+max(LWQP3, LWSVD, LWUNQ), n+max(LWQP3,n/2+
LWLQF,n/2 + LWSVD2,n/2 + LWUNLQ,LWUNQ)) if the full
SVD is requested with JOBV=’A’, ’V’, and JOBR =’N’ ;

� max(n+max(LWQP3,LWCON,LWSVD,LWUNQ), n+max(LWQP3,
LWCON,n/2+LWLQF,n/2+LWSVD2,n/2+LWUNLQ,LWUNQ))
if the full SVD with scaled condition estimate is requested, with
JOBV=’A’, ’V’, and JOBR =’N’ ;

M max(n+max(LWQP3,LWSVD,LWUNQ), n+max(LWQP3,n/2+
LWQRF, n/2 + LWSVD2,n/2 + LWUNQ2,LWUNQ)) if the full
SVD is requested with JOBV=’A’, ’V’, and JOBR =’T’;

N max(n+max(LWQP3,LWCON, LWSVD,LWUNQ), n+max(LWQP3,
LWCON, n/2+LWQRF, n/2+LWSVD2,n/2+LWUNQ2,LWUNQ))
if the full SVD with scaled condition estimate is requested with
JOBV=’A’, ’V’, and JOBR =’T’;

The optimal value of LCWORK is determined analogously, using the
optimal workspace lengths for CGEQP3, CGESVD and CUNMQR.

19. RWORK [workspace/output][REAL ARRAY][LRWORK×1]

On exit, if JOBA=’E’, RWORK(1) contains an estimate of
√
‖(A∗cAc)−1‖1,

where Ac is obtained from A by normalizing its columns to unit Euclidean
length. Otherwise, RWORK(1)= -1. See §2.3.1.

9

RWORK(2) contains the number of singular values computed as exact zeros
when CGESVD is applied to the (possibly truncated) matrix R. See the descrip-
tion of NUMRANK.

In case of early exit (no call to CGESVD, such as in the case of zero matrix)
RWORK(2)=-1.

20. LRWORK [input][INTEGER]

The dimension of the array RWORK. If JOBP=’P’, then LRWORK ≥
max(2,m, 5n). Otherwise, LRWORK ≥ max(2, 5n).

21. INFO [output][INTEGER]

= 0 : successful exit.

< 0 : if INFO = −i, the i-th argument had an illegal value.

> 0 : if CBDSQR did not converge, INFO specifies how many superdiagonals of
an intermediate bidiagonal form B (computed in CGESVD) did not converge
to zero.

2.3 Further details

2.3.1 Using the condition number estimate for error bounds

Since the method first computes the triangular factor R, the condition number that
gives a realistic error bound in most cases can be efficiently estimated as follows: The
columns of the upper triangular factor R are scaled to have unit Euclidean norms;
the scaled matrix is denoted by Rc. If Ac is defined analogously, then ΠT

c A
∗
cAcΠc =

R∗cRc. Then, assuming full rank of A, xPOCON is used to estimate ‖(R∗cRc)
−1‖1(

= ‖(A∗cAc)−1‖1), and finally we deploy the relations

n−1/4
√
‖(A∗cAc)−1‖1 ≤ ‖A†c‖2 ≤ n1/4

√
‖(A∗cAc)−1‖1,

that can be easily proved using the properties of the matrix norms. Since 1 ≤ ‖Ac‖2 ≤√
n, κ2(Ac) ≡ ‖Ac‖2‖A†c‖2 ≤ n3/4

√
‖(A∗cAc)−1‖1. Then, the error bounds for the

computed singular values and vectors are derived as explained in [6]. One should
be careful when the estimated scaled condition number exceeds the inverse of the
machine precision, because in such cases it might be a considerable underestimate of
the true value.

10

2.3.2 Using left singular vectors in factored form

The option to leave the left singular vectors in factored form is useful in the case of
tall and skinny A (m� n) that is e.g. the coefficient matrix in a least square problem
‖Ax− b‖2 → min, solved by SVD. The unique minimum norm optimal x is given as
x = A†b ≡ V Σ†U∗b. Note that in that case the computation of U∗b reads (see e.g.
line 8 in Algorithm 1; similarly with the data given in line 11)

b←
(
Û∗ 0
0 Im−ρ

)
(Q∗(Πrb))

and it is easily implemented using CLASWP, CUNMQR and CGEMM. Of course, if one wants
to form U explicitly, the matrix Û should be placed in the leading block of the array
U that is initialized as n columns of the identity Im, and U should be pre-multiplied
by Q using CUNMQR. For instance, the first n left singular vectors are recovered by the
following code:

CALL CUNMQR(’Left’, ’No_Tr’, m, n, n, A, LDA, CWORK, U, LDU, &

CWORK(N+1), LCWORK-N, IERR)

IF (ROWPRM) CALL CLASWP(N1, U, LDU, 1, M-1, IWORK(N+1), -1)

The details can be seen in the source code of xGESVDQ.

2.3.3 Linker information

xGESVDQ subroutines are built on top of BLAS and LAPACK computational and
driver subroutines.

2.3.4 Updates and maintenance

xGESVDQ subroutines are designed in the LAPACK environment both as ready to
use numerically sound software and as a developer’s framework for accurate SVD
computations. The two main ingredients are xGEQP3 and xGESVD, and any future
improvements and updates of these two subroutines are automatically incorporated
in xGESVDQ.

2.3.5 Modifications and further research and development

The Businger-Golub column pivoting can be replaced with simple pre-sorting of the
columns of A with respect to their Euclidean lengths. This is implemented in the
module xGESVDQS with simple replacement of the rank revealing QR factorization

CALL xGEQP3(M, N, A, LDA, IWORK, WORK, WORK(N+1), LWORK-N, IERR)

11

with initial column sorting (encoded in the permutation vector IWORK) followed by
the ordinary QR factorization,

CALL xLAPMT(.TRUE., M, N, A, LDA, IWORK)

CALL xGEQRF(M, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)

However since this static pre-sorting is not rank revealing, the options in JOBA are
reduced to computation without (’H’, without any intervention in the upper tringular
factor R) or with scaled condition number estimatation (’E’) in the case of full rank
R. For details see [6]. The module xGESVDQS is not included in this distribution, and
it is available, upon request, from the author.

Another option is to use the windowed pivoting xGEQPX, xGEQPY from [3], [2]. We
omit the details fo the sake of brevity, and refer to [6].

Further, one could replace e.g. xGESVD with some other SVD algorithm such as
xGESDD, but in that case we do not expect as dramatic improvement in accuracy
because the bidiagonal divide an conquer algorithm in xGESDD is not as accurate as
the zero shift bidiagonal QR SVD. In other words, in this framework xGESVD can be
turned into a highly accurate procedure that delivers both accurate output (when
warranted bu the data) and a reliable error bound, and xGESDD cannot. It remains
to be explored how this applies to the fast bidiagonal SVD [9].

Future research will include studying whether and to what extent the bidiago-
nalization can benefit (in the sense of enhanced accuracy) from the communication
avoiding tournament pivoting [5].

3 xGESVDQ test drivers: user guide

3.1 Directories and files

In the HOME directory of the testing package, the program files are organized in
the subdirectories as follows:

• HOME

– xGESVDQ

– REFVAL

– MATGEN

– TESTING

– AUXSBR

12

3.1.1 xGESVDQ

xGESVDQ contains the source codes of the new SVD algorithm in 4 data types

• SGESVDQ.f (single precision)

• DGESVDQ.f (double precision)

• CGESVDQ.f (complex)

• ZGESVDQ.f (double complex)

These are the routine being tested. The routines are LAPACK-based and written
in the LAPACK style. All four have been tested for compliance with FORTRAN
standard, e.g. both passed, without errors or warnings, g77 -c -fpedantic *.f,
g77 -c -fpedantic -ff90 *.f

For theoretical background and discussion of the numerical results, see [6].

3.1.2 REFVAL

REFVAL contains simple one-sided Jacobi SVD in double complex precision,

• zgesvjx.f (one sided double complex Jacobi SVD pure)

that is used for reference values in case of complex data.
For real test matrices (single and double precision), the reference values of the SVD
are computed by double precision one sided Jacobi SVD dgesvj() from LAPACK.

3.1.3 MATGEN

MATGEN contains the generators of test matrices

• dmgen.f (double precision)

• zmgen.f (double complex)

See [6, §3.1] for more details on the kind of matrices generated by these subroutines.

3.1.4 TESTING

TESTING contains test drivers and makefiles

• TestDGESVDQ.f (interactive test for SGESVDQ and DGESVDQ; the user can choose
different dimensions and options)

13

• TestDGESVDQ no input.f (automatic test for SGESVDQ and DGESVDQ; the user
can review the hard-coded test parameters and it is ony required to hit enter
to start the test)

• TestZGESVDQ.f (interactive test for CGESVDQ and ZGESVDQ; the user can choose
different dimensions and options)

• TestZGESVDQ no input.f (automatic test for CGESVDQ and ZGESVDQ; the user
can review the hard-coded test parameters and it is ony required to hit enter
to start the test)

• MakeTest (make file for interactive test)

• MakeTest ni (make file for automatic test with hard-coded parameters)

This directory also contains the Matlab script TestSummary that can be used to
display the test results in several figures, see §3.4.1.

3.1.5 AUXSBR

AUXSBR contains auxiliary subroutines used by the test drivers:

– for real data tests:

• dchkor.f (orthogonality check for singular vectors)

• dcmpsv.f (compares singular vectors with reference values)

• dresvd.f (computed the residual norm for the SVD)

• xges2d.f (single to double precision matrix copy)

• xged2s.f (double to single precision matrix copy)

– for complex data tests:

• zchkun.f (orthogonality check for singular vectors)

• zcmpsv.f (compares singular vectors with reference values)

• zresvd.f (computed the residual norm for the SVD)

• xgec2z.f (single complex to double complex precision matrix copy)

• xgez2c.f (double complex to single complex precision matrix copy)

14

3.2 Making the test driver executables

3.2.1 Linker information

In addition to the files listed in §3.1, the linker needs the BLAS ad LAPACK libraries.
In the corresponding makefiles (MakeTest, MakeTest ni) the user should adjust the
home page for the directories described in §3.1 and linker information for BLAS and
LAPACK. In the example files provided in this package one can use sequential or
threaded Intel MKL libraries.

• interactive test drivers

– make -f MakeTest rtestt (real data, threaded)

– make -f MakeTest rtests (real data, sequential)

– make -f MakeTest ctestt (complex data, threaded)

– make -f MakeTest ctests (complex data, sequential)

• non-interactive test drivers; no input parameters

– make -f MakeTest ni rtestt ni (real data, threaded)

– make -f MakeTest ni rtests ni (real data, sequential)

– make -f MakeTest ni ctestt ni (complex data, threaded)

– make -f MakeTest ni ctests ni (complex data, sequential)

3.3 Using the test drivers

The test drivers can be used as interactive and automatic, with hard coded param-
eters. In either case, the run time can be considerable if the matrices are of larger
dimensions. The total number of test cases in a single run is larger than 30000 and
it can be larger than 60000. The purpose of the test is to determine to what extent
the measured errors comply with the errors predicted by the perturbation theory.

3.3.1 Detailed interactive test program

In a simple interactive menu, the test starts with choosing one of the following jobs

1. SIGMA only

2. SIGMA, U(MxN)

3. SIGMA, V(NxN)

4. SIGMA, U(MxN), V(NxN)

5. SIGMA, U(MxM), V(NxN)

15

6. SIGMA, U(MxM)

7. SIGMA, U(MxNR), V(NxNR), (here NR denotes the numerical rank)

8. SIGMA, V(NxNR)

9. SIGMA, U(NxNR)

Next, accuracy level is set to one of the following:

(1) The requested accuracy corresponds to the backward

error bounded by

|| delta A ||_F <= f(m,n) * EPS * || A ||_F,

where EPS = {S,D}LAMCH(Epsilon). This authorises

{C,Z}GESVDQ to truncate the computed triangular

factor in the rank revealing QR factorization

whenever the truncated part is below the

threshold EPS * ||A||_F.

(2) Similarly as with (1), but the truncation is more

gentle: it is allowed only when there is a drop on

the diagonal of the triangular factor.

This is a medium level of accuracy.

(3) High accuracy requested. No numerical rank

determination based on the rank revealing QR

factorization is attempted.

(4) Accuracy level same as in (3), and in addition an

estimate of the scaled cond. number is computed.

Next, one can choose between only column or complete row and column pivoting.

Select the pivoting in the initial QR factorization:

(1) Column-pivoted QR factorization as preconditioner.

(2) Row sorting prior to column pivoted QRF.

(This may give more accurate results if the rows of A

vary in length due to both ery large and very small

weighting factors, causing large s_cond(A).

The computation of the SVD of A proceeds with the SVD of its computed triangular
factor R. xGESVDQ can work with both R and R∗.

After the QR factorization, proceed with computing:

(1) The SVD of the upper triangular factor R

(This is recommended when using xGESVDQ.)

(2) The SVD of the conjugate-transposed R**H

(This involves more data movement and it is left

as optional for experimenting in the R&D.)

16

Finally, the row dimension m and te column dimension n are entered, and the number
of test cases (1 or 2) per class of test matrices is set.

3.3.2 Example driver, no input required

In this case, the options described in §3.3.1 are hard-coded; the user can review them
and hit enter to start the test.

3.4 Visualization of the test results - one graph is worth
thousands of numbers

For the selected options, the test driver runs 32448 or 64896 test cases. The results
of testing xGESVDQ are stored in the files

• SGESVDQ.table and DGESVDQ.table in the case of real data

• CGESVDQ.table and ZGESVDQ.table in the case of complex data.

Each row in those files corresponds to 14 measurements related to the computed SVD
of one test matrix. The collected test data are:

1. The scaled condition number, computed by scaling the columns to unit norm
and computing the singular values in double (complex). precision.

2. Estimated condition number, if that options is selected (otherwise, set to −1).

3. The residual ‖A − UΣV ∗‖F/‖A‖F computed in double (complex) precision, if
singular values and all singular vectors are computed (otherwise set to −1).

4. maxi
|σi−σ̂i|
σ̂i

, where σi is the ith computed singular value, and σ̂i is the reference
value.

5. maxi 6=j |u∗iuj|, where ui denotes the computed ith left singular vector. If the left
singular vectors are not computed, this value s set to −1.

6. mini ‖ui‖2. If the left singular vectors are not computed, this value s set to −1.

7. maxi ‖ui‖2. If the left singular vectors are not computed, this value s set to −1.

8. maxi 6=j |v∗i vj|, where vi denotes the computed ith right singular vector. If the
right singular vectors are not computed, this value s set to −1.

9. mini ‖vi‖2. If the right singular vectors are not computed, this value s set to
−1.

17

10. maxi ‖vi‖2. If the right singular vectors are not computed, this value s set to
−1.

11. maxi{||vi− v̂i(v̂∗i vi)||2 · rgapi}, where v̂i is the reference value for vi. If the right
singular vectors are not computed, this value s set to −1.

12. maxi{||ui− ûi(û∗iui)||2 · rgapi}, where ûi is the reference value for ui. If the left
singular vectors are not computed, this value s set to −1.

13. maxi
|σi−σ̂i|
σ̂1

, where σi is the ith computed singular value, and σ̂i is the reference
value.

14. The computed numerical rank.

The test results stored in the files are best analyzed visually. Upon completion of the
test, the user can start the Matlab script TestSummary. The ”genes” of the test ma-
trices (parameters to restore each particular test matrix in the test) are stored in the
file SJEME.all. This allows additional separate study of examples found interesting
during the analysis of the results.

3.4.1 An example

The following eight figures illustrate how TestSummary displays the test results. The
test is performed using Intel R© Fortran Composer 2015.4.221 with multithreaded
Intel R© Math Kernel Library 10.3 on an Intel R© Core (TM) 2 Duo CPU T6670 @
2.20GHz 2.20 GHz based Latop with 8GB RAM, running under MS Windows 7.

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra,
J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide (Third Ed.). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1999.

[2] C. H. Bischof and G. Quintana-Orti. Algorithm 782: codes for rank–revealing QR
factorizations of dense matrices. ACM Transactions on Mathematical Software,
24(2):254–257, 1998.

[3] C. H. Bischof and G. Quintana-Orti. Computing rank–revealing QR factorizations
of dense matrices. ACM Transactions on Mathematical Software, 24(2):226–253,
1998.

[4] J. Demmel and K. Veselić. Jacobi’s method is more accurate than QR. SIAM J.
Matrix Anal. Appl., 13(4):1204–1245, 1992.

18

Figure 1: The residuals ‖A− UΣV ∗‖F/‖A‖F .

[5] James Demmel, Laura Grigori, Ming Gu, and Hua Xiang. Communication avoid-
ing rank revealing QR factorization with column pivoting. SIAM J. Matrix Anal-
ysis Applications, 36(1):55–89, 2015.

[6] Z. Drmač. A QR–preconditioned QR SVD method for computing the SVD with
high accuracy. ACM Trans. Math. Softw., pages ??–??, 2016.

[7] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: I. SIAM
J. Matrix Anal. Appl., 29(4):1322–1342, 2008.

[8] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: II. SIAM
J. Matrix Anal. Appl., 29(4):1343–1362, 2008.

[9] Benedikt Großer and Bruno Lang. An O(n2) algorithm for the bidiagonal SVD.
Linear Algebra and its Applications, 358(13):45 – 70, 2003.

19

Figure 2: Relative errors maxi |δσi|/σi.

20

Figure 3: Relative errors maxi |δσi|/‖A‖2.

21

Figure 4: Accuracy of the computed right singular vectors, compared with the bounds
obtained through the perturbation theory.

22

Figure 5: Accuracy of the computed left singular vectors, compared with the bounds
obtained through the perturbation theory.

23

Figure 6: Orthogonality of the left singular vectors.

24

Figure 7: Orthogonality of the right singular vectors.

25

Figure 8: The quotient of the true (i.e. computed using SVD) and the estimated
scaled condition number.

26

