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Chapter 1

FUNCTION DOCUMENTATION

1.1 Talbot Suite DE

The Laplace Transform (LT), F(s), of f(t) is defined as

P =201 = [ e ar

when this integral exists. The inverse problem is to reconstruct f(¢) from F'(s).

Talbot’s method [23] is an automatic method for the numerical inversion of Laplace Transforms,
designed to invert a Laplace Transform at a single value. It has been implemented in FORTRAN
[2]. On the other hand, modified Talbot’s method [10] is designed for multi-point inversion prob-
lems. These two methods have been implemented in C [12] by a parallel software designed for
parallel distributed (MPI-based) and shared (OpenMP-based) memory architectures. Like other
software for the numerical inversion of Laplace Transforms, all of them require, among their in-
put parameters, a user-defined function for the Laplace Transform to be inverted: for this reason
they are not suited to solve differential problems where the Laplace Transform is only known as
numerical samples.

On the contrary, the algorithm in Talbot Suite DE [17] has been designed especially for this
kind of problems (DE stays for Differential Equations), since it requires, as an input parameter,
a user-defined function returning the samples of the Laplace Transform computed at an input
complex array.

Talbot Suite DE contains the sequential implementations of Talbot’s method and of modified

Talbot’s method and the parallel (OpenMP-based) implementations of modified Talbot’s method;
it also contains the sequential version of Talbot Suite, not provided in [12].
About the OpenMP-based parallel version, two parallelization strategies have been implemented
to solve multi-point inversion problems; they are denoted as coarse-grained and fine-grained par-
allelism respectively: the former distributes data among the p parallel processes and computes
sequentially each summation approximating the inverse Laplace Transform, the latter parallelizes
the summation inside a sequential for-loop over the data. The former is particularly useful when
the inversion must be carried out at many values of ¢, while the latter is useful when the final
summations contain a lot of terms. In addition, a hybrid parallelization strategy is provided: it
merges together the two previous strategies. This is carried out by means of a nested parallelism
in OpenMP. Some computing environments require that nested parallelism has to be explicitly en-
abled: the provided code checks for it and, if necessary, enables the nested parallelism in OpenMP
otherwise results will be quite wrong. Of course, the hybrid parallelization strategy is useful when
the inversion must be carried out at many values of t and the final summation contains a lot of
terms. However, in many other cases (a few values of ¢ and a few terms in the summations) it is
sufficient to use the sequential version instead of the parallel one.

The function names in Talbot Suite DE follow the same convention as in Talbot Suite: the
leftmost number "1" refers to the modified method and "2" to the classical method. The prefix "SEQ"



refers to the sequential version, "OMP" to the parallel OpenMP-based version. All the functions in
Talbot Suite DE have the suffix DE, while the sequential implementation of Talbot Suite does
not. In the OpenMP version of Talbot Suite DE, the righmost number denotes the parallelization
strategy: "1" for coarse-grained, "2" for fine-grained and "3" for hybrid parallelism.

The general algorithm, behind the two Talbot methods, can be logically divided into two main
steps: estimation of method’s parameters, and evaluation of summations that approximate the
inverse Laplace Transform values. The software suite can be used by not expert or expert users:
the former, to solve the problem, calls a single "user-level" function; the latter calls the "skill-level"
functions so that he is able to change parameters.

User-level functions are:

e SEQ_Talbotl_DE: sequential implementation of the modified method for DE.

SEQ_Talbot2_DE: sequential implementation of the classical method for DE.

SEQ_Talbot1: sequential implementation of the modified method.

SEQ_Talbot2: sequential implementation of the classical method.

OMP_Talbot11l_DE: coarse-grained parallel implementation of the modified method for DE.
e OMP_Talbot12_DE: fine-grained parallel implementation of the modified method for DE.
e OMP_Talbot13_DE: hybrid parallel implementation of the modified method for DE.

In addition there is a new (skill-level) shared function, named as COM_TalbotNcorr, for the
correction to the accuracy parameter according to [16]: this correction was not implemented in
Talbot Suite. This shared function is called by the user-level functions implementing the modified
method. A user can avoid this correction by commenting the corresponding line of code.

Other skill-level functions are:

e COM_TalbotPAR, COM_TalbotNcorr for method’s parameters.

e SEQ_TalbotSUM1_DE, SEQ_TalbotSUM2_DE for the summation in the sequential version of
Talbot Suite DE.

e SEQ_TalbotSUM1, SEQ_TalbotSUM2 for the summation in the sequential version of Talbot
Suite.

e OMP_TalbotSUM11_DE for the summation in the parallel version of Talbot Suite DE (coarse-
grained parallelism).

e OMP_TalbotSUM12_DE for the summation in the parallel version of Talbot Suite DE (fine-
grained parallelism).

e OMP_TalbotSUM13_DE for the summation in the parallel version of Talbot Suite DE (hybrid
parallelism).

In the following, a detailed documentation of all the functions is reported. This documentation is
also reported as comments in the code.

1.2 Software folder organization

All the provided software is contained in the main directory "Src": it consists of several sub-
folders: one of them (TalbotSuiteDE) contains the software collection, while the others provide
some examples about its usage. The examples will be described in the next chapter.

Fig. 1.1 reports the logical view of the main directory.



TalbotSuiteDE Examples
(SW folder) HRREN

Figure 1.1: Logical view of the software organization.

Fig. 1.2 shows the sub-folders of TalbotSuiteDE and an abstract view of their contents.

—>[com | Talbotsuite sharedfunctions

—>| COM_DE [ Talbot Suite DE shared function

TalbotSuiteDE
(SW folder)

FUN Talbot Suite (SEQ)

L[ Fun_pE |[Taibotsuite DE (sEQ, OMP) |

Figure 1.2: Sub-folders of TalbotSuiteDE, containing the software suite.

The following sections report the complete documentation of each function.



1.3 Functions in file ./TalbotSuiteDE/FUN_DE/SEQ_Talbot_pack DE.c

This file contains the sequential version of Talbot Suite DE.

e SEQ Talbotl DE

int SEQ_Talbotl_DE (double complex* (*LTsamples)(unsigned int NXval,
double Xvall],
unsigned int NOPTS,
double complex SI[J,
double tol),
double sigmaO, unsigned int NXval, double *Xval,
unsigned int NTval, double *Tval, double tol,
double *NUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[], double Tmin, double Tmax)
/% kK ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok K K ok K ok ok K K ok ok ok ok K K ok ok K ok ok K ok ok ok ok K ok ok Kk ok K
SEQ_Talbot1_DE DRIVER FUNCTION (user level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION

PURPOSE

This function provides a numerical approximation to the Inverse Laplace
Transform u(x,t) computed at each value of the Xval , Tval arrays .

This is accomplished according to the modified Talbot method, described in:

Rizzardi M. - "A modification of Talbot’s method for the simultaneous
approximation of several values of the Inverse Laplace
Transform". ACM Trans. Math. Soft., vol. 21, no. 4,

Dec. 1995, pp. 347-371.
Algorithm’s steps are:

1) compute Talbot’s parameters at (Tmin + Tmax)/2 by means of
COM_TalbotPAR function and apply the correction by means of
COM_TalbotNcorr function;

2) compute Laplace Transform samples U(x,s) for s on
Talbot’s contour;

3) for all x,t do
approximate the Inverse Laplace Transform u(x,t)
by means of SEQ_TalbotSUM1_DE function.

COM_TalbotPAR () and SEQ_TalbotSUM1_DE () are skill-level functions:
the former is from Talbot Suite (file COM_Talbot_pack.c).

CALLING SEQUENCE

IFAIL_tot = SEQ_Talbotli_DE (LTsamples , sigmaO, NXval, Xval, NTval, Tval,
tol, NUMft, IFAIL, Nsings, SINGS, MULT,
Tmin, Tmax);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTsamples - (double complex function pointer) user-defined function
according to the following prototype:




double complex* (*LTsamples)(unsigned int NXval ,double Xvall[],
unsigned int NOPTS ,double complex SI[],
double tol)
The function returns the LT samples by solving the problem
obtained by the application of the Laplace transform method
to the original differential problem.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace
Transform function.

NXval - (unsigned integer) number of x values where the Inverse Laplace

Transform function is approximated.

Xval - (double array) values for x where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NXval".

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
absolute error <= tol if lu(x,t)| <= 1
or
relative error <= tol otherwise .
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary .

It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
Method’s parameters are computed at (Tmin + Tmax)/2.

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):

/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmalOx*t)

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).

SEQ_TalbotSUM1_DE: approximate the Inverse Laplace Transform.

LTsamples : (user-defined function) Laplace Transform function
according to the following prototype:




double complex* (*LTsamples) (unsigned int NXval ,double Xvall[],
unsigned int NOPTS ,double complex SI[],
double tol)

Kok K ok ok ok ok K ok K ok K ok K ok ok K oK K ok K ok K K K K oK K ok K ok ok K K K oK K ok K ok ok ok ok oK K ok K ok K ok K ok K ok K ok K ok K ok oK ok K ok K ok oK ok ok R K Rk K\

e SEQ _Talbot2 DE

int SEQ_Talbot2_DE (double complex* (*xLTsamples)(unsigned int NXval,
double Xvall],
unsigned int NOPTS,
double complex SI[],
double tol),
double sigmaO, unsigned int NXval, double *Xval,
unsigned int NTval, double *Tval, double tol,
double *NUMft, int *IFAIL, unsigned int Nsings,
double complex SINGS[], unsigned int MULTI[])
/% %k sk ok sk %k sk ok k ok ok sk ok sk ok sk ok ok sk ok sk Kk ok ok ok ok sk ok sk Kk ok ok sk ok sk 3k sk ok ok sk ok sk %k k ok k ok ok ok ok sk ok 5k %k k ok ok 5k %k sk %k k %k k ok ok >k %k k Xk k k k k %
SEQ_Talbot2_DE DRIVER FUNCTION (user level)

IMPLEMENTATION OF CLASSICAL TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION

PURPOSE

This function provides numerical approximations to the Inverse Laplace
Transform u(x,t) computed at each value of the Xval , Tval arrays .
This is accomplished according to the classical Talbot method, described inmn:

Talbot A. - "The accurate numerical inversion of Laplace Transforms".
J. Inst. Maths. Applics. (1979), n.23, pp.97-120.

Murli A., Rizzardi M. - "Algorithm 682: Talbot’s method for the
Laplace inversion problem".
ACM Trans. Math. Soft., vol. 16,

no. 2, June 1990, pp. 158-168.
Algorithm’s sketch:
for each t in Tval do

1) compute Talbot’s parameters, at t, by means of
COM_TalbotPAR function;

2) compute Laplace Transform samples U(x,s) for s on
Talbot’s contour;

3) approximate the Inverse Laplace Transform u(x,t) for all x

by means of SEQ_TalbotSUM2_DE function.

COM_TalbotPAR () and SEQ_TalbotSUM2_DE () are skill-level functions:
the former is from Talbot Suite (file code/SRC/COM/COM_Talbot_pack.c).

CALLING SEQUENCE

IFAIL_tot = SEQ_Talbot2_DE (LTsamples, sigmaO, NXval, Xval, NTval, Tval,
tol, NUMft, IFAIL, Nsings , SINGS, MULT);
where IFAIL_tot is an error indicator computed as a logical "or"
the values of IFAIL.

among all




INPUT PARAMETERS

LTsamples - (double complex function pointer) user -defined function
according to the following prototype:
double complex* (*LTsamples)(unsigned int NXval ,double Xvall[],
unsigned int NOPTS ,double complex SI[],
double tol)
The function returns the LT samples by solving the problem
obtained by the application of the Laplace transform method
to the original differential problem.
sigma0 - (double) abscissa of (absolute) convergence of the Laplace
Transform function.
NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.
Xval - (double array) values for x where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NXval".
NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.
Tval - (double array) values for t where the Inverse Laplace Transform
f(t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".
tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
absolute error <= tol if lu(x,t)| <= 1
or
relative error <= tol otherwise.
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace
Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary.
It must be dimensioned at least "Nsings".
MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.
OUTPUT PARAMETERS
NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).
IFAIL - (integer array) row-wise matrix of size (NXval,NTval) containing
the error flags at each u(x(h),t(k)):
/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmalOx*t)
REQUIRED FUNCTIONS
COM_TalbotPAR compute the Talbot parameters (in COM_Talbot_pack.c).

SEQ_TalbotSUM2_DE:

approximate the Inverse Laplace Transform.




LTsamples : (user -defined function) Laplace Transform function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval ,6double Xvalll,
unsigned int NOPTS ,double complex SI[],
double tol)
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e SEQ_TalbotSUM1 DE

int SEQ_TalbotSUM1_DE (double CONLAM, double CONSIG, double CONNU,
unsigned int NOPTS, unsigned int NXval,
double complex FF[], unsigned int NTval, double *Tval,
double NUMft[], int IFAILI[I])
/*****************************************************************************
SEQ_TalbotSUM1_DE SUMMATION FUNCTION (skill level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION

This function computes numerical approximations to the Inverse Laplace
Transform u(x,t) evaluated at each value of the Xval, Tval arrays.
This is accomplished according to the modified Talbot method, described in:

Rizzardi M. - "A modification of Talbot’s method for the simultaneous
approximation of several values of the Inverse Laplace
Transform". ACM Trans. Math. Soft., vol. 21, no. 4,
December 1995, pp. 347-371.

The composite Trapezoidal rule, approximating the contour integral for
u(x,t), leads to the real part of a complex Clenshaw sum. In order to
compute it the Goertzel algorithm, in the Reinsch stable version and in
double precision real arithmetic, has been implemented.

CALLING SEQUENCE

IFAIL_tot = SEQ_TalbotSUM1_DE (CONLAM, CONSIG, CONNU, NOPTS, NXval, FF,
NTval, Tval, NUMft, IFAIL);
where IFAIL_tot is an error indicator computed as a logical "
the values of IFAIL.

or" among all

INPUT PARAMETERS

CONLAM , CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

FF - (double complex array) row-wise matrix, of size (NXval, NOPTS),
containing the Laplace Transform samples on the Talbot contour.




NTval - (unsigned integer) number of t values where the Inverse
Laplace Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NTval".

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):

/ O no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmalOx*t)

REQUIRED FUNCTIONS

abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.
cimag , creal: complex intrinsic functions.

*****************************************************************************\

e SEQ_TalbotSUM2_DE

int SEQ_TalbotSUM2_DE (double CONLAM, double CONSIG, double CONNU,
unsigned int NOPTS, unsigned int NXval,
double complex FF[], unsigned int NTval, double TVALUE,
unsigned int jT, double NUMft[], int IFAILI[])
/*****************************************************************************

SEQ_TalbotSUM2_DE SUMMATION FUNCTION (skill level)
IMPLEMENTATION OF CLASSICAL TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION

PURPOSE

This function computes the numerical approximation to the Inverse Laplace
Transform u(x,t) evaluated at a single value of t (TVALUE) and for all the
values x. This is accomplished according to the classical Talbot method,
described in:

Talbot A. - "The accurate numerical inversion of Laplace Transforms".
J. Inst. Maths. Applics. (1979), n.23, pp.97-120.

Murli A., Rizzardi M. - "Algorithm 682: Talbot’s method for the
Laplace Inversion problem". ACM Trans. Math. Soft.,
vol. 16, no. 2, June 1990, pp.158-168.

The composite Trapezoidal rule, approximating the contour integral for
u(x,t), leads to the real part of a complex Clenshaw sum. In order to
compute it the Goertzel algorithm, in the Reinsch stable version and in
double precision real arithmetic, has been implemented.

CALLING SEQUENCE




IFAIL_tot = SEQ_TalbotSUM2_DE (CONLAM, CONSIG, CONNU, NOPTS, NXval, FF,
NTval, TVALUE, jT, NUMft, IFAIL);

where IFAIL_tot is an error indicator computed as a logical "or" among all

the values of IFAIL.

INPUT PARAMETERS

CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of addends in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

FF - (double complex array) row-wise matrix, of size (NXval, NOPTS),
containing the Laplace Transform samples on the Talbot contour.

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

TVALUE - (double) value for t where the Inverse Laplace Transform
u(x,t) is going to be approximated.

jT - (unsigned integer) index corresponding to the current value of t
(TVALUE). It locates a column in the output matrices , NUMft and
IFAIL.

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)). Only the column
related to jJjT is returned.

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing

the error flags at each u(x(h),t(k)). Only the column related to
jT is returned:
/ 0 no error
IFAIL (h,jT) = |
\ 1 an overflow occurs in u(x(h),t(jT)) so that,
to avoid Inf as result, the returned value

REQUIRED FUNCTIONS

atan, cos, exp,

cimag , creal: complex

fabs ,

intrinsic

is scaled as
u(x(h),t(jT)) =

log, pow, sin: math

functions.

intrinsic

u(x(h),t(jT))/exp(sigmaO*xt (jT))

functions.

Kok K ok K ok ok K ok K ok K ok K ok K K ok K ok K ok K ok K K oK K ok K ok ok ok K K oK K ok K ok ok ok ok K oK K ok K ok K ok K ok K K oK K ok K ok K ok K K oK K ok K ok K ok K R K Rk K\

1.4 Functions in file ./TalbotSuiteDE/FUN_DE/OMP_Talbot pack DE.c

This file contains the parallel OpenMP-based version of Talbot Suite DE.

10




e (OMP_Talbotll DE

int OMP_Talbot11_DE (double complex* (*LTsamples)(unsigned int NXval,
double Xvalll,
unsigned int NOPTS,
double complex SI[I],
double tol, int THREADS),
double sigmaO, unsigned int NXval, double *Xval,
unsigned int NTval, double *Tval, double tol,
double *NUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[], double Tmin, double Tmax, int THREADS)
/% Kk ok K ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok ok K K ok K ok ok R K ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok kR Kk ok K
OMP_Talbotl11_DE DRIVER FUNCTION (user level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION
OpenMP -based version

PURPOSE

This function provides a numerical approximation to the Inverse Laplace
Transform u(x,t) computed at each value of the Xval ,Tval arrays .

A coarse -grained parallelism is implemented; parallelization strategy is
data distribution.

CALLING SEQUENCE

IFAIL_tot = OMP_Talbotl11l_DE (LTsamples , sigmaO, NXval, Xval, NTval, Tval,
tol, NUMft, IFAIL, Nsings, SINGS, MULT,
Tmin, Tmax, THREADS);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTsamples - (double complex function pointer) user-defined function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval, double Xvall[],
unsigned int NOPTS,
double complex S[], double tol,
int THREADS)

The function returns the LT samples, computed in parallel, by
solving the problem obtained by the application of the Laplace

transform method to the original differential problem.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace
Transform function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

Xval - (double array) values for x where the Inverse Laplace Transform
u(x,t) is approximated.

It must be dimensioned at least "NXval".

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
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u(x,t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:

absolute error <= tol if lu(x,t)| <= 1
or
relative error <= tol otherwise.
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary .

It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
Method’s parameters are computed at (Tmin + Tmax)/2.

THREADS - (integer) number of parallel OpenMP threads to be used in
parallel regions.

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):

/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmaOx*t(k))

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).
OMP_TalbotSUM11 _DE: approximate the Inverse Laplace Transform.
LTsamples : (user -defined function) Laplace Transform function
according to the following prototype:
double complex* (*LTsamples) (unsigned int NXval ,6double Xvall[],
unsigned int NOPTS ,double complex SI[],
double tol,int THREADS)

*****************************************************************************\

e OMP_Talbot12 DE

int OMP_Talbot12_DE (double complex* (*LTsamples)(unsigned int NXval,
double Xvall],
unsigned int NOPTS,
double complex SI[],
double tol, int THREADS),
double sigmaO, unsigned int NXval, double *Xval,
unsigned int NTval, double *Tval, double tol,
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double *NUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[], double Tmin, double Tmax, int THREADS)
/*****************************************************************************
OMP_Talbot12_DE DRIVER FUNCTION (user level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION
OpenMP -based version

This function provides a numerical approximation to the Inverse Laplace
Transform u(x,t) computed at each value of the Xval, Tval arrays.

A fine-grained parallelism is implemented; parallelization strategy is
task distribution, i.e. the summation process has been parallelized.

CALLING SEQUENCE

IFAIL_tot = OMP_Talbot12_DE (LTsamples , sigmaO, NXval, Xval, NTval, Tval,
tol, NUMft, IFAIL, Nsings , SINGS, MULT,
Tmin, Tmax, THREADS);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTsamples - (double complex function pointer) user -defined function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval, double Xvall[l,
unsigned int NOPTS,
double complex S[], double tol,
int THREADS)
The function returmns the LT samples, computed in parallel, by
solving the problem obtained by the application of the Laplace
transform method to the original differential problem.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace
Transform function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

Xval - (double array) values for x where the Inverse Laplace Transform
u(x,t) is approximated.
It must be dimensioned at least "NXval".

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
absolute error <= tol if lu(x,t)| <= 1
or
relative error <= tol otherwise.
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
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SINGS - (double complex array) singularities of the Laplace
Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary .

It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
Method’s parameters are computed at (Tmin + Tmax)/2.

THREADS - (integer) number of parallel OpenMP threads to be used in
parallel regions.

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):

/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmaO*t(k))

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).
OMP_TalbotSUM12_DE: approximate the Inverse Laplace Transform.
LTsamples : (user -defined function) Laplace Transform function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval, double Xvalll,
unsigned int NOPTS, double complex SI[],
double tol, int THREADS)

* ok ok K ok ok ok ok ok sk k ok ok ok K ok ok ok ok ok sk sk ok ok ok ok K ok ok ok ok sk sk k ok ok ok ok ok ok ok ok sk sk k ok ok ok kK K K ok ok sk ok sk ok k kK K K ok ok ok ok ok ok ok ok ok K K ok ok \

e OMP_Talbot13_DE

int OMP_Talbot13_DE (double complex* (*LTsamples)(unsigned int NXval,
double Xvall],
unsigned int NOPTS,
double complex SI[],
double tol, int THREADS),
double sigmaO, unsigned int NXval, double *Xval,
unsigned int NTval, double *Tval, double tol,
double *NUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[], double Tmin, double Tmax,
int THREADS1, int THREADS2)
/*****************************************************************************
OMP_Talbot13_DE DRIVER FUNCTION (user level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION
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OpenMP -based version

PURPOSE

This function provides a numerical approximation to the Inverse Laplace
Transform u(x,t) computed at each value of the Xval , Tval arrays.

A hybrid parallelism is implemented by means of OpenMP nested parallelism,
that must be enabled. Outer parallelization strategy is data distribution,
inner parallelization strategy is task distribution.

CALLING SEQUENCE

IFAIL_tot = SEQ_Talbot13_DE (LTsamples , sigmaO, NXval, Xval, NTval, Tval,
tol, NUMft, IFAIL, Nsings, SINGS, MULT,
Tmin, Tmax, THREADS1, THREADS2);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTsamples - (double complex function pointer) user-defined function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval, double Xvall[],
unsigned int NOPTS,
double complex S[], double tol,
int THREADS)
The function returns the LT samples, computed in parallel, by
solving the problem obtained by the application of the Laplace
transform method to the original differential problem.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace
Transform function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

Xval - (double array) values for x where the Inverse Laplace Transform
u(x,t) is approximated.
It must be dimensioned at least "NXval".

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:

absolute error <= tol if lu(x,t)| <= 1
or
relative error <= tol otherwise .
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary.

It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
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(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
Method’s parameters are computed at (Tmin + Tmax)/2.

THREADS1 , THREADS2 - (integer) number of parallel OpenMP threads to be used in
nested parallel regions of the summation step, respectively for
outer and inner region.

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval)
the error flags at each u(x(h),t(k)):

/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmaOx*t)

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).
OMP_TalbotSUM13_DE: approximate the Inverse Laplace Transform.
LTsamples : (user -defined function) Laplace Transform function
according to the following prototype:
double complex* (*xLTsamples) (unsigned int NXval, double Xvall[l,
unsigned int NOPTS, double complex SI[],
double tol, int THREADS)
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e OMP_TalbotSUM11 DE

int OMP_TalbotSUM11_DE(double CONLAM, double CONSIG, double CONNU,
unsigned int NOPTS, unsigned int NXval,
double complex FF[], unsigned int NTval, double *Tval,
double NUMft[], int IFAIL[], int THREADS)
/*****************************************************************************
OMP_TalbotSUM11_DE SUMMATION FUNCTION (skill level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION
OpenMP -based version - coarse-grained parallelism

This function computes numerical approximations to the Inverse Laplace Transform
u(x,t) evaluated at each value of the Xval , Tval arrays. This is accomplished
according to the modified Talbot method.

A coarse -grained parallelism is implemented; parallelization strategy is
data distribution.

The composite Trapezoidal rule, approximating the contour integral for u(x,t),
leads to the real part of a complex Clenshaw sum. In order to compute it
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the Goertzel algorithm, in the Reinsch stable version and in double precision
real arithmetic, has been implemented.

CALLING SEQUENCE

IFAIL_tot = OMP_TalbotSUM11_DE (CONLAM, CONSIG, CONNU, NOPTS, NXval, FF,
NTval, Tval, NUMft, IFAIL, THREADS);

where IFAIL_tot is an error indicator computed as a logical or among all

the values of IFAIL.

INPUT PARAMETERS

CONLAM , CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in

Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

NXval - (unsigned integer) number of x values where the Inverse Laplace

Transform function is approximated.

FF - (double complex array) row-wise matrix, of size (NXval, NOPTS),
containing the Laplace Transform samples on the Talbot contour
to be used in summation to invert the Laplace Transform.

The row-wise matrix FF is stored in a mono-dimensional array F

as
FF(jX,jS) = F(j) = F( jX*xNOPTS + jS )
where
jX is the integer quotient j/NOPTS
jS is the integer remainder j%NOPTS
NTval - (unsigned integer) number of t values where the Inverse Laplace

Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NTval".

THREADS - (integer) number of parallel OpenMP threads to be used in
parallel regions.

OUTPUT PARAMETERS

NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval,NTval) containing
the error flags at each u(x(h),t(k)):

/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmaO*t)

NUMft and IFAIL are row-wise matrices MM, of size (NXval ,NTval), stored in
a mono-dimensional array M as:
M(jX,3jT) = M(j) = M(C jX*NTval + jT )
so that
jX is the integer quotient j/NTval
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jT is the integer remainder j%Ntval

REQUIRED FUNCTIONS

abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.
cimag , creal: complex intrinsic functions.

*****************************************************************************\

e (OMP_TalbotSUM12 DE

int OMP_TalbotSUM12_DE (double CONLAM, double CONSIG, double CONNU,
unsigned int NOPTS, unsigned int NXval,
double complex FF[], unsigned int NTval, double *Tval,
double NUMft[], int IFAIL([], int THREADS)
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OMP_TalbotSUM12_DE SUMMATION FUNCTION (skill level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION
OpenMP -based version - fine-grained parallelism

PURPOSE

This function computes numerical approximations to the Inverse Laplace
Transform u(x,t) evaluated at each value of the Xval , Tval arrays. This is
accomplished according to the modified Talbot method.

A fine-grained parallelism is implemented; parallelization strategy is
task distribution, i.e. the summation process has been parallelized.

The composite Trapezoidal rule, approximating the contour integral for
u(x,t), leads to the real part of a complex Clenshaw sum. In order to
compute it the Goertzel algorithm, in the Reinsch stable version and in
double precision real arithmetic, has been implemented.

CALLING SEQUENCE

IFAIL_tot = OMP_TalbotSUM12_DE (CONLAM, CONSIG, CONNU, NOPTS, NXval, FF,
NTval, Tval, NUMft, IFAIL, THREADS);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its

value may be computed by means of the COM_TalbotPAR function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

FF - (double complex array) row-wise matrix, of size (NXval, NOPTS),
containing the Laplace Transform samples on the Talbot contour
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to be used in summation to invert the Laplace Transform.
The row-wise matrix FF is stored in a mono-dimensional array F
as
FF(jX,js) = F(j) = F(C jX*NOPTS + jS )
where
jX is the integer quotient j/NOPTS
jS is the integer remainder j%NOPTS
NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.
Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NTval".
THREADS - (integer) number of parallel OpenMP threads to be used in
parallel regions.
OUTPUT PARAMETERS
NUMft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).
IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):
/ 0 no error
IFAIL (h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmalOx*t)
NUMft and IFAIL are row-wise matrices MM, of size (NXval ,NTval), stored in
a mono-dimensional array M as:
M(jX,jT) = M(j) = M( jX*xNTval + jT )
so that
jX is the integer quotient j/NTval
jT is the integer remainder j%Ntval
REQUIRED FUNCTIONS
abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.
cimag , creal: complex intrinsic functions.
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e OMP_TalbotSUM13_DE

int OMP_TalbotSUM13_DE (double CONLAM, doubl
unsigned int NOPTS,
double complex FFI[],
double NUMft[], int
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OMP_TalbotSUM13_DE SUMMATION FUNCTION

e CONSIG, double CONNU,

unsigned int NXval,

unsigned int NTval, double *Tval,
IFAIL[], int THREADS1, int THREADS2)
% %k %k %k 3k >k 3k %k Xk %k %k 3k %k > %k X % Xk % Xk % % % %k % % X % X % Xk % % %
(skill 1level)

IMPLEMENTATION OF MODIFIED TALBOT’S METHOD FOR DIFFERENTIAL EQUATIONS

DOUBLE PRECISION VERSION

OpenMP -based version

PURPOSE
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This function computes numerical approximations to the Inverse Laplace
Transform u(x,t) evaluated at each value of the Xval ,Tval arrays. This is
accomplished according to the modified Talbot method.

A hybrid parallelism is implemented by means of OpenMP nested parallelism,
that must be enabled. Outer parallelization strategy is data distribution,
inner parallelization strategy is task distribution.

The composite Trapezoidal rule, approximating the contour integral for u(x,t),
leads to the real part of a complex Clenshaw sum. In order to compute it

the Goertzel algorithm, in the Reinsch stable version and in double precision
real arithmetic, has been implemented.

CALLING SEQUENCE

IFAIL_tot = OMP_TalbotSUM13_DE (CONLAM, CONSIG, CONNU, NOPTS, NXval, FF,
NTval , Tval, NUMft, IFAIL,
THREADS1 , THREADS2);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

NXval - (unsigned integer) number of x values where the Inverse Laplace
Transform function is approximated.

FF - (double complex array) row-wise matrix, of size (NXval, NOPTS),
containing the Laplace Transform samples on the Talbot contour
to be used in summation to invert the Laplace Transform.

The row-wise matrix FF is stored in a mono-dimensional array F

as
FF(jX,jS) = F(j) = F( jX*xNOPTS + jS )
where
jX is the integer quotient j/NOPTS
jS is the integer remainder j%NOPTS
NTval - (unsigned integer) number of t values where the Inverse Laplace

Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
u(x,t) is approximated. It must be dimensioned at least "NTval".

THREADS1 , THREADS2 - (integer) number of parallel OpenMP threads to be used
in parallel regions. For nested parallelism, the former refers
to outer parallelism and the latter to inner parallelism.

OUTPUT PARAMETERS

NUMEft - (double array) row-wise matrix of size (NXval ,NTval) containing
the approximations to the values u(x(h),t(k)).

IFAIL - (integer array) row-wise matrix of size (NXval ,NTval) containing
the error flags at each u(x(h),t(k)):
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/ 0 no error
IFAIL(h,k) = |
\ 1 an overflow occurs in u(x(h),t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
u(x(h),t(k)) = u(x(h),t(k))/exp(sigmalOx*t)

NUMft and IFAIL are row-wise matrices MM, of size (NXval ,NTval), stored in
a mono-dimensional array M as:
M(jX,3jT) = M(j) = M(C jX*NTval + jT )
so that
jX is the integer quotient j/NTval
jT is the integer remainder j%Ntval

REQUIRED FUNCTIONS

abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.

cimag , creal: complex intrinsic functions.
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1.5 Functions in file ./TalbotSuiteDE/COM_DE/COM_Talbot pack DE.c
This file contains a single function, that computes the correction to the accuracy parameter N

according to [16] and returns the corrected value. It is called by the implementations of the
modified method after the method parameters have been computed.

e COM_TalbotNcorr

unsigned int COM_TalbotNcorr (double Tmin, double Tmax, double sigmaO,
double CONLAM, double CONSIG, double CONNU,
unsigned int NOPTS, double tol)
/*****************************************************************************
SHARED UTILITY PACKAGE: COM_TalbotNcorr FUNCTION

PURPOSE

Compute the correction to the accuracy parameter (NOPTS) for the
modified Talbot method.

CALLING SEQUENCE

NOPT = COM_TalbotNcorr (Tmin, Tmax, sigmaO, CONLAM, CONSIG, CONNU,
NOPTS, tol);

INPUT PARAMETERS

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
For the modified method, the parameters are computed at
(Tmin + Tmax)/2.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace

Transform function.

CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.
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NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
absolute error <= tol if Jlu(x,t)| <= 1
or
relative error <= tol otherwise .
OUTPUT PARAMETER
NOPT - (unsigned integer) the new value for the accuracy parameter,

the number of terms in the final summation.

Kok K ok K ok ok K K K oK K ok K ok ok K ok K oK K oK K ok K ok ok K oK K ok K K K K ok K oK K ok K K K K ok K oK K oK K ok K ok K ok ok ok K ok K ok oK ok ok K ok K K K K K R K Rk

1.6 Functions in file ./TalbotSuiteDE/FUN/SEQ_Talbot pack.c

This file contains the sequential version of Talbot Suite (non enclosed there).

e SEQ Talbotl

int SEQ_Talbotl (double complex (*LTpt)(double complex s),
double sigmaO, unsigned int NTval, double *Tval, double tol,
double *xNUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[], double Tmin, double Tmax)
/*****************************************************************************
SEQUENTIAL PACKAGE: SEQ_Talbotl DRIVER FUNCTION (user level)

DOUBLE PRECISION VERSION

This function provides a numerical approximation to the Inverse Laplace
Transform f(t) computed at each value of the Tval array .
This is accomplished according to the modified Talbot method, described in:

Rizzardi M. - "A modification of Talbot’s method for the simultaneous
approximation of several values of the Inverse Laplace
Transform". ACM Trans. Math. Soft., vol. 21, no. 4,
Dec. 1995, pp. 347-371.

Algorithm’s steps are:

1) compute Talbot’s parameters at (Tmin + Tmax)/2 by means of
COM_TalbotPAR function and apply the correction by means of
COM_TalbotNcorr function;

2) for all t in Tval do
approximate the Inverse Laplace Transform f(t)
by means of SEQ_TalbotSUM1 function.

COM_TalbotPAR () and SEQ_TalbotSUM1 () are skill-level functions
implementing the modified Talbot method.

CALLING SEQUENCE

IFAIL_tot = SEQ_Talbotl (LTpt, sigmaO, NTval, Tval, tol, NUMft, IFAIL,
Nsings , SINGS, MULT, Tmin, Tmax);
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where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTpt - (double complex function pointer) pointer to the Laplace
Transform function to be inverted. It is a user defined function.

sigma0 - (double) abscissa of (absolute) convergence of the Laplace

Transform function.

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
f(t) is approximated. Its components must be positive numbers.
It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
absolute error <= tol if l£(t)| <= 1
or
relative error <= tol otherwise .
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary. It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

Tmin , Tmax - (double) endpoints of the interval enclosing the t values.
Method’s parameters are computed at (Tmin + Tmax)/2.

OUTPUT PARAMETERS

NUMft - (double array) approximations to the values f(t) for t in Tval.
It must be dimensioned at least "NTval".

IFAIL - (integer array) error flags at each t in Tval:

/ 0 no error
IFAIL[k] = |
\ 1 an overflow occurs in f(t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
NUMft = f(t)/exp(sigmal*t)

It must be dimensioned at least "NTval".

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).
SEQ_TalbotSUM1: approximate the Inverse Laplace Transform.
LTpt : (user -defined function) Laplace Transform function
according to the following prototype:
double complex LTpt (double complex s)

Kok K ok K ok ok K ok K ok K ok K ok ok K oK K ok K ok K K K oK K ok K ok ok K K K oK K ok K ok ok ok K oK K ok K ok K ok K ok K oK K ok K ok K ok K K ok K ok K ok Kk ok R K Kk K\
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e SEQ_Talbot2

int SEQ_Talbot2 (double complex (*LTpt)(double complex s),
double sigmaO, unsigned int NTval, double *Tval, double tol,
double *NUMft, int *IFAIL,
unsigned int Nsings, double complex SINGSI[],
unsigned int MULT[])
/% % %k %k ok ok ok k k kK K K K ok ok ok ok k K K K K K K K ok ok ok k K K K K K K K ok ok ok ok K K K K K K K K ok K ok K k K Kk K K K K K K k K k K K K K K K K K Kk K K *
SEQUENTIAL PACKAGE: SEQ_Talbot2 DRIVER FUNCTION (user level)

DOUBLE PRECISION VERSION

PURPOSE

This function provides numerical approximations to the Inverse Laplace

Transform f(t) computed at each value of the Tval array .

This is accomplished according to the classical Talbot method, described in:
Talbot A. - "The accurate numerical inversion of Laplace Transforms".

J. Inst. Maths. Applics. (1979), n.23, pp.97-120.

Murli A., Rizzardi M. - "Algorithm 682: Talbot’s method for the
Laplace inversion problem".
ACM Trans. Math. Soft., vol. 16,

no. 2, June 1990, pp. 158-168.
Algorithm’s sketch:
for each t in Tval do

1) compute Talbot’s parameters, at t, by means of
COM_TalbotPAR function;

2) approximate the Inverse Laplace Transform f(t)
by means of SEQ_TalbotSUM2 function.

COM_TalbotPAR () and SEQ_TalbotSUM2 () are skill-level functions:
the former is from Talbot Suite (file code/SRC/COM/COM_Talbot_pack.c).

CALLING SEQUENCE

IFAIL_tot = SEQ_Talbot2 (LTpt, sigmaO, NTval, Tval, tol, NUMft, IFAIL,
Nsings , SINGS, MULT);

where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.

INPUT PARAMETERS

LTpt - (double complex function pointer) pointer to the Laplace
Transform function to be inverted. It is a user defined function.
sigma0 - (double) abscissa of (absolute) convergence of the Laplace

Transform function.

NTval - (unsigned integer) number of t values where the Inverse Laplace
Transform function is approximated.

Tval - (double array) values for t where the Inverse Laplace Transform
f(t) is approximated. Its components must be positive numbers.

It must be dimensioned at least "NTval".

tol - (double) tolerance to the error in the result,
in terms of absolute or relative error as follows:
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absolute error <= tol if [£(t)] <=1

or
relative error <= tol otherwise.
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required; their complex conjugates are
unnecessary. It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those singularities
(in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

OUTPUT PARAMETERS

NUMft - (double array) approximations to the values f(t) for t in Tval.
It must be dimensioned at least "NTval".

IFAIL - (integer array) error flags at each t in Tval:

/ 0 no error
IFAIL[k] = |
\ 1 an overflow occurs in f(t(k)) so that,
to avoid Inf as result, the returned value
is scaled as
NUMft = f(t)/exp(sigmalOxt)
It must be dimensioned at least "NTval".

REQUIRED FUNCTIONS

COM_TalbotPAR : compute the Talbot parameters (in COM_Talbot_pack.c).
SEQ_TalbotSUM2: approximate the Inverse Laplace Transform.
LTpt : (user-defined function) Laplace Transform function
according to the following prototype:
double complex LTpt (double complex s)

*****************************************************************************\

e SEQ_TalbotSUM1

int SEQ_TalbotSUM1 (double complex (*LTpt)(double complex s),
double CONLAM, double CONSIG, double CONNU, unsigned int NOPTS,
unsigned int NTval, double *Tval, double *NUMft, int *IFAIL)
/*****************************************************************************

SEQUENTIAL PACKAGE: SEQ_TalbotSUM1 SUMMATION FUNCTION (skill level)

DOUBLE PRECISION VERSION

PURPOSE

This function computes numerical approximations to the Inverse Laplace
Transform f(t) evaluated at each value of the Tval array .
This is accomplished according to the modified Talbot method, described in:

Rizzardi M. - "A modification of Talbot’s method for the simultaneous
approximation of several values of the Inverse Laplace
Transform". ACM Trans. Math. Soft., vol. 21, no. 4,
December 1995, pp. 347-371.

The composite Trapezoidal rule, approximating the contour integral for
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f(t), leads to the real part of a complex Clenshaw sum. In order to
compute it the Goertzel algorithm, in the Reinsch stable version and in
double precision real arithmetic, has been implemented.
CALLING SEQUENCE
IFAIL_tot = SEQ_TalbotSUM1 (LTpt, CONLAM, CONSIG, CONNU, NOPTS,
NTval, Tval, NUMft, IFAIL);
where IFAIL_tot is an error indicator computed as a logical "or" among all
the values of IFAIL.
INPUT PARAMETERS
LTpt - (double complex function pointer) pointer to the Laplace
Transform function to be inverted.
It is a user defined function.
CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.
NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.
NTval - (unsigned integer) number of t values where the Inverse
Laplace Transform function is approximated.
Tval - (double array) values for t where the Inverse Laplace Transform
f(t) is approximated. It must be dimensioned at least "NTval".
OUTPUT PARAMETERS
NUMft - (double array) approximations to the values f(t) for t in Tval.
It must be dimensioned at least "NTval".
IFAIL - (integer array) error flags at each t in Tval:
/ 0 no error
IFAIL[k] = |
\ 1 an overflow occurs in f(t) so that, to
avoid Inf as result, the returned value

is scaled as
NUMft [k] = f(t)/exp(sigmal*t)
It must be dimensioned at least "NTval".
REQUIRED FUNCTIONS
LTpt (user defined function) Laplace Transform function
according to the following prototype:
double complex LTpt (double complex s)
abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.
cimag , creal: complex intrinsic functions.

*****************************************************************************\

e SEQ TalbotSUM2
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int SEQ_TalbotSUM2 (double complex (*LTpt)(double complex s),
double CONLAM, double CONSIG, double CONNU, unsigned int NOPTS,
double TVALUE, double *NUMft)
/*****************************************************************************
SEQUENTIAL PACKAGE: SEQ_TalbotSUM2 SUMMATION FUNCTION (skill level)

DOUBLE PRECISION VERSION

PURPOSE

This function computes the numerical approximation to the Inverse Laplace
Transform f(t) evaluated at a single value of t (TVALUE).
This is accomplished according to the classical Talbot method, described in:

Talbot A. - "The accurate numerical inversion of Laplace Transforms".
J. Inst. Maths. Applics. (1979), n.23, pp.97-120.

Murli A., Rizzardi M. - "Algorithm 682: Talbot’s method for the
Laplace Inversion problem". ACM Trans. Math. Soft.,
vol. 16, no. 2, June 1990, pp.158-168.

The composite Trapezoidal rule, approximating the contour integral for
f(t), leads to the real part of a complex Clenshaw sum. In order to
compute it the Goertzel algorithm, in the Reinsch stable version and in
double precision real arithmetic, has been implemented.

CALLING SEQUENCE

IFAIL = SEQ_TalbotSUM2 (LTpt, CONLAM, CONSIG, CONNU, NOPTS, TVALUE,
&ENUMEt);

INPUT PARAMETERS

LTpt - (double complex function pointer) pointer to the Laplace
Transform function to be inverted.
It is a user defined function.

CONLAM, CONSIG, CONNU - (double) geometrical parameters for the Talbot
integration contour (respectively lambda, sigma and nu in
Talbot’s original paper). Their values may be computed by
means of the COM_TalbotPAR function.

NOPTS - (unsigned integer) number of points required by the quadrature
rule, i.e. the number of terms in the Clenshaw sum. Its
value may be computed by means of the COM_TalbotPAR function.

NTval - (unsigned integer) number of t values where the Inverse
Laplace Transform function is approximated.

TVALUE - (double) value for t where the Inverse Laplace Transform
f(t) is approximated.

OUTPUT PARAMETERS

NUMft - (pointer to double) approximation to the Inverse Laplace
Transform f(t) computed at t=TVALUE.

REQUIRED FUNCTIONS

LTpt : (user defined function) Laplace Transform function
according to the following prototype:
double complex LTpt (double complex s)
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abs, atan, cos, exp, fabs, log, pow, sin: math intrinsic functions.
cimag , creal: complex intrinsic functions.

*****************************************************************************\

1.7 Functions in file ./TalbotSuiteDE/COM/COM_Talbot pack.c

This file contains the shared functions from Talbot Suite [12].

e COM_TalbotPAR

void COM_TalbotPAR (double sigmaO, double TVALUE, double tol, unsigned int Nsings,
double complex SINGS[], unsigned int MULTI[],
double *CONLAM, double *CONSIG, double *xCONNU,
unsigned int *NOPTS)
/*****************************************************************************
SHARED UTILITY PACKAGE: COM_TalbotPAR FUNCTION (skill level)

DOUBLE PRECISION VERSION

This function provides values of the contour parameters (lambda, sigma, nu
in Talbot’s original paper) and of the accuracy parameter (N) according to
Talbot’s method for the numerical inversion of Laplace Transforms.

These values can be used in any summation module of Talbot Suite in order to
estimate, by a contour integration, the Inverse Laplace Transform computed
at TVALUE.

CALLING SEQUENCE

COM_TalbotPAR (sigmaO, TVALUE, tol, Nsings, SINGS, MULT,
&CONLAM , &CONSIG, &CONNU, &NOPTS);

INPUT PARAMETERS

sigma0 - (double) abscissa of (absolute) convergence of the
Laplace Transform function to be inverted.

TVALUE - (double) value for t where the Inverse Laplace Transform
f(t) is approximated. it must be a positive number.

tol - (double) tolerance to the error in the result, in terms
of absolute or relative error as follows:
absolute error <= tol if [£(t) ] <=1
or
relative error <= tol otherwise .
Nsings - (unsigned integer) size of the arrays SINGS and MULT.
SINGS - (double complex array) singularities of the Laplace

Transform function. Only singularities with non-negative
imaginary parts are required.
It must be dimensioned at least "Nsings".

MULT - (unsigned integer array) multiplicities of those
singularities (in SINGS) which are poles, zero otherwise.
It must be dimensioned as SINGS.

OUTPUT PARAMETERS
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CONLAM, CONSIG, CONNU - (pointer to double) geometrical parameters for the
Talbot integration contour (respectively lambda, sigma and nu
in Talbot’s original paper).

NOPTS - (pointer to unsigned integer) number of points required by
the quadrature rule, i.e. the number of addends in the
Clenshaw sum.

REQUIRED FUNCTIONS

COM_TalbotINV : auxiliary function to approximate the "primncipal
inverse" applying a suitable real Newton process.

atan, atan2, ceil, loglO, pow, tan: math intrinsic functions.

cimag , creal: complex intrinsic functions.

min, max : macros (defined in COM_Talbot_pack.h).

Kok K ok K ok ok K ok K ok K ok K ok ok oK K oK K ok K ok K K oK K ok K ok ok ok K K oK K oK K ok oK ok ok K oK K oK K ok K ok K ok K ok K oK K ok oK K ok K K K K kK Kk ok ok Rk Rk K\

e COM_TalbotINV

double COM_TalbotINV (double P, double Q, double TETA, double pi)
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SHARED UTILITY PACKAGE: COM_TalbotINV FUNCTION (intermnal utility)

Given a complex number s = P+i*Q, the equation

s =z / (1 - cexp(-2z))
is solved with respect to z applying Newton’s method for real roots.
The returned value is the opposite of the real part of =z.

CALLING SEQUENCE

U = COM_TalbotINV (P, Q, TETA, pi);

where U is an approximation to -real(z), where z is the

principal inverse of s.

INPUT PARAMETERS

P, Q, TETA - (float) real part, imaginary part and argument of s
respectively. It is supposed that
P <= 0.0
Q >= 0.0

pi/2 <= TETA <= pi

pi - (double) the value of pi, already computed as 4*atan (1)
in the calling function.

OUTPUT PARAMETERS

*****************************************************************************\
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Chapter 2

USAGE EXAMPLES FOR THE
SEQUENTIAL FUNCTIONS

2.1 Introduction

This chapter deals with several examples about the usage of Talbot Suite DE to solve differential
problems; all of them refer to the sequential implementations while those in the next chapter refer
to the parallel versions. In this chapter, usually, tests on accuracy and efficiency are provided for
both modified Talbot’s method and classical Talbot’s method. The examples about accuracy call
the user-level functions, while those about efficiency call the skill-level functions.

Fig. 2.1 summarizes all the provided examples.

1SEQ
2PAR
1SEQ | LTS1_fun (times), LTS3_mex(accuracy) |
2PAR | LTS1_fun (times), LTS3_mex(accuracy) |

1SEQ || LTS2_ode, LTS3_mex

2PAR || LTS1_fun,LTS2_ode, LTS3_mex |
1SEQ | [ LTS2_ode, LTS3_mex |

2PAR || LTS1_fun, LTS2_ode, LTS3_mex |
13EQ | [ LTS2_ode, LTS3_mex |

2PAR | | LTS1_fun, LTS2_ode, LTS3_mex |
1SEQ | [ LTS2_ode, LTS3_mex |

2PAR | | LTS1_fun, LTS2_ode, LTS3_mex |
1SEQ | [ LTS2_twpbvp, LTS3_mex |

2PAR || LTS1_fun, LTS2_twpbvp, LTS3_mex |
1SEQ | [ LTS2_ode, LTS3_mex |

2PAR | [ LTS1_fun, LTS2_ode, LTS3 _mex |
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by a function

exla_IVP

Transporteq,
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Examples
A

ex3b_BVP

exda_IVP

Wave eq

A
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1SEQ | LTS2_twpbvp, LTS3_mex |
2PAR || LTS1_fun, LTS2_twpbvp, LTS3_mex |

LT samples by solving PDE problems
Heat eq.

exdb_BVP

1SEQ | LTS3_mex_1luserLey, LTS3_mex_2skillLev |

ex5_PDE -
= 2PAR | LTS1_fun, LTS3 _mex_tuserLey, ... 2skillLev |

f

Figure 2.1: Sample software organization.

In Fig. 2.1 names such as "ex3b_BVP" also denote the folder where the sample code can be found.
The software suite is written in C, however the examples cover different programming languages:
some are entirely in C, others in mixed C/FORTRAN or C/MATLAB (by means of mex-files).
Usually the driver program of each example is written in C; in the mixed C/MATLAB examples
sometimes the driver program is in C and other times it is written in MATLAB.

All the provided examples run under Linux and Windows Operating Systems in a terminal window
for C and mixed C/FORTRAN code, and in a MATLAB Command Window for mixed C/MAT-
LAB code. The GNU gcc compiler [5], vers. 5.1.0 or 5.3.0, has been used for C code, and the GNU
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gfortran compiler front-end for gcc has been used for FORTRAN code.

In order to link together mixed language programs, the only requirement is related to the
runtime library precision: this means, for example, that if we are using, under Windows, the GNU
gce compiler from a 32 bit MinGW library [19] then we need a 32 bit MATLAB [18] installation.
Under Windows, we make use of MinGW-w64 [22] for the GNU gcc compiler[5] and gnumex [21] to
redirect MATLAB to compile mex files with this compiler, so that a MATLAB 64 bit installation
can be used. Moreover gcc vers. 5.1.0 provides a recent major version of OpenMP (vers. 4.0) [20]
for the shared-memory parallel functions’.

Under Linux, during the mex cross-compilation the following warning is issued:

Warning: You are using gcc version ’5.3.0’. The version of gcc is not supported.
The version currently supported with MEX is ’4.7.x’°. For a list of currently
supported compilers see:

http://www.mathworks .com/support/compilers/current_release.

However, in all our tests, we found no problem directly related to this warning.
MinGW-w64 comes with gfortran, a GNU FORTRAN 95/2003/2008 compiler front-end for gcc.
This compiler has been used in mixed C/FORTRAN examples.
Aimed at non-expert users, these examples also illustrate how to solve some issues related to cross-
compiling C and FORTRAN, such as FORTRAN function naming, parameter passing, common
areas managing, array storage order and array indexing differences. This last aspect also concerns
mixed C/MATLAB code.

Recommendations about the usage of the parallel code under Windows and Linux are given in
the next chapter.

2.2 How to run the examples

To build an executable from the sample code, the following files are provided:
e Makefiles and shell scripts for Linux;

e batch files for Windows (assuming that the operating system be aware of the MinGW binary
folder?);

e MATLAB scripts for mex-file compilation®.

In order to build and run an executable, every example contains a file to be launched, named as
runme.xxx where .xxx stays for .bat for Windows, .sh for Linux and .m for MATLAB. These
files may call other files to build an executable or to launch the execution. Under Linux, remember
to change the permission of runme.sh to "executable", before to run it.

Two ways are possible for the usage of Talbot Suite DE’s functions:

User Level: the user calls a single function to solve the entire problem.

Skill Level: the user calls the functions separately for each step of the algorithm. In such a way
some parameter may be changed (for example, enlarge NOPTS).

In the sequential examples the skill-level functions are used to evaluate the execution times of
each step in the algorithm, and the user-level functions to evaluate the accuracy in the numerical
solution.

The user has to provide a function returning the matrix of LT samples U(x;, si) according to
the following prototype:

! During the production of this user guide, the MinGW project has released gcc vers. 6.1.0, with OpenMP 4.5.

2 If we are using MinGW-w64, it is sufficient to launch the bat file named as mingw-w64.bat and located in the
MinGW-w64 installation folder.

3 Under Windows, the same assumption about the MinGW binary folder is required.
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double complex *LTsamples (unsigned int NXval, double Xvall[],
unsigned int NOPTS, double complex S[], double tol);

where input parameters are:

NXval : Number of components in Xval and number of rows in the output matrix.

Xval: Array, of size NXval, for {z;};.

NOPTS : Discretization parameter. It denotes the number of addends in the SUM step,

the number of components of S and the number of columns in the output matrix.

S: Array, of size NOPTS, for {s;}x (the points on Talbot’s contour).

tol: Value for the tolerance.
and the output parameter is the one-dimensional array of LT samples U(z;, sx), containing a
(row-wise) matrix of size (NXval x NOPTS).

2.3 Example 0: Laplace Transform known as a function

In this section we solve two differential problems by means of the Laplace Transform method: one
is an ODE problem, while the other is a PDE problem. They lead to a closed-form expression for
the Laplace Transform so that both Talbot Suite and Talbot Suite DE can be used to invert
the Laplace Transform (LT) function.

Example 0a (ODE problem)

The sample code related to this example is located in the sub-folder exOa_0DE/1SEQ of the main
folder.
Let us consider the following ODE problem:

(4) Z -
{f +18f" +81f =0, t>0 2.1)

f0F) =0, f/(0F) =0, f/(07)=1, f"(0%)=0

The analytical solution is f(t) = tsin(3t)/6. Applying the Laplace Transform to the left side of
the ODE in (2.1) and taking into account the properties on derivatives of a Laplace Transform
and the initial conditions, we get

S

F(s)[s"+18s* 4+ 81] —s =0 < F(S):W

(2.2)

The inversion of F(s) gives the solution of (2.1). To invert F(s), given by (2.2), we can indiffer-
ently choose between Talbot Suite and Talbot Suite DE since we have a closed form for the
LT function. Talbot Suite requires, among input parameters, a user-defined function (LTfun)
returning, each time, a single value of F'(s), given on input s; Talbot Suite DE requires a user-
defined function returning the whole array of LT samples {F(si)}k=1,..n, given on input the
array of {sy},. For this problem the only differences, between the two user-defined functions, are:

e Omne returns a single value at a time, whereas the other returns all the LT values together.

e Since Talbot Suite DE is designed for PDE problems, the LT function is expected as a
function of two variables U(x, s), whereas this problem has a LT function as F(s). Then we
must add an intermediate LT function of two variables according to the following prototype:

#include <complex.h>
double complex LTfun(double complex s); /% LT function F(s) x*/
/* dummy LT function U(x,s) for this example %/

double complex LTfun2(double x, double complex s)
{ return (*xLTfun)(s); }
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Four data sets are provided for the inversion of F'(s) in (2.2):

test 1: 20 ¢ € [1000, 3000]
test 2: 120 ¢ € [1000, 3000]
test 3: 120t € [ 100, 500]
test 4: 20t e[ 100, 500]

Each test computes accuracy and total elapsed time of the sequential functions in Talbot Suite
and Talbot Suite DE. For this example the file SEQ_Talbot_pack.c has been copied here, from
the SRC folder, because in the SEQ_Talbot1 function the call to COM_TalbotNcorr has been com-

mented so that the correction to NOPTS is not applied.

The following output refers to the test 1; it was obtained by launching runme.bat under Windows.

20 t in [1000,

30001,

* % %

1000.
1105.
1210.
1315.
1421.
1526.
1631.
1736.
1842.
1947.
2052.
2157.
2263.
.42
2473.
2578.
2684.
.47

2368

2789

2894.
3000.

* % %

1000.
1105.
1210.
1315.
1421.
1526.
1631.
1736.
1842.
1947.
2052.
2157.
2263.
.42
2473.
2578.

2368

RESULTS OF SEQUENTIAL TALBOT SUITE function:
user defined function to compute the LT samples:

NOPTS
mean elapsed time =

00
26
53
79
05
32
58
84
11
37
63
89
16

68
95
21

74
00

RESULTS OF SEQUENTIAL
user defined function

F

+3.
.818113e+002
.057543e+001
+2.
-3.
-2.
+3.
.839931e+002
-7.
-3.
+1.
+3.
.781687e+002
-3.
.364470e+002
.368535e+002
-2.
-3.
+3.
.077233e+002

-1
-2

+2

-1

+2
+3

+3

181999

EXACT
653166e+001

190979e+002
946510e+000
536502e+002
673056e+001

723929e+001
087199e+002
247101e+002
265257e+002

362395e+002

982056e+002

275499e+002
619601e+002

mean elapsed time =

00
26
53
79
05
32
58
84
11
37
63
89
16

68
95

F

+3.
.818113e+002
-2.
+2.
-3.
-2.
+3.
.839931e+002
-7.
-3.
.247101e+002
+3.
.781687e+002
-3.
.364470e+002
.368535e+002

-1

+2

+1

-1

+2
+3

EXACT
653166e+001

057543e+001
190979e+002
946510e+000
536502e+002
673056e+001

723929e+001
087199e+002

265257e+002

362395e+002

6.800503e-001

F
+3

-2

+2

+3

+2

-2

+3

APPROX

.653166e+001
-1.
.057543e+001
+2.
-3.
-2.
+3.
.839931e+002
-7.
-3.
+1.
.265257e+002
-1.
-3.
.364470e+002
+3.
.982056e+002
-3.
.619601e+002
+3.

818113e+002
190979e+002
946510e+000
536502e+002
673056e+001
723929e+001
087199e+002
247101e+002

781687e+002
362395e+002

368535e+002

275499e+002

077233e+002

8.649504e-001

F
+3

-2

+2

+1

-1

+2

APPROX

.653166e+001
-1.
-2.
+2.
-3.
.536502e+002
+3.
.839931e+002
-7.
-3.
.247101e+002
+3.
.781687e+002
-3.
.364470e+002
+3.

818113e+002
057543e+001
190979e+002
946510e+000
673056e+001

723929e+001
087199e+002

265257e+002
362395e+002

368535e+002
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TALBOT SUITE function:
to compute the LT samples:

SEQ_Talbot1l () * 0k x
LTfun ()
ABS ERR REL ERR TYPE
5.822187e-011 1.593737e-012 R
2.813749e-012 1.547621e-014 R
1.346798e-010 6.545662e-012 R
1.392664e-012 6.356354e-015 R
8.600898e-011 2.179368e-011 R
1.554668e-011 6.129179e-014 R
1.104183e-010 3.006171e-012 R
2.501110e-011 8.806941e-014 R
1.623732e-010 2.102210e-012 R
4.973799e-011 1.611104e-013 R
1.045350e-010 8.382243e-013 R
1.218723e-010 3.732395e-013 R
1.446097e-010 8.116446e-013 R
2.895035e-010 8.610040e-013 R
6.295409e-011 2.662503e-013 R
2.130491e-010 6.324682e-013 R
5.162519e-010 1.731194e-012 R
6.835421e-010 2.086834e-012 R
2.921752e-010 8.072028e-013 R
2.455295e-009 7.978903e-012 R
SEQ_Talbot2 () * %k
LTfun ()
ABS ERR REL ERR TYPE
5.221779e-011 1.429384e-012 R
2.123102e-011 1.167750e-013 R
7.800338e-011 3.791093e-012 R
2.592060e-011 1.183060e-013 R
5.746248e-011 1.456033e-011 R
2.904699e-011 1.145159e-013 R
5.831424e-011 1.587622e-012 R
3.728928e-011 1.313035e-013 R
2.961400e-010 3.834059e-012 R
6.758683e-011 2.189261e-013 R
7.003109e-011 5.615510e-013 R
4.240519e-011 1.298679e-013 R
1.915055e-010 1.074855e-012 R
1.954277e-010 5.812157e-013 R
1.354010e-010 5.726485e-013 R
5.263701e-011 1.562608e-013 R
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1000.
1105.
1210.
1315.
1421.
1526.
1631.
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1842.
1947.
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2157.
2263.
.42
2473.
2578.
2684 .
.47
2894 .
3000.

2368

2789

21

74
00

RESULTS OF SEQUENTIAL TALBOT SUITE DE function:
user defined function to compute the LT samples:

-2.
-3.
+3.
+3.

NOPTS
mean elapsed time

00
26
53
79
05
32
58
84
11
37
63
89
16

68
95
21

74
00

RESULTS OF SEQUENTIAL
user defined function

F

+3.
.818113e+002
-2.
+2.
-3.
-2.
+3.
.839931e+002
-7.
-3.
+1.
+3.
.781687e+002
-3.
.364470e+002
.368535e+002
-2.
-3.
+3.
.077233e+002

-1

+2

-1

+2
+3

+3

982056e+002
275499e+002
619601e+002
077233e+002

182814

EXACT
653166e+001

057543e+001
190979e+002
946510e+000
536502e+002
673056e+001

723929e+001
087199e+002
247101e+002
265257e+002

362395e+002

982056e+002

275499e+002
619601e+002

mean elapsed time

00
26
53
79
05
32
58
84
11
37
63
89
16

68
95
21

74
00

F

+3.
.818113e+002
.0567543e+001
+2.
-3.
-2.
+3.
.839931e+002
-7.
-3.
+1.
+3.
.781687e+002
-3.
.364470e+002
.368535e+002
-2.
-3.
+3.
.077233e+002

-1
-2

+2

-1

+2
+3

+3

EXACT
653166e+001

190979e+002
946510e+000
536502e+002
673056e+001

723929e+001
087199e+002
247101e+002
265257e+002

362395e+002

982056e+002

275499e+002
619601e+002

-2.
-3.
+3.
+3.

F

+3.
.818113e+002
-2.
+2.
-3.
-2.
.673056e+001
+2.
.723929e+001
-3.
.247101e+002
+3.
-1.
-3.
+2.
.368535e+002
-2.
-3.

-1

+3

-7

+1

+3

+3

TALBOT SUITE DE function:
to compute the LT samples:

982056e+002
275499e+002
619601e+002
077233e+002

5.029673e-001

APPROX
653166e+001

057543e+001
190979e+002
946510e+000
536502e+002

839931e+002
087199e+002
265257e+002
781687e+002
362395e+002
364470e+002

982056e+002
275499e+002

.619601e+002
+3.

077233e+002

.420010e+000

F
+3

-2

+3
+2

+3

+3
-2

+3

APPROX

.653166e+001
-1.
.057543e+001
+2.
-3.
-2.
.673056e+001
.839931e+002
-7.
-3.
+1.
.265257e+002
-1.
-3.
+2.
.368535e+002
.982056e+002
-3.
.619601e+002
+3.

818113e+002

190979e+002
946510e+000
536502e+002

723929e+001
087199e+002
247101e+002

781687e+002

362395e+002

364470e+002

275499e+002

077233e+002

W NN

.273737e-011
.269829e-011
.245315e-011
.242349e-010

ABS ERR

P R BN ORE R WERNONNNDR PR WO

.610090e-011
.087486e-012
.135270e-011
.335820e-012
.491149e-010
.117417e-011
.177192e-011
.725021e-011
.252688e-011
.484057e-011
.048193e-010
.490186e-011
.099636e-010
.874696e-010
.568950e-010
.985612e-011
.633556e-010
.490630e-010
.270450e-010
.256524e-009

ABS ERR

N 0WOWONRFRFRD®PFREFENNOOOONDNOWRO®D

.745182e-011
.881517e-011
.654411e-011
.359002e-011
.313083e-011
.810730e-012
.689227e-011
.756906e-011
.924310e-010
.330136e-011
.360547e-010
.126832e-011
.160654e-010
.885496e-010
.849685e-010
.291927e-010
.282086e-011
.816858e-011
.191137e-011
.925731e-010

[ RN

.624727e-014
.914160e-013
.203212e-014
.0563657e-012

SEQ_Talbot1_DE ()
SEQ_LTsamples_fun ()

REL ERR

B WHE 0FR,NOOEOF 000 NEFEO0WORN D

.407382e-013
.798223e-014
.523793e-012
.096911e-015
.778400e-011
.347786e-014
.954011e-012
.720144e-013
.197925e-012
.046315e-014
.405033e-013
.068886e-013
.171881e-013
.575478e-013
.355264e-012
.776918e-013
.831341e-013
.370976e-012
.509919e-013
.083291e-012

SEQ_Talbot2_DE ()
SEQ_LTsamples_fun ()

REL ERR

O NNNOONOONERE PP WONWRERP B P

.846393e-012
.034874e-013
.206187e-012
.076688e-013
.853051e-011
.473575e-014
.365667e-012
.707651e-014
.786039e-012
.308553e-014
.090968e-012
.263861e-013
.335233e-012
.607599e-013
.822831e-013
.803926e-013
.777307e-013
.997057e-013
.262995e-013
.507666e-013

=== l="

TYPE

W DWW H DD DHDIDDDDDDDTD

TYPE

j=-J= = =B "2R~-20-"IN- - - - B~ - - - - B~ - A= - = =V B~ R =A==

The accuracy is almost the same between SEQ_Talbot1l
applies the correction to NOPTS.

and SEQ_Talbot1_

DE also if the latter

The following table summarizes the elapsed times of Talbot Suite and Talbot Suite DE, ex-
tracted from the previous output for Windows and from the execution under Linux.
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SEQ_TALBOT1 | SEQ_TALBOT2 | SEQ_TALBOT1 DE | SEQ_TALBOT2_DE
Windows | 6.800503e-01 | 8.649504e-01 | 5.029673e-01 1.420010e+00
Linux | 4.350776e-01 | 5.916117e-01 | 3.117655e-01 7.816856e-01

Table 2.1: Elapsed total times.

SEQ_TALBOT1_DE is the most efficient function also if, with respect to SEQ_TALBOT1, it calls the
function for the correction to NOPTS and its final summation contains more terms (182814) than
SEQ_TALBOT1 (181999).

Example 0b (PDE problem)

The sample code is located in the sub-folders exOb_PDE/1SEQ/LTS1_mex_acc (accuracy test) and
exOb_PDE/1SEQ/LTS1_fun_time (time test) of the main folder.
This example arises in modelling combustion problems where the boundary moves due to the

burning of the fuel [4]'. We wish to solve the following problem based on the heat equation
ou 0%
a:a @, /Bt<l'<OO, 0<t
u(z,07) =0, 0<z<oo
u(xvt”z:ﬁt = f(t), t>0
lim |u(z,t)| < oo, t>0
T—r 00

Let us introduce the new coordinate n = x — St, then the problem can be reformulated, with

u(n(t),t), as
ou ou 5 0%u

u(n,07) =0, 0<n<oo (2.3)
ul(0,1) = £(1), £>0

lim [u(n, t)| < oo, t>0

77*)00

Applying the Laplace Transform method, (2.3) becomes the following ODE problem
B
a2
U(0,s) = F(s) (2.4)
lim |U(n, s)| < oo

n—oo

U+ U’—G%U(n,s):o, 0<n<oo

The general solution of the previous second order ODE is given by C} MM 4+ Cy e*2” where A\ and
Ao are the roots of A2 + 3/a%)\ — s/a? = 0. However, the exponential with exponent positive must
be discarded, due to the second boundary condition, so that the solution subject to the condition

Bn n 32
vl = E) e (‘gaa “a\Ve T 4>

[e_fag orfe < no 5\5) 1 e+Bn/(20%) g (7’ + M)]
2a\/£ 2a 2&\/1? 2a

Let us put

¢(777 t) =

4 Example 2.2.6 on page 88.
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where erfc() is the complementary error function, then, unlike what appears in the cited book,
Formula (51) in [1] gives us the Laplace Transform of ¢ as

2
Br.) = 2 [o(n.1)] = - -exp (—”W)

Then U(n, s) is rewritten as
Bn

U(n,s) = e 27 s F(s) - ®(1, 5)

and, by adding and subtracting f(07) to sF(s), the derivative property of Laplace Transforms
produces

Un,s) = e 2 {L[f/(1)]- D(n,s) + f(OF)B(n,s)}

By the convolution theorem of Laplace Transforms applied to the product .Z [f’(t)] - ®(n, s), that
gives f'(t) * ¢(n,t) where the symbol * denotes the convolution with respect to ¢, the following
formula gives the solution u(n,t) of (2.3)

uln,t) = e mE{f(t)xd(n,t) + F0F)d(n,1)} =
_ { [ re-nomnar + f<o+>¢<n,t>}

In particular, with 8 =2, a = 1 and F(s) = s/(s2+9)?, so that f(t) = tsin(3t)/6, U(n, s) becomes

S
U(n,s) = CETE exp [—n (1+ Vs +1)] (2.5)
with double poles at s = +3i¢ and a branch point at s = —1. In this case the convolution theorem
gives the solution
t
un.t) = [ 7)ot dr (26)
0

where

o 7) = % {e_" erfe (2:75 - T) + et erfe (2\"5 + ﬁ)]

In order to compute u(n,t), instead of the convolution theorem, we are again able to use both
Talbot Suite and Talbot Suite DE for the numerical inversion of the Laplace Transform in
(2.5).

The folder 1SEQ contains two sub-folders with the sample code for accuracy (LTS3_mex_acc) and
for elapsed times (LTS1_fun_time). The example on elapsed times is entirely in C, while that
on accuracy is written in mixed C/MATLAB language to use the MATLAB erfc and quadgk
functions, this last to approximate the convolution integral in (2.6). To build executables, launch
runme.m for the accuracy test and rumne.sh (under Linux) or runme.bat (under Windows) for
the efficiency test.

Also for the accuracy test of this example the file SEQ_Talbot_pack.c has been copied here, from
the SRC folder, because the call to COM_TalbotNcorr, in the SEQ_Talbotl function, has been
disabled so that the correction to NOPTS is not applied. Output for the accuracy test of Talbot
Suite and Talbot Suite DE is reported in the following. The absolute errors have been obtained
comparing the numerical solution to the true solution computed by means of erfc and quadgk
functions.

NTval=5; Tmin=0.5; Tmax=20; NXval=9; Xmin=0; Xmax=1; t0l=1.000000e-08

NOPTS1 = 46 (modified Talbot’s method)

ABSERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
7.206770e-08 5.114764e-10 1.366627e-10 7.593770e-10 6.275063e-10% Xval (1)
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2.440313e-08 3.362930e-10 5.010869e-11 1.933618e-08 4.168714e-10% Xval(2)
1.076344e-07 2.198930e-10 2.379412e-10 2.730058e-10 2.468071e-10% Xval (3)
1.664601e-07 1.251778e-10 1.367930e-10 4.273139e-09 1.396083e-10% Xval (4)
1.959425e-07 6.911552e-11 1.381332e-10 2.240349e-10 7.414871e-11% Xval(5)
1.968604e-07 2.622007e-11 4.412842e-10 1.632832e-10 2.382103e-11% Xval (6)
1.742526e-07 1.105908e-11 3.916667e-11 7.689790e-11 2.841505e-12% Xval(7)
1.356278e-07 2.032707e-12 8.794254e-11 7.756948e-11 1.182487e-09% Xval(8)
8.924338e-08 8.929718e-12 5.648992e-11 3.633464e-11 1.662362e-11% Xval(9)
1

NOPTS2 = [14 82] (classical Talbot’s method)

ABSERR2 = [ % Tval(1) Tval (2) Tval (3) Tval (4) .. Tval(5)
1.169759e-13 1.728822e-10 1.366627e-10 1.316176e-09 2.598160e-09% Xval (1)
3.129788e-13 1.199841e-10 5.010869e-11 1.963791e-08 2.130732e-09% Xval (2)
4.076808e-13 7.543403e-11 2.379412e-10 1.343703e-10 1.680527e-09% Xval(3)
2.608712e-13 5.874053e-11 1.367930e-10 4.234302e-09 1.306619e-09% Xval (4)
1.071018e-14 3.935670e-11 1.381332e-10 2.055449e-10 9.977074e-10% Xval (5)
1.838807e-16 3.247070e-11 4.412842e-10 1.151890e-10 7.410194e-10% Xval (6)
2.045239e-15 1.583542e-11 3.916667e-11 1.371270e-10 5.501929e-10% Xval(7)
2.612494e-15 9.482901e-12 8.794254e-11 1.567382e-11 7.727965e-10% Xval (8)
1.980621e-15 5.223801e-12 5.648992e-11 2.139215e-11 2.848579e-10% Xval (9)

1
>>> Example Ob - sequential Talbot Suite DE <<<

NTval=5; Tmin=0.5; Tmax=20; NXval=9; Xmin=0; Xmax=1; t0l1=1.000000e-08

NOPTS1 = 59 (modified Talbot’s method)

ABSERR1 = [ % Tval(1l) Tval (2) Tval (3) Tval (4) Tval (5)
8.902441e-08 1.064482e-12 1.022959e-12 4.396483e-13 7.052137e-12% Xval (1)
7.854175e-08 2.161660e-12 1.173275e-10 1.875786e-08 2.079736e-11% Xval(2)
6.176601e-08 9.856158e-12 4.089170e-10 7.055139e-10 4.069897e-12% Xval (3)
4.151085e-08 3.746951e-13 2.211475e-11 4.591177e-09 2.395723e-12% Xval (4)
2.042021e-08 3.472049e-13 1.227463e-12 5.916712e-12 1.841527e-12% Xval(5)
9.146836e-10 7.141059e-12 3.239286e-10 7.793766e-14 5.668771e-12% Xval(6)
1.501541e-08 5.523360e-15 5.665141e-11 1.907781e-10 7.278622e-13% Xval(7)
2.603003e-08 8.461287e-14 1.164466e-11 1.609268e-13 1.172215e-09% Xval(8)
3.158027e-08 9.045542e-14 2.977674e-12 1.540858e-11 5.274670e-13% Xval(9)

1

NOPTS2 = [14 82] (classical Talbot’s method)

ABSERR2 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
1.169759e-13 1.728805e-10 1.366647e-10 1.316176e-09 2.598161e-09% Xval (1)
3.129511e-13 1.199826e-10 5.010781e-11 1.963791e-08 2.130732e-09% Xval (2)
4.076808e-13 7.543305e-11 2.379399e-10 1.343703e-10 1.680525e-09% Xval(3)
2.608712e-13 5.873999e-11 1.367936e-10 4.234302e-09 1.306619e-09% Xval (4)
1.069284e-14 3.935638e-11 1.381344e-10 2.055455e-10 9.977078e-10% Xval(5)
1.838807e-16 3.247070e-11 4.412845e-10 1.151893e-10 7.410203e-10% Xval (6)
2.045239e-15 1.583530e-11 3.916689e-11 1.371270e-10 5.501927e-10% Xval(7)
2.612494e-15 9.482658e-12 8.794307e-11 1.567407e-11 7.727961e-10% Xval(8)
1.980621e-15 5.223766e-12 5.649017e-11 2.139194e-11 2.848581e-10% Xval(9)

—

As usual, the suffix "1" refers to the modified method and "2" to the classical method.
Of course, the errors are the same for the classical method implemented in Talbot Suite and
Talbot Suite DE, while for the modified method we have better results from Talbot Suite DE

than Talbot Suite.

SEQ_Talbotl.

Since Talbot Suite expects among the input parameters a function ¥(s), of a single complex
variable, instead of U(n, s) then SEQ_Talbotl and SEQ_Talbot2 must be called inside a for-loop
over the n-samples which are assigned by the calling program to a global variable eta, that is
used by the user-defined function ¥(s) (as a C extern variable so that the function can evaluate
U, s))-
An example of output for the elapsed times of Talbot Suite and Talbot Suite DE, with tol =

10712, is given in the following for NXval, NTval = 5,20, 120.
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TOTtimel = [% 5 20 120 = NXval
1.874355e-003 3.175242e-003 1.528087e-002 % NTval = 5
2.348300e-003 1.000146e-002 6.232873e-002 % NTval = 20
1.409408e-002 5.999540e-002 3.659818e-001 % NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
1.614228e-003 2.351242e-003 1.314843e-002 % NTval = 5
2.050629e-003 8.624909e-003 5.277467e-002 % NTval = 20
1.240515e-002 5.187296e-002 3.147824e-001 % NTval = 120
1;
TOTtimel _DE = [% 5 20 120 = NXval
9.917034e-004 1.304597e-003 7.559204e-003 % NTval = 5
1.014089e-003 4.053736e-003 2.438292e-002 % NTval = 20
5.711841e-003 2.304423e-002 1.369452e-001 % NTval = 120
1;
TOTtime2_DE = [¥% 5 20 120 = NXval
1.614996e-003 2.114845e-003 1.278565e-002 % NTval = 5
2.044297e-003 8.506007e-003 5.115220e-002 % NTval = 20
1.222184e-002 5.059152e-002 3.065845e-001 % NTval = 120

1;

Results emphasize that SEQ_Talbot1 produces the worst performance: this is due to the compu-
tation of the same parameters inside the for-loop on n-samples. It also results more expensive
than SEQ_Talbot2 because its total number of addends, in all the approximating summations,
is greater. On the contrary, as expected, SEQ_Talbot1_DE is the most efficient function for this
problem.

2.4 Example 1

This example of PDE refers to the (uniform) transport equation: u; = u,. Applying the Laplace
Transform method to this equation, it becomes an ODE: U’ = sU —u(x,0") and adding a condition
such as u(zg,t) = ¢(xo,t), then the original problem is transformed into an initial value problem
(IVP). Solving this IVP provides the samples of the Laplace Transform used in the inversion step
by Talbot’s method.

We consider two problems with this equation: for one of them the discretization parameter
(NOPTS) is about ten, whereas for the other it may increase very much. Examples are provided for
both the sequential and parallel OMP-based versions in sub-folders 1SEQ and 2PAR respectively.
Two ways are provided by the sample code to compute the LT samples by solving ODE problems:

e by means of the sequential and real arithmetic ode.c function [14, 13, 6]. To use a real
arithmetic, the complex equation has to be divided into two equations, for real and imaginary
parts separately. This example is entirely in C. The ode. c function is called inside a for-loop
on the Talbot contour points sg. This example is in the sub-subfolder: LTS2_ode. To build
and run the executable, launch runme.bat under Windows and runme.sh under Linux.

e by means of the MATLAB ode45(). This example is in mixed C/MATLAB (or Octave)

language and it is in the sub-subfolder: LTS3_mex. To build and run the executable, launch
runme.m in the MATLAB Command Window.
Since all the ODE problems consist of the same (first order) differential equation with a
different initial condition due to a single s on the Talbot contour, we can think to the
ODE problems as a system of decoupled first order differential equations so that we pass a
row-wise array of initial conditions U0 to the MATLAB solver. The call looks like:

options = odeset(’RelTol’,tol);
[x,U] = ode45(@(x,U) odefun(x,U,S), x, UO, options);
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where the parameter S is a row-wise array for the contour points s;. The function call
does not appear in an explicit for loop on sg, so that vectorized computations in MATLAB
enable a performance enhancement”. Of course, this is not possible if we initially have to
solve a higher order differential equation.

Example 1a

The sample code of this example is located in the sub-folder exla_IVP/1SEQ of the main folder.
Let us solve the following PDE problem, with initial and boundary conditions added to the (uni-
form) transport equation:

Oou Ou

‘5{ ::Eig’ xT > Zo, t>0

u(z,0h) =z

u(xo, t) = xo +t

(2.7)

Applying the Laplace Transform to both sides of the PDE in (2.7) [7], we obtain

sU(x,s) —u(z,0") = Ccli—g(x, s)

and, considering the complex variable s as a parameter, the PDE problem becomes the following
ODE problem
U'=s5U -z, x>x9, seC
To 1 (2.8)

U(xo)Z?‘f'sj

1
The analytical solution of the previous ODE is U(x, s) = Iy — and its Inverse Laplace Transform
s s

is u(x,t) = x + t which solves (2.7).
About accuracy, the problem (2.7) has been solved for NXval = 9 « € [10,20], NTval =5¢ €
[100,500] and tol = 10~'2; output results are reported in the following.

Ex. la: output from ./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode.c

5 t in [100, 500], 9 x in [10, 20], t0l1l=1.000000e-012
RELERR1 = [ % Tval(1) Tval (2) .. Tval (5)
8.425616e-012 8.255830e-015 7.334635e-016 2.356922e-015 6.687461e-016% Xval (1)
7.931254e-012 8.072438e-015 3.652589e-016 9.675476e-016 2.112518e-015% Xval (2)
7.447246e-012 9.496195e-015 1.273293e-015 2.893847e-015 4.214732e-015% Xval(3)
6.975375e-012 1.023846e-014 3.623485e-016 2.747718e-015 1.327729e-015% Xval (4)
6.512279e-012 1.017894e-014 0.000000e+000 3.150358e-015 5.077276e-015% Xval(5)
6.059386e-012 1.038296e-014 8.987102e-016 2.594655e-015 1.321300e-015% Xval(6)
5.616735e-012 1.149936e-014 8.951720e-016 3.131494e-015 1.537793e-015% Xval(7)
5.183282e-012 1.208329e-014 1.248326e-015 2.036182e-015 2.191553e-015% Xval(8)
4.757794e-012 1.291896e-014 1.065814e-015 2.842171e-015 0.000000e+000% Xval (9)
1;
RELERR2 = [ % Tval(1) Tval (2) Tval (5)

2.067033e-015 6.767074e-016 1.833659e-016 4.159275e-016 6.687461e-016% Xval (1)
1.532856e-015 8.072438e-016 5.478884e-016 8.293265e-016 1.223037e-015% Xval(2)
1.642143e-015 1.203743e-015 1.273293e-015 5.512089e-016 1.109140e-015% Xval (3)
1.499167e-015 3.989012e-016 1.268220e-015 8.243154e-016 1.327729e-015% Xval (4)
1.853590e-015 1.454134e-015 9.022765e-016 4.109163e-016 1.103756e-015% Xval(5)
2.078146e-015 1.182869e-015 1.797420e-015 0.000000e+000 1.321300e-015% Xval(6)
1.693208e-015 9.147217e-016 1.790344e-015 4.084557e-016 1.537793e-015% Xval(7)
2.513077e-015 1.299278e-015 1.426658e-015 6.787274e-016 1.314932e-015% Xval(8)
2.486900e-015 2.196223e-015 1.598721e-015 8.120488e-016 8.745141e-016% Xval (9)
1;

5 We can explicitly set, in odeset (), the ’*Vectorized’ option to ’on’, but this is the default choice. Otherwise
we have to set that option to ’off’ if we want to disable vectorized computations in MATLAB.
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Ex. output from ./1SEQ/LTS3_mex/SEQ_main_ ACCURACY.c
LT samples computed by solving ODE problems by means of MATLAB ode45.m

la:

5 t in [100, 500], 9 x in [10, 20], t01=1.000000e-012
RELERR1 = [ % Tval(1) Tval (2) Tval (5)
8.425616e-12 8.120488e-15 7.334635e-16 2.218280e-15 1.226035e-15% Xval(1)
7.931254e-12 8.879682e-15 3.652589e-16 9.675476e-16 1.223037e-15% Xval(2)
7.447246e-12 9.496195e-15 1.273293e-15 2.067033e-15 4.214732e-15% Xval (3)
6.974500e-12 1.037143e-14 3.623485e-16 3.709419e-15 3.098035e-15% Xval(4)
6.512155e-12 1.004674e-14 9.022765e-16 2.191553e-15 6.622534e-16% Xval(5)
6.059508e-12 1.117154e-14 7.189681e-16 1.775290e-15 3.303250e-15% Xval(6)
5.616614e-12 1.149936e-14 8.951720e-16 3.131494e-15 7.249595e-15% Xval(7)
5.182325e-12 1.208329e-14 1.248326e-15 2.850655e-15 8.547059e-15% Xval(8)
4.757794e-12 1.291896e-14 1.953993e-15 2.706829e-15 4.591199e-15% Xval (9)
1;
RELERR2 = [ % Tval(1l) Tval (2) Tval (5)

2.067033e-15 6.767074e-16 1.833659e-16 2.772850e-16 5.572884e-16% Xval (1)
1.532856e-15 9.417845e-16 5.478884e-16 8.293265e-16 3.335555e-16% Xval (2)
1.642143e-15 2.006238e-15 3.637979e-16 6.890111e-16 1.109140e-15% Xval (3)
2.373681e-15 3.989012e-16 5.435227e-16 8.243154e-16 1.327729e-15% Xval(4)
2.842171e-15 5.287760e-16 9.022765e-16 4.109163e-16 1.103756e-15% Xval(5)
2.933854e-15 1.182869e-15 8.987102e-16 0.000000e+00 1.321300e-15% Xval(6)
3.386416e-15 0.000000e+00 0.000000e+00 4.084557e-16 6.590541e-16% Xval(7)
3.470440e-15 3.897834e-16 3.566646e-16 6.787274e-16 1.314932e-15% Xval(8)
4.381680e-15 1.291896e-15 7.105427e-16 8.120488e-16 8.745141e-16% Xval(9)
1;

The accuracy returned by using ode.c or ode45.m is almost the same.

About efficiency, the computational cost of the entire algorithm depends on the time required
by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [10,20],
NTval ¢ € [100,500] and tol = 10712,

Ex. la: output from ./1SEQ/LTS2_ode/SEQ_main_TIMES.c

LT samples computed by solving ODE problems by means of ode.c
t in [100, 500], x in [10, 20], t01=1.000000e-12
PARtimel = [% 5 20 120 = NXval
4.477216e-007 7.675228e-007 8.954432e-007 % NTval = 5
2.558409e-007 7.675228e-007 7.675228e-007 % NTval = 20
3.837614e-007 3.837614e-007 6.396023e-007 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
1.806045e-003 7.738165e-003 4.125090e-002 % NTval = 5
1.684649e-003 7.840821e-003 4.091562e-002 % NTval = 20
1.692644e-003 7.230193e-003 3.969391e-002 % NTval = 120
1
SUMtimel = [% 5 20 120 = NXval
1.022724e-004 3.537640e-004 2.088429e-003 % NTval = 5
3.434025e-004 1.461235e-003 8.234496e-003 % NTval = 20
2.002083e-003 8.013130e-003 4.850578e-002 % NTval = 120
1
TOTtimel = [% 5 20 120 = NXval
1.908765e-003 8.092696e-003 4.334022e-002 % NTval = 5
2.028307e-003 9.302824e-003 4.915088e-002 % NTval = 20
3.695111e-003 1.524371e-002 8.820033e-002 % NTval = 120
1;
PARtime2 = [} 5 20 120 = NXval
6.396023e-007 1.151284e-006 2.750290e-006 % NTval = 5
2.750290e-006 4.413256e-006 7.291466e-006 % NTval = 20
1.586214e-005 2.014747e-005 3.511417e-005 % NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
7.727355e-003 3.310000e-002 1.822476e-001 % NTval = 5
3.042518e-002 1.300949e-001 7.074741e-001 % NTval = 20
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1.794205e-001 7.698962e-001 4.223847e+000 % NTval = 120
1;
SUMtime2 = [} 5 20 120 = NXval
7.905485e-005 3.155158e-004 1.895781e-003 % NTval = 5
3.133412e-004 1.244986e-003 7.375958e-003 % NTval = 20
1.872052e-003 7.373591e-003 4.400400e-002 % NTval = 120
1;
TOTtime2 = [} 5 20 120 = NXval
7.807050e-003 3.341666e-002 1.841461e-001 % NTval = 5
3.074127e-002 1.313443e-001 7.148574e-001 % NTval = 20
1.813084e-001 7.772899e-001 4.267886e+000 % NTval = 120
1;
Ex. la: output from ./1SEQ/LTS3_mex/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t in [100, 500], x in [10, 207, t0l=1.000000e-12
PARtimel = [} 5 20 120 = NXval
1.215244e-06 7.035626e-07 8.314830e-07 ¥ NTval = 5
5.756421e-07 7.035626e-07 9.594035e-07 % NTval = 20
7.035626e-07 7.675228e-07 8.314830e-07 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
3.488647e-03 2.574847e-03 5.261688e-03 % NTval = 5
2.030865e-03 2.600495e-03 5.444103e-03 % NTval = 20
2.020760e-03 2.606252e-03 5.333068e-03 % NTval = 120
1;
SUMtimel = [% 5 20 120 = NXval
1.277286e-04 3.089919e-04 1.863929e-03 ¥ NTval = 5
3.086721e-04 1.245626e-03 7.732792e-03 % NTval 20
1.8566318e-03 7.455588e-03 4.444852e-02 ¥ NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
3.617591e-03 2.884543e-03 7.126449e-03 Y NTval = 5
2.340113e-03 3.846824e-03 1.317785e-02 % NTval = 20
3.877781e-03 1.006261e-02 4.978242e-02 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
2.558409e-06 2.110688e-06 2.430489e-06 % NTval = 5
8.122949e-06 7.739188e-06 8.954432e-06 % NTval = 20
4.886562e-05 5.104027e-05 5.008086e-05 7 NTval = 120
1;
LTStime2 = [} 5 20 120 = NXval
9.870791e-03 1.258827e-02 2.551278e-02 % NTval = 5
3.899163e-02 5.020290e-02 1.024809e-01 % NTval = 20
2.368823e-01 3.081062e-01 6.235248e-01 % NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
7.425783e-05 2.848789e-04 1.689254e-03 % NTval = 5
2.969674e-04 1.139579e-03 6.774476e-03 J NTval 20
1.794724e-03 6.903356e-03 4.077388e-02 ¥ NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
9.947607e-03 1.287526e-02 2.720446e-02 % NTval = 5
3.929672e-02 5.135022e-02 1.092644e-01 % NTval = 20
2.387259e-01 3.150606e-01 6.643487e¢-01 % NTval = 120

1;

Two remarks can be done. First of all, as expected, TOTtimel (modified method) is much better
than TOTtime2 (classical method). Second, of course, the elapsed times from PAR and SUM steps
are almost the same if we are using ode.c or ode45.m, while, about LTS time, a slightly better
performance is returned by ode45.m, because this function is called a single time, while ode.c is

called inside two nested for-loops.
These results are summarized together in Fig. 2.2.
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Times of SEQ_Talbot1 for xin [10, 20], tin [100, 500] Times of SEQ_Talbot1 for x in [10, 20], tin [100, 500]
tol=1e-12, NOPTS = 26 tol=1e-12, NOPTS = 26

LT samples by SEQ ode.c
LT samples by SEQ ode45.m

NTval 55 NXval o] NTval 55 NXval

Times of SEQ_Talbot2 for x in [10, 20], tin [100, 500]
tol=1e-12, NOPTS in {23,23}

Example 1a

Times of SEQ_Talbot2 for x in [10, 20], tin [100, 500]
tol=1e-12, NOPTS in {23,23}

Figure 2.2: Mesh plot of execution times in solving (2.7).

Time results emphasize that in the classical method the most expensive step is LTS, ode.c and
ode45.m show a similar performance. In the modified method it depends on the number of z-values
and of t-values, but ode45.m behaves better for many values of ¢ and x due to the vectorization
of computations.

Example 1b

The second example for the uniform transport equation has different initial conditions in order to
have a large value of NOPTS.

The related sample code is located in the sub-folder ex1b_IVP/1SEQ of the main folder.

Let us solve the following PDE problem:

ou Ou
= Tz >x9,t>0

ot ox’
u(z,0%) = zsin(3z)/6 (2.9)
u(xo,t) = (wo + t) sin[3(xo +t)]/6

whose solution is:

u(z,t) = (x 4+ t)sin[3(x + t)]/6 (2.10)
After the application of the Laplace Transform method, the corresponding ODE problem is:
in(3
U’:sU(Ls)—%(x), x> xo
sin(3xg) + 3z cos(3zg) + s sin(3zo)
U = —
(zo) 602+ 9) (2.11)
~ 3sin(3zg) — s cos(3o)
(s?2 +9)2

and the Laplace Transform U(zg, s) = Z;[u(zo,t)] has double poles at s = £3i. Singularities with
non-zero imaginary parts may lead to a summation with a lot of terms.
The analytical solution of (2.11) is

(sz + 1) sin(3z) + 3z cos(3z) LS cos(3z) — 3sin(3z)

6(s%+9) (s2+9 (2.12)

Ulx,s) =
About accuracy, the problem (2.9) has been solved for NXval = 9 x € [10,20], NTval =

)2
x
5t € [100,500] and tol = 1072, Fig. 2.3 shows the solution u(z,t) of (2.9) in this domain, and
highlights its highly oscillating behavior.
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u(x,t) = (x+t) sin[3(x+t)]/6

Figure 2.3: Solution of (2.9) in its domain.

Output results are listed in the following.

Ex.
LT samples computed by solving ODE problems by means of ode.c
t0l1=1.000000e-012

5 t in [100,

1b:

5001,

output from

./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c

RELERR1 = [ %

8.

S oo o oo NN

1;

RELERR2 =

2.

SN NERENR R R

425616e-012

.931254e-012
.447246e-012
.975375e-012
.512279e-012
.059386e-012
.616735e-012
.183282e-012
.757794e-012

L%
067033e-015

.532856e-015
.642143e-015
.499167e-015
.8535690e-015
.078146e-015
.693208e-015
.513077e-015
.486900e-015

Tval (1)
8.

Tval (1)
6.

e )

N = O©FRr P, Wk 0

255830e-015
.072438e-015
.496195e-015
.023846e-014
.017894e-014
.038296e-014
.149936e-014
.208329e-014
.291896e-014

767074e-016
.072438e-016
.203743e-015
.989012e-016
.454134e-015
.182869e-015
.147217e-016
.299278e-015
.196223e-015

Tval (2)

= = 0000 Wk W

Tval (2)

N L N S

9 x in [10, 20],
Tval (5)
.334635e 016 2.356922e-015
.652589e-016 9.675476e-016
.273293e-015 2.893847e-015
.623485e-016 2.747718e-015
.000000e+000 3.150358e-015
.987102e-016 2.594655e-015
.951720e-016 3.131494e-015
.248326e-015 2.036182e-015
.065814e-015 2.842171e-015
Tval (5)

.8336596 016 4.159275e-016
.478884e¢-016 8.293265e-016
.273293e-015 5.512089e-016
.268220e-015 8.243154e-016
.022765e-016 4.109163e-016
.797420e-015 0.000000e+000
.790344e-015 4.084557e-016
.426658e-015 6.787274e-016
.598721e-015 8.120488e-016

ONFF ULFE BN

[ N o )

.687461e-016%
.112518e-015%
.214732e-015%
.327729e-015%
.077276e-015%
.321300e-015%
.537793e-015%
.191553e-015%
.000000e+000%

.687461e-016%
.223037e-015%
.109140e-015%
.327729e-015%
.103756e-015%
.321300e-015%
.537793e-015%
.314932e-015%
.745141e-016%

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Ex.
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t01=1.000000e-012

1b:

output from

./1SEQ/LTS3 _mex/SEQ_main_ACCURACY.c

RELERR1 = [ %

w

.871834e-13
.687547e-13
.882267e-13
.836573e-13
.000482e-13
.120261e-12
.110019e-12
.157808e-12
.195395e-12
1;

o= R N0 WwN

RELERR2 = [ %

7.313668e-12
1.343490e-12
2.692145e-12
3.731440e-12

43

5 t in [100, 500], 9 x in [10, 20],

Tval (1) Tval (2) Tval (5)
4.350778e-14 2.899853e-12 3.261420e-12 2
2.564171e-13 2.908414e-13 4.669995e-12 7
9.701621e-13 7.191711e-13 9.577563e-12 8
3.545842e-13 1.125137e-12 1.437026e-12 1
6.675148e-13 1.686472e-12 2.601285e-12 1
8.876008e-13 2.526702e-11 4.023028e-12 4
1.012013e-12 1.150681e-12 5.451745e-12 9
1.130731e-12 1.518848e-12 8.787188e-12 1
1.796563e-12 1.773449e-12 1.809530e-12 1

Tval (1) Tval (2) Tval (5)
9.925085e-13 1.650129e-11 2.922106e-13 3
1.864764e-11 2.863817e-12 1.189638e-13 1
9.171821e-11 1.867696e-12 8.273644e-13 2
6.294184e-11 1.229022e-12 5.239805e-13 2

.849078e-117,
.150232e-127,
.546202e-127
.027970e-117,
.269750e-117
.398088e-117
.362223e-12Y,
.310947e-117,
.306397e-117

.515389e-137
.754540e-137,
.497868e-14Y,
.681329e-13Y,

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)




5.296060e-12 1.813129e-11 3.811697e-14 1.854031e-13 4.513076e-13% Xval(5)
3.374008e-11 2.201849e-12 1.183169e-10 4.943473e-13 1.215878e-12% Xval(6)
1.717013e-12 1.379791e-11 4.046061e-12 8.670410e-13 6.718324e-13Y% Xval (7)
3.213528e-12 6.110860e-11 2.791713e-12 1.583633e-12 7.486878e-13% Xval(8)
4.068752e-12 8.650306e-11 2.025623e-12 2.615757e-13 8.549728e-13Y% Xval (9)
1;

Results show a slightly better performance for ode.c.

About efficiency, the computational cost of the entire algorithm depends on the time required
by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [10,20],
NTval ¢ € [100,500] and tol = 1072, for both ode.c and ode45.m.

Ex. 1b: output from ./1SEQ/LTS2_ode/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c
t in [100, 5001, x in [10, 20], t01=1.000000e-12
PARtimel = [ 5 20 120 = NXval
1.854824e-006 2.942134e-006 3.709647e-006 % NTval = 5
1.790864e-006 2.814215e-006 4.029444e-006 % NTval = 20
1.918783e-006 3.261931e-006 5.948227e-006 % NTval = 120
1
LTStimel = [} 5 20 120 = NXval
6.328473e-001 1.350361e+000 4.704884e+000 % NTval = 5
6.299023e-001 1.355715e+000 4.706185e+000 % NTval = 20
6.305589e-001 1.362217e+000 4.817369e+000 % NTval = 120
1
SUMtimel = [% 5 20 120 = NXval
3.901142e-003 1.583751e-002 9.445363e-002 % NTval = 5
1.569405e-002 6.256697e-002 3.793843e-001 % NTval = 20
9.446949e-002 3.827372e-001 2.286697e+000 % NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
6.367503e-001 1.366202e+000 4.799342e+000 % NTval = 5
6.455982e-001 1.418285e+000 5.085574e+000 % NTval = 20
7.250303e-001 1.744957e+000 7.104071e+000 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
6.971578e-006 9.402037e-006 1.573402e-005 % NTval = 5
2.718276e-005 3.805586e-005 6.466299e-005 % NTval = 20
2.397839e-004 2.551981e-004 4.122186e-004 % NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
3.453295e+000 7.514351e+000 2.582518e+001 % NTval = 5
1.313395e+001 2.802309e+001 9.770389e+001 % NTval = 20
7.816756e+001 1.675005e+002 5.802425e+002 % NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
4.302167e-003 1.707954e-002 1.036949e-001 % NTval = 5
1.615596e-002 6.448083e-002 3.897000e-001 % NTval = 20
9.674632e-002 3.856762e-001 2.316679e+000 % NTval = 120
1
TOTtime2 = [% 5 20 120 = NXval
3.457604e+000 7.531440e+000 2.592889e+001 % NTval = 5
1.315013e+001 2.808761e+001 9.809366e+001 % NTval = 20
7.826454e+001 1.678865e+002 5.825596e+002 % NTval = 120
1
Ex. 1b: output from ./1SEQ/LTS3_mex/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t in [100, 500], x in [10, 20], t01=1.000000e-12
PARtimel = [% 5 20 120 = NXval
2.366507e-06 2.430466e-06 3.070063e-06 % NTval = 5
2.878184e-06 2.302547e-06 5.436569e¢-06 % NTval = 20
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2.942143e-06 2.494426e-06 3.134022e-06 % NTval 120
1;
LTStimel = [¥% 5 20 120 = NXval
9.352490e-01 9.673428e-01 1.122078e+00 % NTval 5
9.302351e-01 9.799520e-01 1.116338e+00 % NTval 20
9.368432e-01 9.690046e-01 1.124465e+00 % NTval 120
1;
SUMtimel = [% 5 20 120 = NXval
3.678703e-03 1.467893e-02 9.346294e-02 % NTval 5
1.478318e-02 5.875825e-02 3.575240e-01 % NTval 20
8.854093e-02 3.532812e-01 2.126654e+00 Y% NTval 120
1;
TOTtimel = [% 5 20 120 = NXval
9.389301e-01 9.820241e-01 1.215544e+00 % NTval 5
9.450211e-01 1.038713e+00 1.473867e+00 % NTval 20
1.025387e+00 1.322288e+00 3.251122e+00 % NTval 120
1;
PARtime2 = [% 5 20 120 = NXval
1.004166e-05 1.016958e-05 1.253609e-05 % NTval 5
3.741639e-05 3.741639e-05 5.762763e-05 ¥ NTval 20
2.262892e-04 2.246902e-04 3.447425e¢-04 % NTval 120
1;
LTStime2 = [% 5 20 120 = NXval
5.111716e+00 5.292320e+00 5.696220e+00 % NTval 5
1.930616e+01 2.000656e+01 2.218077e+01 % NTval 20
1.148287e+02 1.190968e+02 1.328967e+02 9% NTval 120
1;
SUMtime2 = [% 5 20 120 = NXval
4.214684e-03 1.721493e-02 1.055129e-01 % NTval 5
1.579937e-02 6.331684e-02 3.984905e-01 % NTval 20
9.252209e-02 3.691497e-01 2.348637e+00 % NTval 120
1;
TOTtime2 = [% 5 20 120 = NXval
5.115941e+00 5.309545e+00 5.801745e+00 % NTval 5
1.932200e+01 2.006991e+01 2.257932e+01 % NTval 20
1.149215e+02 1.194661e+02 1.352457e+02 % NTval 120
1;

These results are summarized together in Fig. 2.4.

Times of SEQ_Talbot1 for x in [10, 20], tin [100, 500]

LT samples by SEQ ode.c
5

Example 10 NTval

Times of SEQ_Talbot2 for x in [10, 20], tin [100, 500]
tol=1e-12, NOPTS in {339,2830}

12, NOPTS = 1192

Times of SEQ_Talbot1 for x in [10, 20}, tin [100, 500]

LT samples by SEQ oded5.m

Example 1b NTval ss

tol=1e-12, NOPTS = 1192

Times of SEQ_Talbot2 for x in [10, 20, tin [100, 500]
tol=1e-12, NOPTS in {339,2830}

LT samples by SEQ ode45.m

Example 10 NTval

Figure 2.4: Mesh plot of execution times in solving (2.9).

Unlike the previous example, now LTS is almost everywhere the most expensive step, except for
ode45.m at NXval = NTval = 120 where SUM overcomes LTS. The number of points on Talbot’s
contour is about a thousand (while in Example la it was about a few dozens): this causes more
addends in the summations of SUM step, but also more IVPs to be solved in LST step.
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2.5 Example 2

The sample code is located in the sub-folder ex2_IVP/1SEQ of the main folder.
This example refers to a PDE with mixed derivatives. Assuming that u,; = us, holds, let us solve
the following problem

82
81581; =e %cost, x>0, t>0
Uz (2,07) =0 (213)
u(0,t) =0
1 _ —T
The analytical solution is u(x,t) = sin¢ (1 — e~?) and its Laplace Transform is U(z, s) = ?61,
s

with two simple poles at s = +1.

0
Let us put v(z,t) = a—u(:mt) in (2.13) so that the problem may be divided into two first order
@

non-homogeneous PDE problems with initial conditions:

@:e_wcost, >0, t>0
ot (2.14)
v(z,07) =0
and 9
u

— = t), >0, t>0

gz V@) @ (2.15)
u(0,t) =0

Taking the Laplace Transform of (2.14) and of (2.15) with respect to ¢, the first problem gives

—Z

V(z,s) = PR which can be substituted into the problem transformed by (2.15) so that it
s
becomes .
U = 0
231 °7 (2.16)
U0)=0

We can solve this IVP in the same way as described in previous examples by means of ode.c and
ode45.m.

About accuracy, the problem (2.13) has been solved for NXval = 9 x € [0,5], NTval = 5t €
[100,500] and tol = 10~'2; output results are reported in the following.

Ex. 2: output from ./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode.c

5 t in [100, 500], 9 x in [0, 5], t01=1.000000e-012

ABSERR1 = [ % Tval(1) Tval (2) .. Tval (5)
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000% Xval (1)
6.011858e-014 1.743050e-014 3.569922e-013 9.359180e-013 6.414841e-012% Xval(2)
9.858780e-014 1.419975e-013 1.628697e-013 5.062839e-012 2.700001e-011% Xval(3)
1.121325e-013 1.351141e-013 2.832179e-013 3.276823e-012 1.557821e-011Y% Xval (4)
1.370015e-013 1.770806e-013 6.179501e-013 4.173550e-012 6.151912e-012% Xval(5)
1.409983e-013 2.479128e-013 1.115219e-012 7.607470e-012 6.999290e-012% Xval(6)
1.403877e-013 2.564615e-013 1.234679e-012 8.337775e-012 1.235029e-011Y% Xval(7)
1.674771e-013 3.634870e-013 2.410294e-012 8.072765e-012 3.765316e-011% Xval(8)
1.401101e-013 3.442802e-013 1.262324e-012 3.206324e-013 4.444967e-011Y% Xval(9)
1;

ABSERR2 = [ % Tval(1l) Tval (2) .. Tval (5)
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000% Xval (1)
3.510026e-012 5.524081e-012 7.392198e-012 1.254763e-011 9.254014e-012% Xval(2)
4.896528e-012 8.069101e-012 1.089340e-011 1.942668e-011 1.437211e-011Y% Xval(3)
5.874190e-012 9.969359e-012 1.320877e-011 2.318101e-011 1.703226e-011% Xval (4)
6.469825e-012 9.782730e-012 1.350231e-011 2.450740e-011 1.841305e-011% Xval(5)
6.460721e-012 9.511170e-012 1.363354e-011 2.622724e-011 1.910183e-011Y% Xval(6)
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6.549816e-012 9.619305e-012 1.368772e-011 2.671030e-011 1.961559e-011% Xval(7)
7.364831e-012 8.771983e-012 1.192868e-011 2.695866e-011 1.986050e-011% Xval(8)
7.417178e-012 9.050982e-012 1.166578e-011 2.777722e-011 1.985806e-011% Xval(9)

1;

Ex. 2: output from ./1SEQ/LTS3_mex/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of MATLAB ode45.m

5 t in [100, 500], 9 x in [0, 5], t0l=1.000000e-012
ABSERR1 = [ % Tval(1) Tval (2) Tval (5)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00% Xval (1)
2.495226e-14 1.130207e-13 2.216560e-13 5.506706e-14 5.228151e-12Y% Xval (2)
4.560796e-13 6.787904e-13 6.538103e-13 1.128542e-12 7.737866e-127% Xval (3)
2.730038e-13 5.996315e-13 8.200107e-13 6.983303e-14 6.505851e-12Y% Xval (4)
4.785061e-13 9.634515e-13 1.234679e-12 4.342082e-13 8.295586e-12% Xval(5)
3.778089e-13 7.925882e-13 1.060596e-12 2.857714e-13 1.062900e-11% Xval(6)
1.056544e-12 1.967315e-12 2.347234e-12 1.235567e-12 8.721801e-12Y% Xval(7)
1.014466e-12 1.899703e-12 2.285727e-12 1.343481e-12 6.246392e-127% Xval (8)
1.720846e-14 1.211253e-13 2.564615e-13 3.025358e-13 8.297696e-12% Xval (9)
1;
ABSERR2 = [ % Tval(1) Tval (2) Tval (5)

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00% Xval (1)
2.855605e-12 4.701073e-12 7.396750e-12 1.331052e-11 9.030027e-12% Xval (2)
5.132672e-12 9.892531e-12 1.036882e-11 1.952216e-11 1.529821e-11% Xval(3)
5.429046e-12 8.688827e-12 1.388079e-11 2.383749e-11 1.645817e-11% Xval (4)
7.180256e-12 1.190725e-11 1.544953e-11 2.403844e-11 1.904077e-11% Xval(5)
6.184719e-12 9.897416e-12 1.585521e-11 2.690570e-11 1.861167e-11% Xval(6)
7.343015e-12 1.164457e-11 1.754541e-11 2.537903e-11 1.986544e-11% Xval(7)
7.508216e-12 1.194578e-11 1.764533e-11 2.566980e-11 2.011075e-11% Xval(8)
6.597056e-12 1.180911e-11 1.567613e-11 2.734935e-11 2.022077e-11% Xval (9)
1;

The accuracy returned by ode.c and ode45.m is the same.

About efficiency, the computational cost of the entire algorithm depends on the time required

by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [0, 5], NTval
t € [100,500] and tol = 10~ 1'2.

Ex. output from ./1SEQ/LTS2_ode/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c
t in [100, 5001, x in [0, 5], t01=1.000000e-12
PARtimel = [% 5 20 120 = NXval
1.087314e-006 1.215233e-006 2.366507e-006 % NTval 5
1.023354e-006 1.151274e-006 2.366507e-006 % NTval = 20
1.279193e-006 1.407112e-006 3.325901e-006 % NTval = 120
1
LTStimel = [} 5 20 120 = NXval
7.283788e-002 2.094458e-001 8.314164e-001 % NTval = 5
7.282847e-002 2.092272e-001 8.186414e-001 % NTval = 20
7.306807e-002 2.095692e-001 8.191389e-001 % NTval = 120
1
SUMtimel = [} 5 20 120 = NXval
1.162722e-003 4.670013e-003 2.797179e-002 % NTval = 5
4.685427e-003 1.894254e-002 1.130627e-001 % NTval = 20
2.824976e-002 1.120971e-001 6.746690e-001 % NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
7.400169e-002 2.141170e-001 8.593906e-001 % NTval = 5
7.751492e-002 2.281709e-001 9.317065e-001 % NTval = 20
1.013191e-001 3.216677e-001 1.493811e+000 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
5.052811e-006 5.436569e-006 8.250793e-006 % NTval = 5
1.426300e-005 1.810058e-005 3.057271e-005 % NTval = 20
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8.026935e-005 1.023354e-004 1.830525e-004 % NTval 120
1;
LTStime2 = [% 5 20 120 = NXval
3.160599e-001 8.970925e-001 3.495435e+000 % NTval 5
1.246432e+000 3.574310e+000 1.398349e+001 % NTval 20
7.488911e+000 2.145783e+001 8.399615e+001 % NTval 120
1;
SUMtime2 = [% 5 20 120 = NXval
9.962993e-004 4.020375e-003 2.366232e-002 % NTval 5
3.985133e-003 1.573823e-002 9.464396e-002 % NTval 20
2.363897e-002 9.457923e-002 5.682437e-001 % NTval 120
1;
TOTtime2 = [% 5 20 120 = NXval
3.170612e-001 9.011183e-001 3.519106e+000 % NTval 5
1.250431e+000 3.590066e+000 1.407817e+001 % NTval 20
7.512630e+000 2.155251e+001 8.456458e+001 % NTval 120
1;
Ex. 2: output from ./1SEQ/LTS3_mex/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t in [100, 500], x in [0, 5], tol=1.000000e-12
PARtimel = [% 5 20 120 = NXval
1.407112e-06 1.407112e-06 1.343152e-06 Y NTval = 5
1.151274e-06 1.215233e-06 1.598991e-06 J NTval = 20
1.471072e-06 1.662951e-06 2.878184e-06 J NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
3.785509e-02 3.977369e-02 4.555353e-02 Y NTval = 5
3.859676e-02 3.890358e-02 4.504901e-02 % NTval = 20
3.800757e-02 3.899331e-02 4.516862e-02 ¥ NTval = 120
1;
SUMtimel = [% 5 20 120 = NXval
1.109828e-03 4.430036e-03 2.638930e-02 % NTval = 5
4.391661e-03 1.765772e-02 1.062042e-01 % NTval = 20
2.668933e-02 1.062266e-01 6.358444e-01 J NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
3.896632e-02 4.420513e-02 7.194417e-02 % NTval = 5
4.298958e-02 5.656251e-02 1.512548e-01 % NTval = 20
6.469837e-02 1.452216e-01 6.810159e-01 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
4.285296e-06 4.733013e-06 4.988852e-06 ¥ NTval = 5
1.535031e-05 1.637367e-05 1.746098e-05 % NTval = 20
1.037425e-04 9.766637e-05 1.111619e-04 J NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
1.795259e-01 1.862521e-01 2.146744e-01 Y NTval = 5
7.231592e-01 7.433722e-01 8.575180e-01 % NTval = 20
4.357782e+00 4.488002e+00 5.134767e+00 I NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
9.265193e-04 3.687081e-03 2.226058e-02 Y NTval = 5
3.723730e-03 1.486671e-02 8.918941e-02 % NTval = 20
2.237948e-02 8.931791e-02 5.346459e-01 % NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
1.804567e-01 1.899439e-01 2.369400e-01 % NTval = 5
7.268983e-01 7.582553e-01 9.467249e-01 % NTval = 20
4.380265e+00 4.577418e+00 5.669525e+00 % NTval = 120

These results are summarized together in Fig. 2.5.
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Times of SEQ_Talbot2 for x in [0, 5], tin [100, 500] Times of SEQ_Talbot2 for x in [0, 5], tin [100, 500]
tol=1e-12, NOPTS in {143,464} tol=1e-12, NOPTS in {143,464}

LT samples by SEQ ode.c

Figure 2.5: Mesh plot of execution times in solving (2.13).

LTS is the most expensive step, except for ode45.m at a mesh size with a maximum value along a
dimension at least.

2.6 Example 3

Let us consider the following problem based on the one dimensional homogeneous heat conduction
equation
ou  d*u
a9z’
u(z,0%) = up(z)
U(O, t) = Wo(t)
Applying the Laplace Transform method, we have to solve the following ODE problem
{ U"=sU —up(z), >0
U(0) = Z[po(t)]

A second condition on U is required. In the following we discuss two problems based on two
different conditions.

z>0,t>0
(2.17)

(2.18)

Example 3a

If we add to (2.17) a boundary condition on u such as u, (0, t), then we have an initial condition on
U’ in (2.18) and the problem becomes an IVP which may be solved by an ODE solver, as before,
after it has been rewritten as a first order system of two differential equations.
The sample code is located in the sub-folder ex3a_IVP/1SEQ of the main folder.
However, when sy, is on a Talbot contour, some of the corresponding IVPs could be ill-conditioned.
To show this situation, let us consider the following particular PDE problem solved by wu(z,t) =
x(x—1)+ 2t
2

% = %, z>0, t>0

uw(x,0h) =z(z—1) (2.19)

u(0,t) =2t

uz(0,t) = —1
The application of the Laplace Transform method leads to the following IVP:

U'=sU—-z(zx—1), >0
U(0) = 2/s? (2.20)
U'0)=-1/s
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Its solution is U(x,s) = 2/s* + z(x — 1)/s, with a double pole at s = 0.

The Jacobian matrix of the system of two first order ODEs coming from (2.20), for a given sy,
has two eigenvalues at u[f = +£,/5, then the problem may be ill-conditioned if Re [iﬂ} > 0.
For = € [0,1], tol = 107% and t € [1,5] or ¢t € [100,500], Fig. 2.6 reports the points s on the
upper half contours (in black), the corresponding eigenvalues (ML] = +,/5 in red, u[ I = = — /5K
in blue), and highlights (in gray) the ill-conditioning region (where Re [:l:\/> ] > 0). the leftmost
plots refer to the modified method, the rightmost plots to the classical method.

Modified Talbot's method Classical Talbot's method
te[1,5], tol=1e-08, max Re(u!)=1.2649 te[1,5], tol=1e-08, max Re(:!)=2.1909

Region ofl-condiioning Region of ll-conditioning]
——S, € € Talbot's contour 5f| =S, € Talbot's contour
Au‘k‘— +sart(s,) — lk!: +s0rt(s,)

M= sqri(s,) A =l sqrcs)

imag(s)

20 a5 10 5 o © 5 40 0 2 10 o

Example 32 real(s) Sampeaa | real part
Modified Talbot's method Classical Talbot's method
t[100,500), tol=1e-08, max Re(:X)=0.12649 !E[lOO 500], tol=1e-08, max Re(:!%)=0.21909

04 Region of ill-conditioning|
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02 015 01 005 0 005 o1 06 05 04 03 02 01 0 01 02

“Example3a | real(s) “Example3a | real part
Figure 2.6: Regions of ill-conditioning of problem (2.20).

These plots emphasize that the classical method has a value of max Re [i\/@] greater than the
modified method, and that if ¢ increases then the ill-conditioning reduces. On the other side, let
us recall that, since there is a single pole at 0, then the number of points on Talbot’s contour is
the same for every tol so that the region of ill-conditioning is the same. Also if there are positive
values for some eigenvalues, all of them are small (especially for large ¢) so that, in practice, the
ill-conditioning does not arise for these values of .

Unlike previous examples, when this problem is solved by means of ode45.m, in the MATLAB
Command Window, the sample code has a driver program written as a MATLAB script that calls
C-mex functions for accuracy and for partial elapsed times.

About accuracy, the problem (2.19) has been solved for NXval =9 z € [0,1], NTval =5t € [1, 5]
and tol = 107'2; output results are reported in the following for ode.c and ode45.m respectively.

Ex. 3a: output from ./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode.c

5 t in [1, 5], 9 x in [0, 1], t0l1=1.000000e-012

RELERR1 = [ % Tval(1) Tval (2) . Tval (5)
1.282796e-011 2.886580e-015 0.000000e+OOO 1.110223e-015 1.598721e-015% Xval (1)
1.562924e-011 3.424302e-016 6.031132e-016 2.363786e-015 4.130801e-015% Xval(2)
1.783695e-011 2.446131e-015 6.112196e-016 3.979039e-015 1.176695e-014% Xval (3)
1.925521e-011 3.655905e-015 1.540472e-016 2.516208e-015 6.184564e-015% Xval (4)
1.974484e-011 4.736952e-015 3.089316e-016 1.489848e-015 7.287618e-016% Xval (5)
1.925521e-011 4.127634e-015 6.161888e-016 5.718654e-016 9.094947e-016% Xval (6)
1.783658e-011 2.446131e-015 0.000000e+000 2.160050e-015 3.439570e-015% Xval(7)
1.562877e-011 1.141434e-016 4.523349e-016 3.264276e-015 1.113520e-014% Xval(8)
1.282774e-011 2.442491e-015 0.000000e+000 3.774758e-015 1.438849e-014% Xval(9)
1;

RELERR2 = [ % Tval(1) Tval (2) . Tval (5)
8.881784e-016 8.881784e-016 0.000000e+OOO 6.661338e-016 1.776357e-016% Xval (1)
7.046705e-016 1.141434e-016 1.507783e-016 2.251225e-016 0.000000e+000% Xval (2)
1.225074e-015 0.000000e+000 4.584147e-016 9.094947e-016 1.810300e-016% Xval (3)
2.137916e-015 1.179324e-016 1.540472e-016 1.029358e-015 9.094947e-016% Xval (4)
2.283887e-015 8.289665e-016 4.633974e-016 1.604451e-015 7.287618e-016% Xval(5)
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2.766715e-015 7.075944e-016 4.621416e-016 1.029358e-015 9.094947e-016% Xval (6)
2.327640e-015 1.164824e-015 9.168293e-016 9.094947e-016 1.086180e-015% Xval(7)
2.114011e-015 1.483864e-015 9.046698e-016 1.125612e-015 5.388002e-016% Xval(8)
2.664535e-015 1.110223e-015 0.000000e+000 1.554312e-015 1.065814e-015% Xval(9)
1;

Ex. 3a: output from ./1SEQ/LTS3_mex/MAIN.m

LT samples computed by solving ODE problems by means of MATLAB ode45.m

5 t in [1, 5], 9 x in [0, 1], t0l1=1.000000e-012
RELERR1 = [ % Tval(1) Tval (2) Tval (5)
1.282796e-11 2.886580e-15 2.960595e-16 1.443290e-15 3.375078e-15% Xval (1)
1.562924e-11 1.141434e-16 4.523349e-16 2.251225e-16 1.616401e-15% Xval(2)
1.783695e-11 2.679096e-15 1.528049e-16 0.000000e+00 1.810300e-16% Xval(3)
1.925546e-11 3.891769e-15 1.540472e-16 1.258104e-15 2.728484e-15% Xval (4)
1.974497e-11 4.500104e-15 3.089316e-16 1.489848e-15 4.372571e-15% Xval(5)
1.925521e-11 3.655905e-15 9.242832e-16 1.601223e-15 4.001777e-15% Xval(6)
1.783695e-11 2.329648e-15 7.640244e-16 1.705303e-15 2.896480e-15% Xval(7)
1.562912e-11 1.141434e-16 9.046698e-16 1.575857e-15 1.796001e-15% Xval(8)
1.282774e-11 2.886580e-15 7.401487e-16 1.443290e-15 1.065814e-15% Xval (9)
1;
RELERR2 = [ % Tval(1) Tval (2) Tval (5)

8.881784e-16 8.881784e-16 0.000000e+00 6.661338e-16 1.776357e-16% Xval (1)
1.174451e-16 3.424302e-16 3.015566e-16 2.251225e-16 0.000000e+00% Xval (2)
8.575516e-16 1.164824e-16 4.584147e-16 0.000000e+00 1.810300e-16% Xval (3)
1.760637e-15 3.537972e-16 6.161888e-16 1.143731e-16 3.637979e-16% Xval (4)
1.776357e-15 4.736952e-16 6.178632e-16 3.438110e-16 3.643809e-16% Xval (5)
1.006078e-15 1.179324e-16 9.242832e-16 1.143731e-16 3.637979e-16% Xval(6)
6.125368e-16 2.329648e-16 6.112196e-16 0.000000e+00 1.810300e-16% Xval(7)
2.348902e-16 7.990039e-16 4.523349e-16 2.251225e-16 0.000000e+00% Xval (8)
1.776357e-15 1.554312e-15 5.921189e-16 6.661338e-16 1.776357e-16% Xval (9)
1;

About efficiency, the computational cost of the entire algorithm depends on the time required
by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [0, 1], NTval
t € [1,5] and tol = 10712,

Ex. 3a: output from ./1SEQ/LTS2_ode/SEQ_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c

t in [1, 5], x in [0, 1], t01=1.000000e-12
PARtimel = [% 5 20 120 = NXval
8.378713e-006 6.523883e-006 7.483278e-006 % NTval 5
6.587843e-006 6.651802e¢-006 7.227439e-006 % NTval = 20
6.459924e-006 6.651802e-006 6.779722e-006 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
3.605405e-003 1.183688e-002 6.419520e-002 % NTval = 5
2.830214e-003 1.183509e-002 6.529863e-002 % NTval = 20
2.851449e-003 1.182345e-002 6.281412e-002 % NTval = 120
1;
SUMtimel = [% 5 20 120 = NXval
1.066847e-004 3.365556e-004 2.085660e-003 % NTval = 5
3.359800e-004 1.360102e-003 8.150249e-003 % NTval = 20
2.010827e-003 8.058467e-003 4.836935e-002 % NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
3.720468e-003 1.217996e-002 6.628835e-002 % NTval = 5
3.172782e-003 1.320185e-002 7.345611e-002 % NTval = 20
4.868736e-003 1.988857e¢-002 1.111903e-001 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
1.087314e-006 1.215233e-006 2.174628e-006 % NTval = 5
2.686305e-006 3.837578e-006 1.272797e-005 % NTval = 20
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1.976353e-005 2.136252e-005 3.671283e-005 % NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
1.337895e-002 5.228125e-002 2.833722e-001 % NTval = 5
5.040819e-002 2.118677e-001 1.139888e+000 % NTval = 20
3.005172e-001 1.252889e+000 6.696291e+000 7% NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
7.988559e-005 3.118672e-004 1.843573e-003 % NTval = 5
3.144256e-004 1.243631e-003 7.487499e-003 % NTval = 20
1.879966e-003 7.373075e-003 4.389454e-002 % NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
1.345992e-002 5.259433e-002 2.852179e-001 % NTval = 5
5.072530e-002 2.131152e-001 1.147388e+000 7 NTval = 20
3.024170e-001 1.260283e+000 6.740222e+000 % NTval = 120
1;
Ex. 3a: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t in [1, 5], x in [0, 1], tol=1.000000e-12

PARtimel = [ % 5 20 120 = NXval
6.779722e-06 6.779722e-06 6.715762e-06 ¥ 5 = NTval
6.651802e-06 6.715762e-06 6.651802e-06 I 20 = NTval
6.715762e-06 6.651802e-06 6.843681e-06 I 120 = NTval

1;

LTStimel = [ % 5 20 120 = NXval
6.672730e-02 8.307967e-02 1.577837e-01 7% 5 = NTval
6.663334e-02 8.375694e-02 1.578466e-01 I 20 = NTval
6.714835e-02 8.324897e-02 1.588903e-01 % 120 = NTval

1;

SUMtimel = [ % 5 20 120 = NXval
7.886223e-05 3.087332e-04 1.866662e-03 % 5 = NTval
3.078377e-04 1.233845e-03 7.387338e-03 I 20 = NTval
1.844468e-03 7.404927e¢-03 4.422630e-02 Y 120 = NTval

1;

TOTtimel = [ % 5 20 120 = NXval
6.681294e-02 8.339518e-02 1.596571e-01 % 5 = NTval
6.694783e-02 8.499750e-02 1.652406e-01 % 20 = NTval
6.899953e-02 9.066055e-02 2.031235e-01 % 120 = NTval

1;

PARtime2 = [ % 5 20 120 = NXval
2.430466e-06 2.302547e-06 2.238587e-06 % 5 = NTval
8.186834e-06 7.994955e-06 8.890390e-06 % 20 = NTval
4.822557e-05 4.758597e-05 5.321442e-05 % 120 = NTval

1;

LTStime2 = [ % 5 20 120 = NXval
2.934802e-01 3.699427e-01 7.011746e-01 % 5 = NTval
1.175884e+00 1.479603e+00 2.800168e+00 % 20 = NTval
7.030322e+00 8.872317e+00 1.678566e+01 I 120 = NTval

1;

SUMtime2 = [ % 5 20 120 = NXval
7.323379e-05 2.829574e-04 1.682714e-03 % 5 = NTval
2.945981e-04 1.131318e-03 6.721582e-03 J 20 = NTval
1.761129e-03 6.795136e-03 4.037548e-02 % 120 = NTval

1;

TOTtime2 = [ % 5 20 120 = NXval
2.935559e-01 3.702280e-01 7.028595e-01 % 5 = NTval
1.176186e+00 1.480742e+00 2.806898e+00 % 20 = NTval
7.032131e+00 8.879159e+00 1.682609e+01 % 120 = NTval

1;

These results are summarized together in Fig. 2.7.
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Times of SEQ_Talbot1 for x in [0, 1], tin [1, 5]

Times of SEQ_Talbotd for xin [0, 1], tin [1, 5]

tol=1e-12, NOPTS = 26 tol=1e-12, NOPTS = 26

LT samples by SEQ ode45.m

120

Nxval

Example 3a. NTval

Times of SEQ_Talbot2 for x in [0, 1], tin [1, 5]
tol=1e-12, NOPTS in {23,23}

Times of SEQ_Talbot2 for x in [0, 1], tin [1, 5]
tol=1e-12, NOPTS in {23,23}

Figure 2.7: Mesh plot of execution times in solving (2.19).

For this choice of method’s parameters, LTS is always the most expensive step. Moreover, unlike
Examples 1a and 1b, now ode45.m requires more time than ode.c. Both ODE solvers are called
inside a for-loop, because we are solving a second order ODE problem.

Example 3b

Alternatively, if in (2.18) we have 0 < z < L and the second condition is a boundary condition
U(L,s) = ZL[u(L,t)], then we have to solve a boundary value problem (BVP).

The sample code is located in the sub-folder ex3b_BVP/1SEQ of the main folder.

Let us solve the following PDE problem:

Ut = Ugg, 0<Z’<L, t>0
w(z,0) = z(z — 1)
u(0,t) = 2t

u(L,t) =2t + L(L — 1)

(2.21)

whose solution is u(z,t) = 2t +a(x —1). Applying the Laplace Transform method, (2.21) becomes
the following BVP:

U'=sU—z(z—1), O<zx<L
U(0,s) =2/s%,
U(L,s)=2/s*+L(L—1)/s

(2.22)

Its solution is U(x,s) = 2/s? + z(z — 1)/s with a double pole at s = 0.

Sample code to solve (2.21) provides two implementations to compute the LT samples: one,
written in mixed C/FORTRAN language, uses twpbvp.f [9, 10, 11, 8]; the other, written in mixed
C/MATLAB language, uses the bvp5c.m function. For mixed C/FORTRAN language, the driver
program is written in C, while for mixed C/MATLAB language, it is a MATLAB script file.
About accuracy, the problem (2.21) has been solved for NXval = 9 = € [0,1], NTval = 5t €
[100,500] and tol = 10~'2; output results are reported in the following.

Ex. 3b: output from ./1SEQ/LTS2_twpbvp/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of twpbvp.f

5 t in [100, 500], 9 x in [0, 1], t01=1.000000e-012
RELERR1 = [ % Tval(1) Tval (2) .. Tval (5)
1.282757e-011 2.984279e-015 9.473903e-016 1.989520e-015 6.821210e-016% Xval (1)
1.285421e-011 2.842948e-015 3.790252e-016 1.279152e-015 4.547971e-016Y% Xval (2)
1.287346e-011 2.132628e-015 3.790746e-016 1.563560e-015 2.274163e-016% Xval(3)
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 1.023421e-015Y% Xval (4)
1.288816e-011 2.843948e-015 7.582282e¢-016 1.421530e-015 1.478298e-015% Xval (5)
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 1.023421e-015Y% Xval(6)
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1.
1.
1.
1;
RELE
5.

=N EFR, NP NS

287346e-011
285421e-011
282757e-011

RR2 = [ %
684342e-016

.265589e-016
.844838e-016
.422753e-016
.845728e-016
.422753e-016
.844838e-016
.687452e-016
.684342e-016

Tval (1)
2.
.421474e-016
.687008e-016
.843837e-016
.421974e-016
.843837e-016
.265256e-016
.421474e-016
.842171e-016

2.
2.
2.

N~ NP NDO -

132628e-015
842948e-015
984279e-015

842171e-016

3.

1
0

Tval (2)

O WU~ WU WwOo

790746e-016
.326588e-015
.000000e+000

1.
1.
1.

563560e-015
279152e-015
989520e-015

Tval (5)

.000000e+000
.790252e-016
.686119e-016
.791042e-016
.895570e-016
.686563e-016
.686119e-016
.790252e-016
.000000e+000

1

BN O D ON D

.421085e-016
.263839e-016
.842837e-016
.000000e+000
.264589e-016
.000000e+000
.842837e-016
.263839e-016
.421085e-016

w

O NNOOE N

.274163e-0167%
.979475e-015%
.136868e-015%

.821210e-016%
.547971e-016%
.274163e-016%
.023421e-015%
.685763e-0167%
.274270e-016%
.274163e-016%
.547971e-016%
.821210e-016%

Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Ex. 3b: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB bvp5c.m

5 t in [100, 500], 9 x in [0, 1], t0l=1.000000e-012
RELERR1 = [ % Tval(l) Tval (2) Tval (5)
1.282771e-11 2.984279e-15 9.473903e-16 2.842171e-16 1.136868e-15% Xval (1)
1.285435e-11 2.842948e-15 1.326588e-15 1.421280e-15 2.273985e-15% Xval (2)
1.287346e-11 2.985679e-15 3.790746e-16 1.563560e-15 3.411245e-16% Xval (3)
1.288502e-11 2.417262e-15 5.686563e-16 9.950513e-16 1.591989e-15% Xval (4)
1.288816e-11 2.701751e-15 7.582282e-16 4.264589e-16 1.478298e-15% Xval (5)
1.288502e-11 2.417262e-15 5.686563e-16 1.421502e-16 6.822809e-16% Xval (6)
1.287346e-11 2.985679e-15 3.790746e-16 1.563560e-15 3.411245e-16% Xval (7)
1.285435e-11 2.842948e-15 1.326588e-15 4.263839e-16 2.273985e-15% Xval (8)
1.282771e-11 2.984279e-15 9.473903e-16 2.842171e-16 1.136868e-15% Xval (9)
1;
RELERR2 = [ % Tval(1) Tval (2) Tval (5)

2.842171e-16 2.842171e-16 0.000000e+00 2.842171e-16 6.821210e-16% Xval (1)
4.265589e-16 7.107371e-16 5.685378e-16 4.263839e-16 1.364391e-15% Xval (2)
2.844838e-16 4.265256e-16 5.686119e-16 1.421419e-16 1.137082e-15% Xval(3)
1.422753e-16 2.843837e-16 3.791042e-16 1.421502e-16 1.023421e-15% Xval (4)
2.845728e-16 1.421974e-16 1.895570e-16 4.264589e-16 5.685763e-16% Xval(5)
1.422753e-16 2.843837e-16 5.686563e-16 1.421502e-16 1.023421e-15% Xval (6)
2.844838e-16 4.265256e-16 3.790746e-16 1.421419e-16 1.137082e-15Y% Xval(7)
4.265589e-16 7.107371e-16 5.685378e-16 4.263839e-16 3.410978e-16% Xval (8)
2.842171e-16 2.842171e-16 0.000000e+00 2.842171e-16 6.821210e-16% Xval (9)
1;

Input accuracy is fulfilled and twpbvp.f and bvp5c.m return the same accuracy.

About efficiency, the computational cost of the entire algorithm depends on the time required
by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [0, 1], NTval
t € [100,500] and tol = 10~1'2.

Ex. 3b: output from ./1SEQ/LTS2_twpbvp/SEQ_main_ TIMES.c
LT samples computed by solving ODE problems by means of twpbvp.f

t in [100, 500], x in [0, 11, tol=1.000000e-12
PARtimel = [% 5 20 120 = NXval
1.247213e-005 1.164065e-005 6.715762e-006 % NTval 5
6.587843e-006 6.651802e-006 6.715762e-006 % NTval = 20
6.459924e-006 6.651802e-006 6.843681e-006 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
7.494790e-004 2.640062e-003 8.905996e-003 % NTval = 5
3.944391e-004 1.527164e-003 8.940662e-003 % NTval = 20
3.946949e-004 1.528635e-003 8.923457e-003 % NTval = 120
1;
SUMtimel = [% 5 20 120 = NXval
1.597712e-004 5.419300e-004 2.021956e-003 % NTval = 5
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3.357881e-004 1.350252e-003 .100552e-003 % NTval = 20
2.021444e-003 8.107268e-003 .840459e-002 ¥ NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
9.217224e-004 3.193633e-003 .093467e-002 % NTval = 5
7.368150e-004 2.884068e-003 .704793e-002 % NTval = 20
2.422599e-003 9.642555e-003 .733489e-002 ¥ NTval = 120
1;
PARtime2 = [¥ 5 20 120 = NXval
1.726910e-006 1.087314e-006 .343152e-006 % NTval = 5
4.221336e-006 4.477175e-006 .907641e-006 % NTval = 20
2.155440e-005 2.539198e-005 .594532e-005 % NTval = 120
1;
LTStime2 = [¥% 5 20 120 = NXval
3.345217e-003 6.760726e-003 .986189e-002 % NTval = 5
7.017204e-003 2.772919e-002 .600186e-001 % NTval = 20
4.209241e-002 1.635743e-001 .504090e-001 % NTval = 120
1;
SUMtime2 = [ 5 20 120 = NXval
1.609225e-004 3.041281e-004 .873186e-003 % NTval = 5
3.119951e-004 1.262819e-003 .395525e-003 ¥ NTval = 20
1.857260e-003 7.412922e-003 .394916e-002 % NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
3.507866e-003 7.065941e-003 .173641e-002 % NTval = 5
7.333420e-003 2.899649e-002 .674210e-001 % NTval = 20
4.397123e-002 1.710126e-001 .943941e-001 % NTval = 120
1;
Ex. 3b: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB bvp5c.m
t in [100, 500], x in [0, 171, t0l1l=1.000000e-12

PARtimel = [ % 5 20 120 = NXval
7.035560e-06 .227439e-06 7.355358e-06 % 5 = NTval
7.163480e-06 .355358e-06 7.675157e¢-06 % 20 = NTval
7.099520e-06 .483278e-06 7.355358e-06 % 120 = NTval

1;

LTStimel = [ % 5 20 120 = NXval
2.336763e-01 .916845e-01 4.012695e+00 % 5 = NTval
2.332401e-01 .914135e-01 4.026425e+00 % 20 = NTval
2.358751e-01 .932182e-01 4.026580e+00 % 120 = NTval

1;

SUMtimel = [ % 5 20 120 = NXval
7.803076e-05 .152571e-04 1.844212e-03 % 5 = NTval
3.114195e-04 1.234613e-03 7.421493e-03 J 20 = NTval
1.839927e-03 .405567e-03 4.443903e-02 % 120 = NTval

1;

TOTtimel = [ % 5 20 120 = NXval
2.337614e-01 .920070e-01 4.014547e+00 % 5 = NTval
2.335587e-01 .926555e-01 4.033854e+00 % 20 = NTval
2.377221e-01 .006313e-01 4.071026e+00 % 120 = NTval

1;

PARtime2 = [ % 5 20 120 = NXval
3.837578e-06 .436569e-06 5.820327e-06 % 5 = NTval
1.189649e-05 .219399e-05 2.513614e-05 % 20 = NTval
6.792514e-05 .222908e-04 1.318208e-04 % 120 = NTval

1;

LTStime2 = [ % 5 20 120 = NXval
1.034336e+00 .243773e+00 1.789054e+01 % 5 = NTval
4.219586e+00 .302418e+01 7.160388e+01 % 20 = NTval
2.457354e+01 .740412e+01 4.302984e+02 % 120 = NTval

1;

SUMtime2 = [ % 5 20 120 = NXval
7.444902e-05 .846844e-04 1.684697e-03 % 5 = NTval
2.983717e-04 1.146796e-03 6.773773e-03 % 20 = NTval
1.778909e-03 .875405e-03 4.043125e-02 % 120 = NTval
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1;

TOTtime2 = [ % 5 20 120 = NXval
1.034415e+00 3.244064e+00 1.789223e+01 % 5 = NTval
4.219897e+00 1.302534e+01 7.161068e+01 % 20 = NTval

2.457539e+01 7.741112e+01 4.303390e+02 % 120 = NTval
1
These results are summarized together in Fig. 2.8.
Times of SEQ_Talbot1 for xin [0, 1], tin [100, 500] Times of SEQ_Talbot1 for xin [0, 1], tin [100, 500]
tol=1e-12, NOPTS = 26 tol=1e-12, NOPTS = 26

LT samples by SEQ twpbvp.f
LT samples by SEQ bvpsc.m

5 5
Sanpean | TV ° Nxval e ] NTVA! ° Nxval
Times of SEQ_Talbot2 for x in [0, 1], tin [100, 500] Times of SEQ_Talbot2 for x in [0, 1], tin [100, 500]
tol=1e-12, NOPTS in {23,23} tol=1e-12, NOPTS in {23,23}

LT samples by SEQ twpbvp.f
LT samples by SEQ bvpSc.m
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Figure 2.8: Mesh plot of execution times in solving (2.21).

Of course, the SUM time is about the same between left and right graphs, but the LTS time is quite
different: mixed C/MATLAB code is much more efficient that the mixed C/MATLAB code.

2.7 Example 4

Let us consider two PDE problems for the one-dimensional wave equation uy = ug, [7): one leads
to (ill-conditioned) ODE problems with initial conditions and the other to ODE problems with
boundary conditions. The problems are built such that their analytical solution is the function
(2.10) and its Laplace Transform is given by (2.12) with double complex poles at +3i. These
examples have been chosen because large values of t produce a lot of terms in the final summation:
each term is related to a point s; on the Talbot contour that corresponds to a different (initial or
boundary) condition in the ODE problems.

The basic problem is

2 2

% = %, z>0, t>0

u(z,0") = zsin(3x)/6,

Ou 4y sin(3z)  xcos(3z) (2.23)
a(z, )= 5 + 5 % >0

u(0,t) = tsin(3t)/6, t>0

The Laplace Transform method reduces the PDE to a second order differential equation where the
solution is a complex-valued function. The basic ODE problem is

sin(3z) xcos(?)x) 250

" — 217 _ 1
U s?U — (sz + 1) 6 5 (2.24)

U) = s/(s2+9)?

We have to add another condition to (2.23) and consequently to (2.24).
As in Sect. 2.6, we focus on solving the ODE problems by ode.c and ode45.m for the IVPs and
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by twpbvp.f and bvp5c.m for the BVPs. We remember that all the ODE solvers are designed
to solve a first order system of differential equations and, in addition, that ode.c and twpbvp.f
are designed for real problems. To use these functions, we need to rewrite the ODE as a system
of four first order differential equations with real functions; on the contrary, to use the MATLAB
ODE solvers, the ODE is rewritten as a system of two complex-valued differential equations.
Because of the SUM step may require a very high number of addends for large values of ¢, the
execution times are huge especially for the classical method.

Example 4a

The sample code is located in the sub-folder ex4a_IVP/1SEQ of the main folder.
Adding to (2.23) a condition on 2%(0,#) let us solve the following problem:

ox
0*u  9%*u
Z = = t
92 922 x>0, >0
u(z,0%) = zsin(3x)/6,
ou sin(3x)  xcos(3z)
- ) = >
5 (@ 07) e t—— — ©20 (2.25)
u(0,t) = tsin(3t)/6, t>0
Ou _sin(3t) | tcos(3t)
A A

The Laplace Transform method reduces (2.25) to the following IVP:

u” = $?U — (sz+ 1)Sm§33x) — xCOS;3$)7 x>0

UO0) = s/(s249)? (2.26)
U'0) = s2/(s>+9)2

When sy, is on a Talbot contour (for k = 1,...,NOPTS) the corresponding differential system may
be ill-conditioned since its Jacobian matrix has two eigenvalues at u[f = +s; and one of them has
a positive real part. In this example the positive real part of some eigenvalues may be larger than
those in Example 3a and the ill-conditioning may be more evident. For x € [0,1] and ¢t € [1, 5]
or t € [100, 500], the following two figures highlight (in gray) the region of ill-conditioning (where
Re [£sg] > 0): the leftmost plots refer to the modified method, the rightmost plots to the classical
method. Fig. 2.9 refers to tol = 10~ and Fig. 2.10 to tol = 1072, In addition, they also display
the points s on the upper half contours (in black) and the corresponding eigenvalues (ugf] = +5k
in red, p!* = —s; in blue).

As in Example 3a, the classical method results more ill-conditioned than the modified method and
the ill-conditioning decreases as t increases. However, Figs. 2.9 and 2.10 show that, since NOPTS
changes with tol (due to the complex singularities), consequently the ill-conditioning increases
with tol (besides with z).

When this IVP is solved by means of ode45.m, in the MATLAB Command Window, the sample
code has a driver program written as a MATLAB script (MAIN.m) that calls C-mex functions for
accuracy and for partial elapsed times. Otherwise it is entirely written in C and makes use of
ode.c.
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About accuracy the problem (2

Figure 2.10: Regions of ill-conditioning of problem (2.2
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Figure 2.9: Regions of ill-conditioning of problem (2.26) for tol = 1075.

6) for tol = 10712

5t € [100,500] and tol = 10~12; output results are reported in the following.

25) has been solved, at first, for NXval = 9 « € [0, 1], NTval =

Ex.

4a:

output from

./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c

LT samples computed by solving ODE problems by means of ode.c
t0l1=1.000000e-012

RELERR1 = [ ¥

RE

3.

2
1
5
8
3
1
1
1
1
LER
2
3
4
5
1
2

027651e-014

.064593e-014
.851265e-015
.073628e-014
.224403e-013
.521410e-013
.901604e-013
.389670e-013
.003246e-013

R2 = [ %

.879041e-012
.676904e-012
.930632e-012
.079396e-012
.250581e-011

5 t in [100, 500], 9 x in [0, 1],

Tval (1) Tval (2) Tval (5)
4.149160e-013 3.990648e 013 2.022519e-011
8.395187e-014 7.392255e-013 9.876384e-012
1.476978e-015 1.063776e-012 1.497035e-012
1.398595e-014 1.018135e-013 9.416037e-012
7.277526e-015 3.348585e-012 9.170879e-012
2.044974e-014 4.360682e-012 1.037631e-011
9.680986e-014 2.321052e-012 1.025391e-011
2.288526e-013 1.910029e-012 2.399973e-012
6.945304e-013 ©5.584575e-013 2.007232e-011

Tval (1) Tval (2) Tval (5)
5.524007e-010 1.253451e 012 1.667625e-012
7.177901e-011 7.450403e-013 1.840197e-012
2.927371e-011 3.456172e-013 9.569925e-013
1.498015e-011 1.284907e-012 5.163980e-013
4.705777e-012 6.411816e-012 6.690783e-013
4.022441e-012 5.873314e-012 4.266178e-013

.763479e-012
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.005538e-012%
.209567e-012%
.611262e-011%
.204663e-011%
.762521e-010%
.730738e-010%
.159249e-011%
.161025e-011%
.511929e-012%

.918517e-013%
.786690e-0147%
.922924e-013%
.2056317e-013%
.086972e-012%
.146832e-013%

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)




5.893588e-013 1.425439e-011 2.752291e-012 3.927406e-013 2.248001e-013% Xval(7)
1.294031e-012 3.415270e-011 2.545970e-012 9.209089e-013 3.765228e-013% Xval(8)
1.7561937e-012 1.191074e-010 1.951996e-012 3.237772e-013 7.029774e-016% Xval(9)

1;

Ex. 4a: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB ode45.m

5 t in [100, 500], 9 x in [0, 1], t0l1=1.000000e-012
RELERR1 = [ % Tval(l) Tval (2) Tval (5)
3.027651e-14 4.334605e-13 4.021981e-13 2.028480e-11 9.077428e-12% Xval (1)
1.201321e-13 1.513429e-13 7.343052e-13 2.142091e-12 1.000807e-11% Xval(2)
1.700316e-13 4.366933e-13 9.643215e-13 5.022477e-13 1.091848e-11% Xval (3)
2.841703e-13 1.108025e-13 1.093880e-12 6.302184e-13 1.326704e-11Y% Xval (4)
9.199041e-13 1.857910e-13 1.018785e-12 8.025274e-12 1.591776e-12% Xval(5)
1.674144e-14 2.796996e-13 4.345188e-12 3.421876e-12 9.429604e-11% Xval (6)
1.700706e-13 3.872394e-13 6.912146e-14 1.952046e-11 4.069373e-11% Xval (7)
2.707949e-13 5.616565e-13 5.050868e-13 6.302570e-12 1.353165e-10% Xval(8)
3.700673e-13 5.804259e-13 6.851164e-13 1.023227e-11 9.024121e-12% Xval(9)
1;
RELERR2 = [ % Tval(1) Tval (2) Tval (5)

2.879893e-12 5.523644e-10 1.254305e-12 1.652533e-12 2.901359e-13% Xval (1)
4.729393e-12 7.377025e-11 9.376743e-13 7.867714e-13 1.526089e-13% Xval (2)
4.201518e-12 2.878615e-11 3.309647e-13 9.524850e-13 4.460858e-15% Xval (3)
5.717190e-12 1.346762e-11 3.368536e-12 7.552971e-13 4.530831e-13% Xval (4)
1.917951e-11 4.677309e-12 1.259187e-11 1.086740e-12 6.668524e-13% Xval(5)
1.820251e-12 4.775343e-12 3.315304e-12 1.655922e-14 7.218049e-12% Xval (6)
4.658758e-13 1.597785e-11 3.279018e-12 3.065196e-12 6.035773e-13% Xval (7)
2.436170e-12 3.672136e-11 2.335008e-12 3.965985e-13 3.021642e-12Y% Xval(8)
2.976796e-12 1.276722e-10 1.795662e-12 8.646496e-13 5.623819e-14Y% Xval(9)
1;

To highlight the effects of ill-conditioning, let us repeat the accuracy test in a larger interval for z,
namely NXval = 9 z € [0,27], NTval = 5t € [1,5] and tol = 1078, The following output displays
the relative errors that become very large in both modified and classical methods. The same occurs
for ode45.m. For tol = 107!2 ode.c returns the error indicator iflag = 4 to denote that the
maximum number of iterations has been reached but the accuracy cannot be satisfied.

Ex. 4a: output from ./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode.c
5 t in [1, 5], 9 x in [0, 6.28319], t01=1.000000e-008

RELERR1 = [ % Tval(1) Tval (2) Tval (5)

.144925e-013

3.093631e-009 5.437069e-013 1 1.101796e-014 9.469254e-013% Xval (1)
4.980387e-008 5.936257e-007 2.013549e-006 2.935761e-006 8.546006e-006% Xval (2)
8.684332e-005 4.360408e-007 4.861166e-006 1.075217e-005 6.865145e-004% Xval (3)
3.094571e+006 5.187424e-006 5.813287e-005 1.736777e-003 4.550455e-002% ZXval (4)
5.872744e+016 2.661721e+004 5.523072e-004 1.468263e-003 6.089902e-002% Xval (5)
3.231969e+025 1.514702e+013 7.338038e+000 2.578236e-002 2.688684e-002% Xval(6)
6.719380e+034 1.456438e+022 3.465458e+010 8.143229e-002 1.544710e+000% Xval(7)
2.377552e+044 4.479504e+031 2.921515e+020 2.419309e+008 2.418685e+001% Xval(8)
1.644721e+054 6.997059e+041 6.670973e+029 9.316427e+016 2.342507e+005% Xval (9)
1;
RELERR2 = [ % Tval(1) Tval (2) .. Tval (5)

2.717105e-010 3.489286e-010 7.797479e-012 1.490497e-011 1.580558e-010% Xval (1)
3.586194e-005 2.313158e-007 2.464469e-006 2.284720e-006 2.834271e-006% Xval(2)
3.226452e+012 9.550152e-005 4.071799e-006 1.184580e-005 1.061577e-005% Xval (3)
2.237310e+040 1.399760e+004 1.155896e-004 2.778497e-005 4.817538e-005% Xval (4)
2.693794e+072 2.140398e+033 7.203667e-004 4.969134e-005 1.579482e-006% Xval (5)
1.296906e+101 5.700646e+061 1.391436e-001 4.233518e-004 2.018923e-006% Xval(6)
2.503119e+130 3.859857e+090 1.509136e+007 2.580542e-003 5.252524e-004% Xval(7)
3.693363e+160 4.247981e+119 2.920552e+015 9.783253e+001 2.586602e-002% Xval(8)
1.807085e+190 1.246726e+147 1.486383e+023 1.135093e+007 6.169985e-002% Xval (9)
1;
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The values of the leftmost columns in RELERR2 with respect to those in RELERR1 confirm that the
ill-conditioning of the classical method overcomes that one of the modified method.
With larger values of ¢ the ill-conditioning disappears and we are able to set tol = 107'2, as
reported by the following output.

Ex.

4a:

output from

./1SEQ/LTS2_ode/SEQ_main_ACCURACY.c

LT samples computed by solving ODE problems by means of ode.c

5 t in [100,

5007,

t01=1.000000e-012

RELERR1 = [ %

3.
.977266e-015
.766269e-012
.274426e-014
.060476e-013
.925552e-013
.723243e-012
.270567e-015
.101600e-014

LN R RO WW

)

027651e-014

RELERR2 = [ %

.879041e-012
.132333e-012
.346141e-010
.055338e-012
.258650e-012
.856023e-012
.601251e-010
.718119e-011
.026655e-012

2

HORrRNOOBSNERO

H

Tval (1)
4.
.046808e-013
.726805e-013
.315244e¢-013
.788860e-012
.461396e-013
.437228e-013
.347527e-012
.283512e-011

N ONWRLND®W

Tval (1)
5.
.939768e-011
.524642e-012
.052568e-011
.432978e-010
.692979e-011
.054705e-012
.032081e-011
.996075e-010

T wWo - Ulwo

149160e-013

524007e-010

Tval (2)

N NN OO N W

Tval (2)

WD L, NP, W -

9 x in [0, 6.28319],

.. Tval (5)
.990648e-013 2.022519e-011
.085691e-013 7.452627e-012
.201998e-011 7.131309e-012
.873009e-012 5.773162e-011
.461518e-012 1.863135e-010
.852296e-012 1.360527e-011
.216113e-011 3.523847e-011
.907373e-012 5.185673e-011
.404367e-012 6.996816e-011

.. Tval (5)
.253451e-012 1.667625e-012
.360978e-012 1.921527e-012
.401012e-014 2.592041e-013
.871777e-012 3.737006e-012
.004103e-012 3.384907e-011
.438349e-013 7.157769e-014
.856841e-011 3.526026e-012
.028155e-012 9.481414e-012
.211284e-012 3.376682e-011

e I e e L )

D0 WNP»OR =N

.005538e-012%
.342782e-012%
.405789e-009%
.642108e-010%
.203404e-010%
.344900e-010%
.846323e-0097%
.755854e-010%
.727209e-011%

.918517e-013%
.011510e-012%
.884347e-011%
.399301e-012%
.234668e-012%
.065653e-013%
.221228e-011%
.791478e-012%
.390193e-012%

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

About efficiency, the computational cost of the entire algorithm depends on the time required

by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval x € [0, 1], NTval
t € [100,500] and tol = 1072,

./1SEQ/LTS2_ode/SEQ_main_TIMES.c

LT samples computed by solving ODE problems by means of ode.c

x in [0,

11,

t0l=1.000000e-12

Ex. 4a: output from
t in [100, 500],
PARtimel = [% 5
1.407130e-006 2
1.726932e-006 2.
1.599011e-006 2.
1;
LTStimel = [% 5
3.298386e-001 9.
3.300135e-001 9.
3.331108e-001 9.
1;
SUMtimel = [% 5
3.920839e-003 1.
1.566033e-002 6.
9.413320e-002 3.
1;
TOTtimel = [% 5
3.337608e-001 9.
3.456755e-001 1
4.272455e-001 1.
1;
PARtime2 = [% 5
5.500598e-006 1
2.296180e-005

.087327e-005
3.600973e-005 6

20

.430497e-006 3

814259e-006 3.

20

712600e-001 3.
717514e-001
722766e-001 3

w

20
563526e-002 9
296835e-002 3

20

868977e-001 3.
.034722e+000
349940e+000 6

IS

20

e

60

120 =

.453864e-006 7
494457e-006 3.

709705e-006 %
773666e-006 %

120 =

828374e+000 %

.799555e+000 7%
.800905e+000 %

120 =

.473666e-002 7
.777628e-001 7%
776602e-001 2.

262845e+000 %

120 =

923114e+000 %

.177322e+000 %
.063753e+000 %

120 =

.439110e-005 %
.389648e-005 7%

120

20
120

20
120




1.443587e-004 2.213031e-004 3.778143e-004 % NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
1.808723e+000 5.446123e+000 2.101817e+001 % NTval = 5
6.869331e+000 2.014425e+001 7.953745e+001 % NTval = 20
4.030278e+001 1.189850e+002 4.667229e+002 % NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
4.277226e-003 1.737933e-002 1.040137e-001 % NTval = 5
1.613914e-002 6.438840e-002 3.907388e-001 % NTval = 20
9.560039e-002 3.815985e-001 2.308894e+000 7% NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
1.813006e+000 5.463513e+000 2.112220e+001 % NTval = 5
6.885493e+000 2.020868e+001 7.992826e+001 7 NTval = 20
4.039852e+001 1.193668e+002 4.690321e+002 % NTval = 120
1;
Ex. 4a: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB ode45.m
t in [100, 500], x in [0, 1], tol=1.000000e-12
PARtimel = [% 5 20 120 = NXval
2.238595e-06 2.558394e-06 2.718293e-06 % NTval 5
2.718293e-06 2.398494e-06 2.878193e-06 % NTval = 20
2.398486e-06 2.398486e-06 2.718285e-06 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXval
4.191149e+01 4.250662e+01 4.656570e+01 % NTval = 5
4.185615e+01 4.251340e+01 4.659168e+01 % NTval = 20
4.171219e+01 4.268450e+01 4.683502e+01 % NTval = 120
1;
SUMtimel = [% 5 20 120 = NXval
3.664579e-03 1.469493e-02 8.854233e-02 % NTval = 5
1.470485e-02 5.895419e-02 3.551892e-01 % NTval = 20
8.806887e-02 3.530372e-01 2.125875e+00 % NTval = 120
1;
TOTtimel = [% 5 20 120 = NXval
4.191516e+01 4.252132e+01 4.665424e+01 % NTval = 5
4.187086e+01 4.257236e+01 4.694688e+01 % NTval = 20
4.174496e+01 4.303754e+01 4.896090e+01 % NTval = 120
1;
PARtime2 = [% 5 20 120 = NXval
9.593977e-06 9.753876e-06 1.151277e-05 % NTval = 5
3.709671e-05 3.693681e-05 5.292677e-05  NTval = 20
2.232191e-04 2.291354e-04 2.563343e-04 % NTval = 120
1;
LTStime2 = [% 5 20 120 = NXval
2.292385e+02 2.327408e+02 2.551893e+02 % NTval = 5
8.660459e+02 8.791061e+02 1.213027e+03 % NTval = 20
5.124863e+03 5.218308e+03 5.739994e+03 % NTval = 120
1;
SUMtime2 = [% 5 20 120 = NXval
4.013160e-03 1.621350e-02 9.690124e-02 % NTval = 5
1.519462e-02 6.068254e-02 3.656389e-01 % NTval = 20
9.000544e-02 3.595750e-01 2.168932e+00 % NTval = 120
1;
TOTtime2 = [% 5 20 120 = NXval
2.292426e+02 2.327571e+02 2.552862e+02 % NTval = 5
8.660611e+02 8.791668e+02 1.213392e+03 % NTval = 20
5.124953e+03 5.218668e+03 5.742163e+03 J NTval = 120

These results are summarized together in Fig. 2.11.
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Times of SEQ_Talbot1 for x in [0, 1], tin [100, 500] Times of SEQ_Talbot1 for x in [0, 1], tin [100, 500]
tol=1e-12, NOPTS = 1192 tol=1e-12, NOPTS = 1192

Times of SEQ_Talbot2 for x in [0, 1], tin [100, 500] Times of SEQ_Talbot2 for x in [0, 1], tin [100, 500]
tol=1e-12, NOPTS in {339,2830} tol=1e-12, NOPTS in {339,2830}

Figure 2.11: Mesh plot of execution times in solving (2.25).

Two remarks have to be done. The first is that the evaluation of the LT samples is always the most
expensive step. The second is that the C code is much more efficient than the mixed C/MATLAB
code.

Example 4b

The sample code is located in the sub-folder ex4b_BVP/1SEQ of the main folder.
Now we add a boundary condition to (2.23) as follows:

2 2
%:%7 e O<z<L, t>0
u(z,0m) = %
%(%0*') _ smé?)x) N 55‘0052(3313)7 (2.27)
u(0,t) = wa
w(Lt) = (L+1) siré[?)(L +)]

The analytical solution of (2.27) is the function (2.10).
The Laplace Transform method applied to (2.27) gives the following BVP:

sin(3x) cos(3x)

U" = U —(sz+1) e Ty 0<z<lL
s
U = [EETOER (2.28)
U(L) = scos(3L) — 3sin(3L)  (sL + 1)sin(3L) 4+ 3L cos(3L)
(s2+49)2 6(s?2+9)

whose solution is given by (2.12). Problem (2.28) is similar to (2.22) so that we may apply the
same algorithms. Each problem (2.28), for a given s on the Talbot contour, is solved by a call to
twpbvp.f or to bvp5c.m inside a for-loop. The main difference is that, now, the values of NOPTS
may become large and we have to solve a lot of BVPs (2.28) and, consequently, times for running
the sequential code may grow very much.

About accuracy, the problem (2.25) has been solved for NXval = 9 « € [0,1], NTval = 5¢ €
[100,500] and tol = 10~°; output results are reported in the following.
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Ex. 4b: output from ./1SEQ/LTS2_twpbvp/SEQ_main_ ACCURACY.c
LT samples computed by solving ODE problems by means of twpbvp.f

5 t in [100, 500], 9 x in [0, 1], tol=1.000000e-006
RELERR1 = [ % Tval(1) Tval(2) .. Tval (5)
3.144474e-010 8.805508e-009 1.113552e-010 2.558448e-009 7.404351e-011% Xval(1l)
6.844319e-010 1.911101e-008 3.746961e-008 4.213526e-007 3.628944e-007% Xval(2)
1.914527e-009 1.702886e-008 8.401954e-008 3.556404e-007 7.741197e-007% Xval(3)
4.305869e-009 1.607498e-008 1.713168e-007 3.293198e-007 1.473289e-006% Xval (4)
2.287966e-008 1.524644e-008 6.559570e-007 3.086131e-007 4.470549e-006% Xval(5)
7.079401e-009 1.428269e-008 3.466892e-007 2.861820e-007 3.696920e-006% Xval(6)
2.517262e-009 1.287919e-008 1.072366e-007 2.557196e-007 9.647134e-007% Xval(T7)
1.063584e-009 1.010834e-008 3.946312e-008 2.003902e-007 3.305823e-007% Xval(8)
2.122862e-010 2.200135e-009 7.142842e-011 1.031300e-009 4.959558e-011% ZXval(9)
1;
RELERR2 = [ % Tval(1) Tval (2) .. Tval (5)
2.805007e-008 2.661977e-006 6.567016e-009 2.989376e-009 4.032049e-014% Xval(1l)
6.056661e-008 4.236631e-007 1.023113e-009 2.761364e-008 2.321625e-008% Xval(2)
1.034934e-007 2.133908e-007 1.047832e-008 2.299510e-008 5.182629e-008% Xval (3)
1.913554e-007 1.358716e-007 2.798635e-008 1.656018e-005 1.688401e-005% Xval (4)
8.906814e-007 8.512574e-008 1.237379e-007 1.079182e-005 6.102908e-005% Xval(5)
2.398298e-007 3.864460e-008 7.300191e-008 1.838950e-008 2.860773e-007% Xval(6)
6.717569e-008 1.889680e-008 2.537217e-008 1.636817e-008 7.866204e-008% Xval(7)
1.062831e-008 1.237338e-007 1.145649e-008 1.264528e-008 2.837610e-008% Xval(8)
2.476281e-008 5.814379e-007 3.059893e-009 1.080835e-009 1.792592e-014% ZXval(9)
1;
Ex. 4b: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB bvpbc.m
5 t in [100, 500], 9 x in [0, 17, tol=1.000000e-06
RELERR1 = [ % Tval(1) Tval(2) Tval(5)
3.144474e-10 8.805508e-09 1.113529e-10 2.558444e-09 7.402498e-11% Xval (1)
2.767127e-10 1.146434e-08 6.093480e-10 1.264712e-08 3.378168e-09% Xval(2)
9.171023e-10 1.002416e-08 1.375946e-09 9.997878e-09 5.219427e-09% Xval(3)
2.032185e-09 9.408790e-09 2.675356e-09 9.210693e-09 1.123032e-08% Xval(4)
1.031465e-08 8.948293e-09 1.176839e-08 1.123510e-08 3.454459e-07% Xval(5)
3.022345e-09 8.318076e-09 4.634213e-09 8.026139e-09 2.600808e-08% Xval(6)
1.035081e-09 7.456947e-09 1.328338e-09 7.170198e-09 6.428849e-09% Xval(7)
4.660593e-10 5.714642e-09 4.837152e-10 5.426027e-09 3.136974e-09% Xval (8)
2.122871e-10 2.200136e-09 7.142929e-11 1.031317e-09 4.956465e-11% Xval(9)
1;
RELERR2 = [ % Tval(1) Tval(2) Tval(5)
2.805007e-08 2.661977e-06 6.567017e-09 2.989360e-09 4.032049e-14% Xval (1)
3.562318e-08 4.158615e-07 1.504575e-08 1.107960e-08 8.810678e-10% Xval(2)
4.567902e-08 2.064771e-07 2.613252e-08 9.803066e-09 1.822119e-09% Xval(3)
6.731121e-08 1.292734e-07 4.787468e-08 9.201103e-09 3.374678e-09% Xval(4)
2.414566e-07 7.875520e-08 1.717266e-07 9.113081e-09 9.766424e-09% Xval(5)
4.081199e-08 3.254614e-08 8.586399e-08 8.437514e-09 7.917976e-09% Xval(6)
2.037372e-09 2.454174e-08 2.461903e-08 7.732808e-09 1.979961e-09% Xval(7)
1.599537e-08 1.284421e-07 7.236181e-09 6.364366e-09 6.400027e-10% Xval(8)
2.476281e-08 5.814379e-07 3.059894e-09 1.080821e-09 2.056209e-14% Xval(9)
1;

Only for the mixed C/MATLAB sample code, we report the relative errors also for tol = 10712
The usual selection of parameters and dimension of working areas of twpbvp.f do not allow to
satisfy higher accuracy requirements. If we enlarge the interval for x, higher accuracy requirements
produce an error message due to the maximum mesh size and the program exits with the error flag
iflbvp=1. To have a larger mesh size we need to increase again the size of some working arrays.
In SEQ_LTsamples_twpbvp.c, the function that calls twpbvp.f, as dimensions of some working

areas we set lwrkfl =

30000 and lwrkin =

18000 to manage till 120 values for x € [0,1]. The

value of nmax (maximum mesh size) depends on these values, and the flag iflbvp = 1 indicates
that the function was interrupted since the next iteration would require a mesh size greater than
nmax.
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Ex. 4b: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB bvpbc.m

5 t in [100, 500], 9 x in [0, 1], tol=1.000000e-12
RELERR1 = [ % Tval(1) Tval (2) L Tval (5)
3.027651e-14 4.334605e-13 4.021981e-13 2.028480e-11 9.077428e-12% Xval (1)
1.054984e-14 9.346204e-15 5.163247e-13 2.077265e-12 1.130931e-11% Xval (2)
1.737341e-14 1.723142e-14 6.626619e-13 1.175436e-12 1.396036e-11% Xval (3)
7.604556e-14 2.857474e-14 9.542665e-13 2.251169e-12 1.845943e-11% Xval (4)
5.491986e-13 3.574550e-14 2.555072e-12 2.931611e-12 3.854527e-11Y% Xval(5)
2.121217e-13 4.133925e-14 8.067872e-13 3.525807e-12 1.546485e-11% Xval(6)
9.992949e-14 4.972387e-14 1.478534e-15 4.171684e-12 1.809309e-12Y% Xval(7)
6.166739e-14 6.324871e-14 2.269157e-13 5.313972e-12 6.358420e-12% Xval(8)
3.636500e-14 1.287443e-13 3.613037e-13 9.568859e-12 8.753299e-12Y% Xval(9)
1;
RELERR2 = [ % Tval(1l) Tval (2) . Tval (5)

2.879893e-12 5.523644e-10 1.254305e-12 1.652533e-12 2.901359e-13% Xval (1)
3.424502e-12 7.305698e-11 7.392255e-13 8.480171e-13 2.841987e-13% Xval(2)
4.159793e-12 3.045497e-11 6.318916e-14 4.914989e-13 2.744490e-13% Xval (3)
5.693176e-12 1.477856e-11 1.247542e-12 3.618745e-13 2.652666e-13% Xval (4)
1.803381e-11 4.552093e-12 8.691008e-12 2.960504e-13 2.156699e-13% Xval (5)
1.977393e-12 4.781940e-12 6.773823e-12 2.337900e-13 3.693850e-13% Xval (6)
1.061816e-12 1.628832e-11 3.102703e-12 1.607598e-13 3.138033e-13% Xval (7)
2.042779e-12 3.717707e-11 2.068548e-12 2.356031e-14 2.966352e-13% Xval(8)
2.645447e-12 1.281820e-10 1.456071e-12 4.453832e-13 2.991169e-13% Xval(9)
1;

We must not forget that the analytical solution u(z,t) of (2.27) has a wave behavior that increases
the number of oscillations with both = and ¢; also its LT function is oscillating with z.

This example emphasizes some questions about twpbvp.f which don’t arise in Example 3b.

We mention them briefly, since we are concerned with the application of Talbot’s methods and
not with the usage of third-party software. The main problem is due to the the number of mesh
points for x returned by twpbvp.f: we are able to give in input to the function our mesh points
for x, but it may return a different mesh size and different mesh points so that the LT samples
are not computed where we want. In addition, since a different BVP is solved for each point on
the Talbot contour, the returned mesh size may change from one BVP to another so that it is
not possible to put all the LT samples into the same matrix, required by the inversion method for
the summation step. In Example 3b (sect. 2.6) the mesh size returned by twpbvp.f (nmsh) was
always equal to our mesh size (NXval) and the above problem did not occur.
The oscillating test function of this example often produces nmsh > NXval: in this case, for the
application of Talbot’s method, we introduce a data fitting based on the third degree Hermite
interpolating polynomial. For each desired grid point x it, at first, locates the interval of the mesh
returned by twpbvp.f and containing z, and then approximates the Laplace Transform at z, ex-
ploiting function and derivative values known at the endpoints of the interval from the differential
problem. Of course, this fitting introduces a further delay.

About efficiency, the computational cost of the entire algorithm depends on the time required
by each step of the algorithm, namely the evaluation of method’s parameters (PAR step), the com-
putation of Laplace Transform samples (LTS step) and the evaluation of approximating summations
(SUM step). Partial and total elapsed times are reported in the following for NXval z € [0, 1], NTval
t € [100,500] and tol = 10~1'2.

Ex. 4b: output from ./1SEQ/LTS2_twpbvp/SEQ_main_ TIMES.c
LT samples computed by solving ODE problems by means of twpbvp.f

t in [100, 500], x in [0, 11, t0l1=1.000000e-12
PARtimel = [% 5 20 120 = NXval
2.494426e-006 1.343152e-006 3.070063e-006 % NTval = 5
1.407112e-006 1.279193e-006 5.884287e-006 % NTval = 20

1.662951e-006 1.854830e-006 3.709659e-006 % NTval = 120

64




(%

LTStimel = 5 20 120 = NXval
4.628059e-001 3.615970e-001 7.570526e-001 % NTval 5
4.513896e-001 3.611273e-001 7.577082e-001 % NTval 20
4.516904e-001 3.613177e-001 7.560800e-001 % NTval 120
1;
SUMtimel = [% 5 20 120 = NXval
3.990442e-003 1.557577e-002 9.387663e-002 % NTval 5
1.557507e-002 6.275560e-002 3.748869e-001 % NTval 20
9.347618e-002 3.751674e-001 2.249595e+000 % NTval 120
1;
TOTtimel = [% 5 20 120 = NXval
4.667988e-001 3.771741e-001 8.509323e-001 % NTval 5
4.669661e-001 4.238841e-001 1.132601e+000 % NTval 20
5.451682e-001 7.364869e-001 3.005679e+000 % NTval 120
1;
PARtime2 = [% 5 20 120 = NXval
6.907641e-006 8.698511e-006 1.221629e-005 % NTval 5
2.289755e-005 2.046708e-005 3.907934e-005 % NTval 20
1.400716e-004 1.258726e-004 2.660081e-004 % NTval 120
1;
LTStime2 = [% 5 20 120 = NXval
2.477966e+000 1.981000e+000 4.145244e+000 % NTval 5
9.346294e+000 7.473008e+000 1.565017e+001 % NTval 20
5.533169e+001 4.428304e+001 9.267324e+001 % NTval 120
1;
SUMtime2 = [% 5 20 120 = NXval
4.284081e-003 1.704691e-002 1.031395e-001 % NTval 5
1.611009e-002 6.421784e-002 3.878312e-001 % NTval 20
9.527178e-002 3.802253e-001 2.294577e+000 % NTval 120
1;
TOTtime2 = [% 5 20 120 = NXval
2.482257e+000 1.998056e+000 4.248395e+000 % NTval 5
9.362427e+000 7.537247e+000 1.603804e+001 % NTval 20
5.542710e+001 4.466339e+001 9.496808e+001 % NTval 120
1;
Ex. 4b: output from ./1SEQ/LTS3_mex/MAIN.m
LT samples computed by solving ODE problems by means of MATLAB bvpbc.m
t in [100, 500], x in [0, 1], tol=1.000000e-12

PARtimel = [% 5 20 120 = NXval
2.110668e-06 2.430466e-06 7.675157e-06 % 5 = NTval
3.197982e-06 3.006103e-06 3.325901e-06 ¥ 20 = NTval
2.814224e-06 3.006103e-06 3.006103e-06 % 120 = NTval

1;

LTStimel = [ % 5 20 120 = NXval
3.135684e+02 3.724105e+02 3.150983e+02 % 5 = NTval
3.269009e+02 3.887075e+02 3.275121e+02 ¥ 20 = NTval
3.372510e+02 4.008671e+02 3.278941e+02 % 120 = NTval

1;

SUMtimel = [ % 5 20 120 = NXval
3.721044e-03 1.467925e-02 8.889610e-02 % 5 = NTval
1.476739e-02 5.913292e-02 3.536628e-01 I 20 = NTval
8.812116e-02 3.534445e-01 2.121526e+00 % 120 = NTval

1;

TOTtimel = [ % 5 20 120 = NXval
3.135722e+02 3.724252e+02 3.151872e+02 % 5 = NTval
3.269157e+02 3.887666e+02 3.278658e+02 % 20 = NTval
3.373391e+02 4.012205e+02 3.300156e+02 % 120 = NTval

1;

PARtime2 = [ % 5 20 120 = NXval
1.100106e-05 1.084967e-05 1.064781e-05 % 5 = NTval
4.254078e-05 4.395376e-05 4.218754e-05 I 20 = NTval
2.632179e-04 2.404589e-04 2.200716e-04 I 120 = NTval

1;
LTStime2 = [ % 5 20 120 = NXval
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1.724280e+03 1.697086e+03 1.401946e+03 Y% 5 = NTval

7.083955e+03 7.036900e+03 5.867052e+03 % 20 = NTval

4.273534e+04 4.241948e+04 3.539722e+04 % 120 = NTval
1;

SUMtime2 = [ % 5 20 120 = NXval
4.044935e-03 1.519136e-02 8.935672e-02 % 5 = NTval
1.674805e-02 6.269523e-02 3.687586e-01 % 20 = NTval
1.005945e-01 3.750076e-01 2.210646e+00 % 120 = NTval

1;

TOTtime2 = [ % 5 20 120 = NXval
1.724284e+03 1.697102e+03 1.402035e+03 % 5 = NTval
7.083972e+03 7.036963e+03 5.867420e+03 I 20 = NTval
4.273544e+04 4.241986e+04 3.539943e+04 % 120 = NTval

1;

These results are summarized together in Fig. 2.12.

Times of SEQ_Talbot1 for xin [0, 1], tin[100, 500] Times of SEQ_Talbotl for x in [0, 1], tin [100, 500]
tol=1e-12, NOPTS = 1192 tol=1e-12, NOPTS = 1192

LT samples by SEQ twpbvp.f
LT samples by SEQ bvpsc.m

5 5
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Times of SEQ_Talbot2 for x in [0, 1], tin 100, 500] Times of SEQ_Talbot2 for xin [0, 1], tin [100, 500]
tol=1e-12, NOPTS in {339,2830} tol=1e-12, NOPTS in {339,2830}

LT samples by SEQ twpbup.f

Figure 2.12: Mesh plot of execution times in solving (2.27).

Results show that, although some data fitting may occur, the mixed C/FORTRAN code is much
more efficient than the mixed C/MATLAB code. This is probably due to the fact that twpbvp.f
requires among its parameters, beyond the functions for the differential system and for the bound-
ary conditions, their Jacobian matrices, while we do not pass them to bvp5c. The MATLAB
function can be more efficient if they are provided (by means of the bvpset function).

2.8 Example 5

The last example is based on the two-dimensional spatial heat equation; it is reported to show how
Talbot’s method can also be applied to multidimensional spatial PDE problems.
The sample code is located in the sub-folder ex5_PDE/1SEQ of the main folder.
Let us solve in the spatial domain © = [0, 1] x [0, 1] the following BVP:
ou 0*u  0%u
E:@‘Faiyw (z,y) €]0,1[x]0,1[, t>0
w(@,y,07) =x(z - 1) +yly—1) (2.:29)
w(0,y,t) = u(l,y,t) =4t +y(y — 1)
u(z,0,t) = u(z,1,t) =4t + x(x — 1)

The analytical solution is u(x,y,t) = 4t + z(x — 1) + y(y — 1). Applying the Laplace Transform

method with respect to ¢, the PDE in (2.29) becomes a two-dimensional Helmholtz equation with
Dirichlet boundary conditions and we have to solve another PDE problem given on the domain
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Q x C by:

0’U  0*U
- - - _ +
92 T oy sU u(z,y,0m)
4 —1
VO =Uy) = §+2D (2:30)
U(z,0) = U(z,1) = ;12 n @

Its solution is the following function with a double pole at s = 0:

%+x(x—1)+y(y—1).

Ulz,y,s) = Zu] = .
To solve (2.30), at each s on the Talbot contour, we use a finite difference scheme, based on the
centered finite difference operator, to approximate the second derivatives on the mesh points; it
leads to the well-known 5-points stencil. The Dirichlet boundary conditions are eliminated in the
usual way, and the resulting problem for the unknown interior nodes is a linear system Av = b. For
a square mesh of size NXYval x NXYval, if the interior nodes are numbered, in a row-wise manner,
from left to right (according to increasing z-values), and then according to increasing y-values,
then the A matrix is (symmetric) block tridiagonal® with size n? x n? where n = NXYval — 2.
We are able to use Talbot Suite DE again, since the LT samples and the inverse LT (ILT)
approximations are both matrices with rows referring to the mesh points vectorized according
to node numbering. The matrix of LT samples is of size n? x NOPTS and the matrix of ILT
approximations is of size n? x NTval. For simplicity and brevity, we simply solve each system
Av = b by means of the MATLAB left division operator, allocating A as a "sparse matrix".

The provided code for this example contains two implementations that differ because one calls
the user-level functions in Talbot Suite DE and the other calls its skill-level functions. Another
difference is that the first contains a main driver program implemented as a C mex-function since
it is called inside MATLAB, whereas the second is almost entirely in MATLAB language, except
for a gateway C mex-function to call the skill-level function for the summation step in Talbot
Suite DE.

About accuracy, the problem (2.29) has been solved for NXYval = 9 points along each spatial
dimension and x,y € [0,1], NTval = 5 ¢ € [100,500] and tol = 10~!2; output results, from
using the user-level functions, are reported in the following. The leftmost column indicates the
identification numbers of inner grid points. This numeric format (different between integer and
real numbers), in displaying a matrix, can be obtained if "format short g" was selected in the
MATLAB Preferences.

Ex. 5: output from ./1SEQ/LTS3_mex_luserLev/SEQ_main_ACCURACY.c

LT samples by solving in MATLAB block tridiagonal systems

5 t in [100, 500], 9 x,y in [0, 1], tol=1.000000e-12
RELERR1 = % Tval(1l) Tval(2) . Tval(5)
1 1.285435e-11 2.700801e-15 1.137076e-15 2.984688e-15 1.102883e-14
2 1.286341e-11 2.701065e-15 1.705725e-15 5.401127e-15 1.421296e-14
3 1.286890e-11 3.269902e-15 2.274388e-15 8.812623e-15 2.342351e-14
4 1.287082e-11 2.985621e-15 2.084883e-15 7.107024e-15 1.603272e-14
5 1.286890e-11 3.269902e-15 3.032518e-15 7.817650e-15 1.728337e-14
6 1.286341e-11 2.701065e-15 1.705725e-15 7.106746e-15 1.694185e-14
7 1.285435e-11 2.700801e-15 2.084639e-15 3.837455e-15 1.364391e-14
8 1.286341e-11 2.701065e-15 1.705725e-15 5.401127e-15 1.773778e-14
9 1.287275e-11 3.838730e-15 3.032597e-15 9.523505e-15 2.365130e-14
10 1.287895e-11 3.412405e-15 3.222260e-15 1.066095e-14 3.229387e-14
11 1.288031e-11 3.696844e-15 3.222302e-15 1.151394e-14 3.320382e-14
12 1.287895e-11 3.412405e-15 3.222260e-15 1.151383e-14 2.967852e-14
13 1.287275e-11 3.838730e-15 3.032597e-15 8.528512e-15 2.365130e-14
14 1.286341e-11 2.701065e-15 1.705725e-15 6.253936e-15 1.773778e-14

6 All the diagonal blocks, that are tridiagonal matrices, are equal; all the extra-diagonal blocks are identity

matrices.
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
1;
RELERR2 = [

R R R R RRRRBRRRRRERRRBRRRERRBRRRARRRERRBRRRERRRBRRRR B &

h

[é)]

NP P O0T00NRFE R R OONNNO - 0NEFE 00NNOONODER B =

.286890e-11
.287895e-11
.288416e-11
.288609e-11
.288416e-11
.287895e-11
.286890e-11
.287082e-11
.288031e-11
.288609e-11
.288816e-11
.288609e-11
.288031e-11
.287082e-11
.286890e-11
.287895e-11
.288416e-11
.288609e-11
.288416e-11
.287895e-11
.286890e-11
.286341e-11
.287275e-11
.287895e-11
.288031e-11
.287895e-11
.287275e-11
.286341e-11
.285435e-11
.286341e-11
.286890e-11
.287154e-11
.286890e-11
.286341e-11
.285435e-11

Tval (1)

.687452e-16
.422141e-16
.137846e-15
.137891e-15
.137846e-15
.532846e-16
.843726e-16
.532846e-16
.844838e-16
.845172e-16
.535849e-16
.280327e-15
.844838e-16
.532846e-16
.137846e-15
.690343e-16
.845506e-16
.845617e-16
.845506e-16
.690343e-16
.137846e-15
.137891e-15
.422641e-16
.845617e-16
.537184e-16
.691234e-16
.422641e-16
.137891e-15
.422308e-16
.845172e-16

NNWNWNNNWOWOWWWNDWWHD WP WWNDNWWWWNWR WL WW

.269902e-15
.412405e-15
.123564e-15
.554866e-15
.123564e-15
.265506e-15
.269902e-15
.985621e-15
.696844e-15
.554866e-15
.554936e-15
.554866e-15
.843726e-15
.985621e-15
.269902e-15
.412405e-15
.123564e-15
.554866e-15
.123564e-15
.412405e-15
.269902e-15
.701065e-15
.838730e-15
.412405e-15
.696844e-15
.412405e-15
.838730e-15
.701065e-15
.700801e-15
.701065e-15
.269902e-15
.985621e-15
.269902e-15
.701065e-15
.700801e-15

Tval (2)

WEFE FEFNNWWNNENWWWNENNDNWNMNE OB P2 =20

.528845e-16
.705936e-15
.990375e-15
.421724e-15
.279527e-15
.705936e-15
.528845e-16
.705936e-15
.416978e-15
.843671e-15
.270285e-15
.843671e-15
.416978e-15
.108065e-16
.990375e-15
.843671e-15
.839180e-15
.554866e-15
.839180e-15
.843671e-15
.279527e-15
.274759e-15
.417167e-15
.554866e-15
.412738e-15
.701698e-15
.417167e-15
.421724e-15
.990375e-15
.696772e-15

W WO WrE P 0Wwwwwo o wowwNOTwwww~N W Wwo weEw

R NN R R R R W0WWWwWE E0WwWwwWwWNNWWEREWWNNWWWWWwN

.274388e-15
.222260e-15
.980594e-15
.980646e-15
.980594e-15
.222260e-15
.274388e-15
.084883e-15
.222302e-15
.980646e-15
.170255e-15
.980646e-15
.222302e-15
.084883e-15
.274388e-15
.222260e-15
.980594e-15
.980646e-15
.980594e-15
.222260e-15
.326726e-15
.705725e-15
.032597e-15
.222260e-15
.222302e-15
.222260e-15
.032597e-15
.705725e-15
.137076e-15
.705725e-15
.326726e-15
.084883e-15
.274388e-15
.705725e-15
.137076e-15

Tval (5)

.790252e-16
.895250e-16
.790647e-16
.686045e-16
.790647e-16
.895250e-16
.790252e-16
.580998e-16
.790746e-16
.790894e-16
.790943e-16
.790894e-16
.686119e-16
.580998e-16
.790647e-16
.790894e-16
.791042e-16
.686637e-16
.686563e-16
.790894e-16
.790647e-16
.790696e-16
.790943e-16
.686637e-16
.137342e-15
.516437e-15
.790943e-16
.686045e-16
.790647e-16
.790894e-16
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.812623e-15
.066095e-14
.236707e-14
.051922e-14
.151417e-14
.808076e-15
.964815e-15
.102007e-15
.066106e-14
.322010e-14
.194085e-14
.524156e-15
.813140e-15
.401338e-15
.964815e-15
.808076e-15
.236707e-14
.051922e-14
.151417e-14
.066095e-14
.964815e-15
.401127e-15
.675661e-15
.066095e-14
.808172e-15
.808076e-15
.528512e-15
.401127e-15
.837455e-15
.401127e-15
.964815e-15
.107024e-15
.111981e-15
.253936e-15
.832351e-15

.842560e-16
.528095e-16
.106954e-16
.528428e-16
.106954e-16
.705619e-15
.842560e-16
.705619e-15
.421419e-15
.950222e-16
.528845e-16
.7056752e-15
.421419e-15
.705619e-15
.106954e-16
.705752e-15
.705802e-15
.558728e-15
.700854e-15
.705752e-15
.705669e-15
.847826e-15
.705769e-15
.705819e-15
.132295e-15
.558728e-15
.705769e-15
.847826e-15
.705669e-15
.705752e-15

P R, NNMNNRPRFRRERENNNOMNNONEPENNNOOONNENDNDWWWEAENDOWWWWWN

PR R NORRRBRREPRRPBUORNRBRAERRABRRERRRRBRRERNRBBRRO

.524282e-14
.490922e-14
.616089e-14
.274974e-14
.263577e-14
.047450e-14
.524282e-14
.967136e-14
.229413e-14
.900403e-14
.752604e-14
.831488e-14
.706339e-14
.967136e-14
.171792e-14
.694947e-14
.263577e-14
.093031e-14
.081636e-14
.865513e-14
.262757e-14
.421296e-14
.365130e-14
.320356e-14
.706339e-14
.865513e-14
.274163e-14
.421296e-14
.011924e-14
.694185e-14
.342351e-14
.046731e-14
.171792e-14
.955704e-14
.455351e-14

.684964e-16
.705556e-15
.364477e-15
.705609e-15
.364477e-15
.959260e-16
.364391e-15
.705556e-15
.250790e-15
.478241e-15
.478252e-15
.478241e-15
.250790e-15
.705556e-15
.364477e-15
.478241e-15
.046843e-15
.933144e-15
.046843e-15
.478241e-15
.364477e-15
.705609e-15
.478252e-15
.933144e-15
.592014e-15
.933144e-15
.274234e-15
.705609e-15
.364477e-15
.478241e-15




31 2.845506e-16 3.839180e-15 ©5.686563e-16 1.705802e-15 2.046843e-15
32 2.845617e-16 3.554866e-15 ©5.686637e-16 1.705819e-15 1.933144e-15
33 2.845506e-16 2.986029e-15 5.686563e-16 1.705802e-15 2.046843e-15
34 5.690343e-16 2.843671e-15 3.790894e-16 1.705752e-15 1.478241e-15
35 1.422308e-16 1.990375e-15 3.790647e-16 7.106954e-16 1.364477e-15
36 1.422141e-16 1.705936e-15 1.895250e-16 1.705619e-15 1.705556e-15
37 2.844838e-16 2.416978e-15 5.686119e-16 1.421419e-15 1.250790e-15
38 2.845172e-16 2.843671e-15 3.790894e-16 1.705752e-15 5.685541e-16
39 1.422641e-16 2.417167e-15 3.790943e-16 1.705769e-15 5.685586e-16
40 5.690343e-16 2.843671e-15 1.137268e-15 1.705752e-15 1.478241e-15
41 2.844838e-16 2.416978e-15 5.686119e-16 1.421419e-15 1.250790e-15
42 1.422141e-16 1.705936e-15 1.895250e-16 1.705619e-15 7.959260e-16
43 5.687452e-16 8.528845e-16 3.790252e-16 2.842560e-16 1.364391e-15
44 8.532846e-16 1.705936e-15 1.895250e-16 8.528095e-16 1.705556e-15
45 1.137846e-15 1.990375e-15 3.790647e-16 7.106954e-16 4.548255e-16
46 1.137891e-15 1.421724e-15 5.686045e-16 8.528428e-16 1.705609e-15
a7 1.422308e-16 1.279527e-15 3.790647e-16 1.705669e-15 4.548255e-16
48 1.422141e-16 1.705936e-15 1.895250e-16 1.705619e-15 1.705556e-15
49 2.843726e-16 8.528845e-16 3.790252e-16 2.842560e-16 1.364391e-15

1;

The following output refers to the skill-level functions: we only report the relative error for the
sequential implementation of modified Talbot’s method.

Ex. 5: output from ./1SEQ/LTS3_mex_2skillLev/MAIN_accuracy.m
LT samples by solving in MATLAB block tridiagonal systems

5 t in [100, 500], 9 x,y in [0, 1], t0l1l=1.000000e-12

RELERR1 = [ % Tval(1) Tval (2) .. Tval (5)

1 1.2854e-11 2.7008e-15 3.7903e-16 2.9847e-15 1.0119e-14
2 1.2863e-11 2.7011e-15 1.7057e-15 5.4011e-15 1.7738e-14
3 1.2869e-11 3.2699e-15 2.2744e-15 6.9648e-15 2.0808e-14
4 1.2871e-11 2.9856e-15 1.1372e-15 7.107e-15 2.0467e-14
5 1.2869e-11 3.2699e-15 2.2744e-15 6.9648e-15 2.0808e-14
6 1.2863e-11 2.7011e-15 1.7057e-15 4.4062e-15 1.6032e-14
7 1.2854e-11 2.7008e-15 3.7903e-16 4.8324e-15 1.3644e-14
8 1.2863e-11 2.7011e-15 1.7057e-15 6.2539e-15 1.6942e-14
9 1.2873e-11 2.9857e-15 2.0849e-15 7.6757e-15 2.729e-14
10 1.2879e-11 3.4124e-15 3.2223e-15 9.8081e-15 3.6729e-14
11 1.2880e-11 3.6968e-15 2.2746e-15 9.8082e-15 3.7639%9e-14
12 1.2879e-11 3.4124e-15 3.2223e-15 8.8131e-15 3.4e-14
13 1.2873e-11 2.9857e-15 2.0849e-15 9.5235e-15 3.0815e-14
14 1.2863e-11 2.7011e-15 1.7057e-15 6.2539e-15 1.6032e-14
15 1.2869e-11 3.2699e-15 1.3267e-15 6.9648e-15 2.2628e-14
16 1.2879e-11 3.4124e-15 2.2745e-15 9.8081e-15 3.3204e-14
17 1.2884e-11 3.2704e-15 3.0328e-15 1.0661e-14 3.798e-14
18 1.2886e-11 3.5549e-15 3.0329e-15 1.0519e-14 3.6275e-14
19 1.2884e-11 4.1236e-15 3.0328e-15 1.0661e-14 3.5365e-14
20 1.2879e-11 3.4124e-15 2.2745e-15 7.9602e-15 3.2294e-14
21 1.2869e-11 3.2699e-15 2.2744e-15 7.8176e-15 2.3424e-14
22 1.2872e-11 2.9856e-15 2.0849e-15 5.4013e-15 2.1377e-14
23 1.2880e-11 2.8437e-15 2.2746e-15 8.8131e-15 3.2294e-14
24 1.2886e-11 3.5549e-15 3.0329e-15 1.0519e-14 3.9004e-14
25 1.2888e-11 3.5549e-15 3.2225e-15 1.1088e-14 3.8436e-14
26 1.2886e-11 3.5549e-15 3.0329e-15 1.0519e-14 3.184e-14
27 1.2880e-11 2.8437e-15 2.2746e-15 8.8131e-15 2.9679e-14
28 1.2872e-11 2.9856e-15 1.1372e-15 5.4013e-15 2.1377e-14
29 1.2869e-11 3.2699e-15 1.3267e-15 5.2591e-15 2.2628e-14
30 1.2879e-11 3.4124e-15 2.2745e-15 8.8131e-15 3.4e-14
31 1.2884e-11 4.1236e-15 3.0328e-15 1.0661e-14 3.5365e-14
32 1.2886e-11 3.5549e-15 3.0329e-15 1.0519e-14 3.5365e-14
33 1.2884e-11 4.1236e-15 3.0328e-15 9.6662e-15 3.5365e-14
34 1.2879e-11 3.4124e-15 2.2745e-15 9.8081e-15 3.4e-14
35 1.2869e-11 3.2699e-15 1.3267e-15 6.112e-15 2.2628e-14
36 1.2863e-11 2.7011e-15 1.7057e-15 5.4011e-15 1.7738e-14
37 1.2873e-11 2.9857e-15 2.0849e-15 6.8228e-15 2.729e-14
38 1.2879e-11 3.4124e-15 3.2223e-15 7.9602e-15 3.2294e-14
39 1.2880e-11 3.6968e-15 2.2746e-15 7.9603e-15 3.0588e-14
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40 1.2879e-11 3.4124e-15 2.2745e-15 7.9602e-15 2.8655e-14
41 1.2873e-11 2.9857e-15 2.0849e-15 8.5285e-15 2.6267e-14
42 1.2863e-11 2.7011e-15 7.581e-16 4.4062e-15 1.7738e-14
43 1.2854e-11 2.7008e-15 3.7903e-16 2.1319e-15 1.0119e-14
44 1.2863e-11 2.7011e-15 7.581e-16 4.4062e-15 1.6942e-14
45 1.2869e-11 3.2699e-15 1.3267e-15 4.2642e-15 2.3424e-14
46 1.2871e-11 2.9856e-15 1.1372e-15 3.5535e-15 1.9671e-14
47 1.2869e-11 3.2699e-15 1.3267e-15 5.2591e-15 2.0808e-14
48 1.2863e-11 2.7011e-15 1.7057e-15 5.4011e-15 1.7738e-14
49 1.2854e-11 2.7008e-15 3.7903e-16 4.8324e-15 1.4554e-14
1;

Selecting a column from the previous error matrix and reshaping it into a suitable matrix, we get
the relative error surface computed at the interior grid points for a particular value of t. Figs. 2.13
shows these surfaces for the first, third and last value of t.

Rel. Err. in u(x.!) on the mesh for t, = 100.00 Rel. Err. in u(x.t) on the mesh for t, = 300.00 Rel. EIT. in u(x,y.t) on the mesh for t, = 500.00
tol=1e-12, NOPTS = 26 tol=1e-12, NOPTS = 26 tol=1e-12, NOPTS = 26

%1018

©

~

Eamples y x

Figure 2.13: Relative errors with respect to mesh points, in solving (2.29) for (z,y) € (), at three values
of t and tol = 10712,

About efficiency, in the following the total elapsed times, from the two methods, are reported
for 20t € [100, 500], a spatial mesh of 20 x 20x,y € [0,1] and tol = 10712

Ex. 5: output from ./1SEQ/LTS3_mex_luserLev/SEQ_main_TIMES.c
LT samples by solving in MATLAB block tridiagonal systems
t in [100, 5001, x,y in [0, 1], t0l=1.000000e-12

MEAN ELAPSED TOTAL TIME SEQ_Talboti_DE() = 9.038247e-02
MEAN ELAPSED TOTAL TIME SEQ_Talbot2_DE() = 1.216265e+00

Since the computational cost of the entire algorithm depends on the time required by each step
of the algorithm, namely the evaluation of method’s parameters (PAR step), the computation of
Laplace Transform samples (LTS step) and the evaluation of approximating summations (SUM
step), by means of skill-level functions we are able to evaluate the elapsed time of every step.
The following output reports partial and total elapsed times for the modified Talbot method, with
NXYval z,y € [0,1], NTval ¢ € [100,500] and tol = 1072, We only report the times from the
modified method.

Ex. 5: output from ./1SEQ/LTS3_mex_2skilllLev/MAIN_times.m
LT samples by solving in MATLAB block tridiagonal systems

t in [100, 500], x,y in [0, 1], t01=1.000000e-12
PARtimel = [% 5 20 120 = NXYval
8.05106e-03 2.36854e-04 2.16721e-04 % NTval = 5
1.80404e-04 1.28296e-04 8.36884e-05 % NTval = 20
1.14479e-04 1.35796e-04 9.35573e-05 % NTval = 120
1;
LTStimel = [% 5 20 120 = NXYval
4.85550e-03 9.91048e-02 4.33036e+01 % NTval = 5
2.65039e-03 7.13262e-02 4.34454e+01 % NTval = 20
2.85922e-03 7.18737e-02 4.35535e+01 % NTval = 120
1;
SUMtimel = [% 5 20 120 = NXYval
6.37532e-04 8.51450e-03 2.37765e-01 % NTval = 5
7.52800e-04 2.11767e-02 9.19073e-01 % NTval = 20
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4.45048e-03 1.27124e-01 5.48214e+00 % NTval = 120

1;
TOTtimel = [% 5 20 120 = NXYval
1.35441e¢-02 1.07856e-01 4.35416e+01 % NTval = 5
3.58360e-03 9.26312e-02 4.43645e+01 % NTval = 20
7.42418e-03 1.99133e-01 4.90358e+01 % NTval = 120
1;

These times are reported in Fig. 2.14.

Times of SEQ_Talbot1 for x in [0, 1], tin [100, 500]
tol=1e-12, NOPTS = 26

LT samples by \ operator

Example 5 NTval

Figure 2.14: Mesh plot of execution times in solving (2.29).

Results emphasize that the LTS step is the most expensive step, except when the number of ¢t-values
is much greater than the mesh size.
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Chapter 3

USAGE EXAMPLES FOR THE
PARALLEL FUNCTIONS

3.1 Introduction

This chapter focuses on the usage of OpenMP-based parallel functions in Talbot Suite DE to
solve the same differential problems discussed in the previous chapter.

Only a shared-memory model has been considered because the OpenMP code [20], with no
modification, runs almost everywhere, starting from a laptop, and takes full advantage of multi-
core CPUs. For an OMP-based code the parallel processes are threads.

Results in the previous chapter emphasized that the modified method is the most suitable Talbot
method for differential problems: for this reason this method is the only one implemented in
the OMP-based parallel version of Talbot Suite DE. The parallel algorithm is divided into three
subsequent steps: the computation of method’s parameters (PAR step), the computation of the
Laplace Transform samples (LTS step) and the evaluation of the approximating summations (SUM
step). In Talbot Suite DE, the parallelization only concerns the LTS and SUM steps, since the PAR
step is negligible with respect to them.

In Section 1.1 we introduced the three parallelization strategies implemented in the OpenMP-based
parallel version of Talbot Suite DE: coarse-grained parallelism for data distribution, fine-grained
parallelism for summation distribution and hybrid parallelism that merges them. However, in
many cases it is sufficient to use the sequential version instead of the parallel one.

In solving PDE problems, the output parameter is a matrix ;¢ ~ u(x;,t¢), of size NXval x NTval,
where u(z;,t;) is the solution of the PDE problem computed on a regular mesh. The coarse-
grained parallelism in Talbot Suite_DE consider this matrix as a mono-dimensional array before
to distribute it among the parallel processes (i.e., a so called non-uniform decomposition of a
matrix is used), so that we have not to be concerned with a matrix distribution by row blocks or
by column blocks. The same holds for the returned matrix of error flags at each u(z;, ;) and for

the working matrix of LT samples, U ke

To build an executable from the sample code, the following files are provided:
e Makefiles and shell scripts for Linux;

e batch files for Windows (assuming that the operating system be aware of the MinGW binary
folder');

e MATLAB scripts for mex-file compilation?.

L If we are using MinGW-w64, it is sufficient to launch the bat file named as mingw-w64.bat and located in the
MinGW-w64 installation folder.
2 Under Windows, the same assumption about the MinGW binary folder is required.
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In order to build and run an executable, every example contains a file to be launched, named as
runme.xxx where .xxx stays for .bat for Windows, .sh for Linux and .m for MATLAB.
The same hints, as in Section 2.2, can be applied here.

The examples in Chapter 2 have emphasized that parallelization must concern not only Talbot
Suite DE, but also the user-defined function for computing the LT samples. Also if this task is
demanded to the user, the sample code suggests a simple way to parallelize this computation,
achieved by means of a parallel for-loop inside the function for LT samples, assuming thread-safe
the third-party software. This way of proceeding facilitates the coarse-grained parallelism so that
this strategy seems to be the best for all the results reported in this document.

In order to highlight the performance of the Talbot Suite DE parallel functions, not influenced
by any software used to solve the differential problems, the computation of LT samples is also
carried out by means of a function returning the values of the Laplace Transform (in the sample
code the LTS1_fun subfolder).

When using third-party software to solve an ODE problem, after the application of the Laplace
Transform method to a PDE problem, in order to parallelize the computation of LT samples, we do
not modify the code itself, unless it is strongly necessary. For example, with mixed C/FORTRAN
code, in order to use OpenMP directives in a FORTRAN code, we need to enable gfortran to
accept preprocessing directives and conditional compilation; to do this, we changed the ".f" ex-
tension of FORTRAN code into ".F" and we use #ifdef _OPENMP - #else - #endif as usual.
In addition, in order to make thread-safe the code of the parallel version of a function for com-
puting the LT samples, some modifications have been applied to its sequential version (for in-
stance, look at differences between SEQ_LTsamples_ode.c and OMP_LTsamples_ode.c or between
SEQ_LTsamples_twpbvp.c and OMP_LTsamples_twpbvp.c).

3.2 Remarks about mixed C-OpenMP/MATLAB code

All the sample code for mixed C/MATLAB languages have been successfully tested under MAT-
LAB R2015a and R2015b for Windows (with MinGW gcc 5.1.0and 6.1.0) and MATLAB R2014b,
R2016a and R2017a for Linux (with gcc 5.3.0). The examples about the parallel versions of the
code require OpenMP for C* and, sometimes in addition, they require the MATLAB Parallel
Computing Toolbox (PCT). In Section 2.1, general tips were given about the compilation of mixed
code under Windows and Linux. In the following we focus on some questions concerning the mixed
C-OpenMP/MATLAB code.

Under Windows, in order to avoid an "Invalid mex file" run time error, the "bin" sub-directory
of MinGW installation folder must be added to the Path system variable. To add, only temporarily,
the bin folder to the Path variable, the script append_MinGW_dir.m is provided and is called only
when it is necessary.

We found that, for MATLAB R2016a and R2017a under Linux, after mex completed the
compilation with OpenMP options, when the executable is launched the following error arises:

Invalid MEX-file ’xxx.mexa64’: dlopen: cannot load any more object with static TLS

This error is not issued by MATLAB R2014b.

On the web it is a well-known MATLAB error: on Linux systems there is a fixed number of
libraries that can be loaded with static thread local storage (TLS), due to a limitation of glibc
(the GNU C Library). If this number is exceeded, you will see an error message such as the one
above. Some solutions are suggested: all of them starts MATLAB from a terminal window with
some options in order to reduce the number of loaded libraries. One of them consists in removing
the Java Virtual Machine (JVM) software, used to run the desktop and to display graphics®.
However, also renouncing the graphics, without the JVM we cannot use the Parallel Computing

3 Remind that if you are using a C library without OpenMP, the code runs sequentially since the #pragma
directives are ignored.
4 Start MATLAB with the-nojvm option.
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Toolbox since the client session of MATLAB must be running the Java Virtual Machine. Other
options to reduce the loaded libraries are -nodisplay, -nosoftwareopengl, -nosplash: also if
these options are used together, the above error arises occasionally. At last, we found the following
solution that allows MATLAB R2016a/R2017a to work correctly: launch MATLAB in a Linux
terminal as

LD_PRELOAD=/usr/1lib/gcc/x86_64-linux-gnu/5.3.0/1libgomp.so matlab

where, of course, "5.3.0" has to be substituted, by the user, with his gcc version and "matlab’
represents a symbolic link to the MATLAB executable or its complete path. In such a way the
missing OpenMP library (1ibgomp) will be loaded before any other library.

3.3 Results of parallel implementations

In the next sections the examples focus on the speedup as a metric to evaluate the OMP-based
parallel implementations of modified Talbot’s method for the same examples discussed in the pre-
vious chapter. In order to evaluate the parallel performance, starting from the elapsed times, the
speedup is computed as S(p) = T(1)/T(p), that is the ratio between the elapsed time of the parallel
implementation run with a single process and with p parallel processes”. From a theoretical point
of view, the speedup S(p) varies from 1 to p; the upper limit represents the best performance.
In addition, the sample code also contains a driver program able to test the accuracy of the parallel
software.
All the results reported in this user guide have been obtained on an Intel Core i7 Processor Extreme
Edition, equipped with 6 cores and Hyper-Threading capability, and running under Windows or
under Linux. The range of parallel threads goes from 1 to 12, but when it exceeds the number of
cores then Hyper-Threading occurs.

In Talbot Suite DE the modified Talbot method has three OpenMP-based implementations,
each one related to a particular parallelization strategy. At user-level we have functions named as

e OMP_Talbot11_DE for coarse-grained parallelism;
e OMP_Talbot12_DE for fine-grained parallelism;
e OMP_Talbot13_DE for nested parallelism.
At skill-level functions we have functions named as
e COM_TalbotPAR and COM_TalbotNcorr for the computation of method’s parameters;
e OMP_TalbotSUM11_DE for the summation step in the coarse-grained parallelism;
e OMP_TalbotSUM12_DE for the summation step in the fine-grained parallelism;
e OMP_TalbotSUM13_DE for the summation step in the nested parallelism.

In the next sections results will be displayed as MATLAB arrays so that it is easy to produce
graphs from raw data. The speedup has been computed under Windows and under Linux.

3.4 Example 0

The two examples in this section solve particular differential problems where the application of the
Laplace Transform method leads to a closed-form expression for the Laplace Transform function.

5 We recall that the speedup is defined as S(p) = Tseq/T(p), that is the ratio between the elapsed time of the
sequential implementation and the elapsed time of the parallel implementation with p parallel processes. However,
often the formula S(p) = T(1)/T(p) is used instead. Another metric is the efficiency E(p) = S(p)/p, whose range
is ]0, 1].
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Example Oa

The sample code is located in the sub-folder ex0a_0ODE/2PAR of the main folder.

About accuracy, the problem (2.1), after the application of the Laplace Transform method,
has been solved for NTval = 20 ¢ € [1000,3000] and tol = 10712; relative errors from the three
OMP-based parallel implementations of modified Talbot’s method are reported in the following.

Ex. Oa: output from ./2PAR/OMP_main.c
LT samples by a function
20 t in [1000, 3000], t0l=1.000000e-12
RELERR1: OMP_Talbotl11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

t RELERR1 RELERR2 RELERR3

1000.0 5.8914e-13 4.3101e-13 1.2823e-12
1105.3 3.3297e-14 1.5633e-14 1.4069e-15
1210.5 1.2201e-12 3.7709e-12 2.3756e-12
1315.8 4.8646e-14 2.2961e-14 2.555be-14
1421.1 3.7938e-11 3.9937e-12 3.5260e-11
1526.3 2.8013e-15 2.1290e-14 1.8712e-14
1631.6 1.8407e-12 3.0919e-12 5.0316e-13
1736.8 2.3198e-13 7.1256e-14 2.1077e-13
1842.1 9.9536e-13 3.2453e-12 1.0807e-12
1947 .4 2.0199e-13 2.522be-14 1.3809e-13
2052.6 1.1442e-12 4.6720e-15 4.1319e-13
2157.9 1.4414e-13 1.8801e-13 2.9682e-13
2263.2 8.2233e-13 2.6653e-12 6.8291e-13
2368.4 4.2163e-13 2.9196e-13 1.6111e-13
2473.7 2.3437e-12 9.1234e-13 2.0408e-12
2578.9 6.8478e-13 1.8883e-12 4.3520e-13
2684.2 1.05681e-12 5.1181e-13 1.5955e-12
2789.5 2.1712e-12 6.0982e-13 1.9865e-12
2894.7 3.6780e-13 2.9823e-13 3.7769e-13
3000.0 7.1573e-12 3.0468e-12 6.6938e-12

About efficiency, the problem (2.1) has been solved for NTval = 120 ¢ € [1000,3000] and
tol = 10~'2; the following output shows the speedup provided by the three OMP-based parallel
implementations for Windows and Linux operating systems.

Ex. Oa: output from ./2PAR/OMP_main.c
LT samples by a function
120 t in [1000, 3000], tol=1.000000e-12, NOPTS = 182814

SPEEDUP OMP_Talbot11_DE():
1 % number of threads =

1
1.9489 % number of threads = 2
2.8234 % number of threads = 3
3.6523 % number of threads = 4
4.3871 % number of threads = 5
5.1275 % number of threads = 6
5.0771 % number of threads = 7
5.9032 % number of threads = 8
6.1655 % number of threads = 9
6.9447 % number of threads = 10
7.7307 % number of threads = 11
8.3212 % number of threads = 12

Linux
SPEEDUP OMP_Talbot11_DE():

1 % number of threads = 1
1.9872 % number of threads = 2
2.9049 % number of threads = 3

(0]




LT7TT1 % number of threads = 4
.5963 % number of threads = 5
.5143 % number of threads = 6
.5341 % number of threads = 7

number of threads = 8
.6951 % number of threads = 9
.5468 % number of threads = 10
.0544 % number of threads = 11
.6857 % number of threads = 12

NN OO oW
w
N
w
0o
=

SPEEDUP OMP_Talbot12_DE():

% number of threads 1
L9411 % number of threads = 2
.7536 % number of threads = 3
.5365 % number of threads = 4
.2628 % number of threads = 5
.0249 % number of threads = 6
.7693 % number of threads = 7
.4018 % number of threads = 8
.0921 % number of threads = 9
.7017 % number of threads = 10
.3207 % number of threads = 11
.8365 % number of threads = 12

NN OO WN R

SPEEDUP 0OMP_Talbot12_DE():

% number of threads = 1
.8062 % number of threads = 2
.5029 % number of threads = 3
.1493 % number of threads = 4
.7819 % number of threads = 5
.5342 % number of threads = 6
.933 % number of threads = 7
.5242 % number of threads = 8
.0304 % number of threads = 9
.5548 % number of threads = 10
.103 % number of threads = 11
.6213 % number of threads = 12

OO UTO D WD WWN e

Windows
SPEEDUP OMP_Talbot13_DE ()
% 1 2 3 4 5 6 = inner thrd
1 1.9066 2.6456 3.3584 4.1434 4.7829%1 outer thrd
1.9477 3.5022 4.9874 5.6191 6.5469 7.6104%2
2.8224 5.0483 6.2109 7.8285 - -%3
3.6412 5.8436 7.8993 8.1347 - -%4
4.2591 6.8044 - - - -%5
4.9845 7.7015 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.6927 2.4978 3.0061 3.5002 4.3662%1 outer thrd
1.9184 3.3857 4.6486 4.7175 5.0148 5.2233%2
2.9014 4.916 5.3145 5.4041 - -%3
3.7794 5.0765 5.6797 5.9551 - -%h4
3.3276 5.8369 - - - -%5
3.9817 6.1656 - - - -%6

Fig. 3.1 shows the graphs of these results.
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Figure 3.1: Test 2: speedup of OMP_Talbot1ly_DE in solving (2.1) for 120¢ € [1000, 3000].

Since we have many ¢-values and a lot of addends in the summation step, the three parallelization
strategies have a similar performance. To appreciate the differences among them, only for Win-
dows, Figs. 3.2 and 3.3 show the graphs of speedup for 20t € [1000,3000] and 120t € [100, 500]
respectively.
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Figure 3.2: Test 1: speedup of OMP_Talbot1y_DE in solving (2.1) for 20¢ € [1000, 3000].

In this case (a few t-values and a lot of addends) the fine-grained parallelism behaves globally
better than coarse-grained parallelism. Also the nested parallelism gives good results.

Speedup OMP_Talbotll_DE
120 € [100,500], tol=1e-12, NOPTS=1192

Speedup OMP_Talbot12_DE
120 t € [100,500], tol=1e-12, NOPTS=1192

Speedup=T(1)/T(p) OMP_Talbot13_DE
120t € [100,500], tol=1e-12, NOPTS=1192
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0 o
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

number of parallel threads [Windows]

number of parallel threads [Windows]

total number of parallel threads [Windows]

Figure 3.3: Test 3: speedup of OMP_Talbot1ly_DE in solving (2.1) for 120¢ € [100, 500].

On the contrary, with a lot of t-values and a relatively small number of addends, the coarse-grained
parallelism overcomes the other. This is also highlights by the nested parallelism.

Example 0b

The sample code is located in the sub-folder exOb_PDE/2PAR of the main folder.
About accuracy, the problem (2.3) [4] has been solved for NTval = 5 ¢t € [0.5,20], NXval = 9
x €[0,1] and tol = 10~8; absolute errors from the three OMP-based parallel implementations of
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modified Talbot’s method are reported in the following. Unlike the sample code about the parallel
performance, written in C, the example about accuracy is written in mixed C/MATLAB language
to compare the numerical results of the inverse Laplace Transform with those computed by means
of erfc and quadgk functions according to (2.6). Since, also the values considered "exact' are
numerical approximations, we use a middle accuracy tolerance.

Ex. Ob:

output from
LT samples by a function

5 t in [0.5,

ABSERR1:
ABSERR2:
ABSERR3:

./2PAR/LTS3_mex_acc/MAIN.m

t01=1.000000e-8

ABSERR1 =

ABSERR2 =

ABSERR3 =

L%
.902441e-08
.854175e-08
.176601e-08
.151085e-08
.042021e-08
.146836e-10
.501541e-08
.603003e-08
.158027e-08

WNFH OND>OON

]

L%
.902441e-08
.854175e-08
.176601e-08
.151085e-08
.042021e-08
.146836e-10
.501541e-08
.603003e-08
.158027e-08

WNFH ONP>ON

] .

T W NP, ON P ON

—

L%
.902441e-08
.854175e-08
.176601e-08
.151085e-08
.042021e-08
.146836e-10
.501541e-08
.603003e-08
.158027e-08

Tval (1)

Tval (1)

Tval (1)

O 00U NWWON - © 00Ul ~NWWWON =

O 00U NWWWON -

20], 9 x in [0, 1],
OMP_Talbot11_DE
OMP_Talbot12_DE
OMP_Talbot13_DE

Tval (2) Tval (3)

.064482e-12 1.022959e-12

.161660e-12 1.173275e-10

.856158e-12 4.089170e-10

.746951e-13 2.211475e-11

.472049e-13 1.227463e-12

.141059e-12 3.239286e-10

.523360e-15 5.665141e-11

.461287e-14 1.164466e-11

.045542e-14 2.977674e-12

Tval (2) Tval (3)

.065426e-12 1.007194e-12

.160994e-12 1.173395e-10

.855811e-12 4.089288e-10

.750472e-13 2.212364e-11

.474443e-13 1.232348e-12

.141204e-12 3.239246e-10

.398459e-15 5.665429e-11

.469614e-14 1.164258e-11

.053175e-14 2.979089e-12

Tval (2) Tval (3)

.065092e-12 1.022071e-12

.161327e-12 1.173275e-10

.856019e-12 4.089176e-10

.748772e-13 2.211575e-11

.473437e-13 1.227463e-12

.141128e-12 3.239283e-10

.474787e-15 5.665141e-11

.465451e-14 1.164466e-11

.049705e-14 2.977563e-12

o R 000D N D [l e 62 BTSN o

R R R 00O N D

Tval (4)

.396483e-13
.875786e-08
.055139e-10
.591177e-09
.916712e-12
.793766e-14
.907781e-10
.609268e-13
.540858e-11

Tval (4)

.067857e-13
.875785e-08
.055270e-10
.591186e-09
.906053e-12
.126833e-14
.907768e-10
.641187e-13
.540654e-11

Tval (4)

.312106e-13
.875784e-08
.055336e-10
.591195e-09
.921263e-12
.515411e-14
.907822e-10
.613987e-13
.541077e-11

D= O1ONNSNN O N0 E NN N

QR & NN O -

Tval (5)

.0562137e-12Y,
.079736e-11Y,
.069897e-127,
.395723e-12Y,
.841527e-12Y,
.668771e-12Y,
.278622e-13Y,
.172215e-097%
.274670e-13Y

Tval (5)

.597256e-127,
.112488e-117
.288084e-12Y,
.777389e-12Y,
.168571e-12Y,
.505457e-127,
.369594e-13Y
.172051e-097%
.091516e-137

Tval (5)

.014123e-12Y,
.167011e-117%
.051501e-127
.941078e-127,
.277567e-12Y,
.478146e-12Y,
.007350e-137%
.172078e-097%
.681289e-137

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

Xval (1)
Xval (2)
Xval (3)
Xval (4)
Xval (5)
Xval (6)
Xval (7)
Xval (8)
Xval (9)

About efficiency, the problem (2.1) has been solved for NTval = 120 ¢ € [0.5,20], NXval = 120
x € ]0,1] and tol = 107!2; the following output shows the speedup provided by the three OMP-
based parallel implementations.

120 t in [0.5,

Ex. Ob:

output from

LT samples by a function

2071,

120 x in [O,

1]’

t01=1.000000e-12,

./2PAR/LTS1_fun_time/OMP_main_TIMES.c

SPEEDUP OMP_Talbot11 _DE():

1

OO WNN

% number
.0246 % number
.9523 % number
L7707 % number
.589 % number
.1406 % number
.1622 % number
.9034 % number
.6267 % number

threads
threads
threads
threads
threads
threads
threads
threads
threads

O 00N Od WN =

BN |
co




7.3376 % number of threads = 10
8.0477 % number of threads = 11
8.4845 % number of threads = 12

SPEEDUP OMP_Talbot11_DE():

% number of threads 1
.0375 % number of threads = 2
L9791 % number of threads = 3
.8208 % number of threads = 4
.6346 % number of threads = 5
.5486 % number of threads = 6
.5127 % number of threads = 7
.1249 % number of threads = 8
.6812 % number of threads = 9
.3296 % number of threads = 10
.8767 % number of threads = 11
.8502 % number of threads = 12

O OO O 0D WNN

Windows
SPEEDUP OMP_Talbot12_DE():

1 % number of threads = 1
0.6759 % number of threads = 2
0.6941 % number of threads = 3
0.6739 % number of threads = 4
0.6279 % number of threads = 5
0.6468 % number of threads = 6
0.6092 % number of threads = 7
0.5798 % number of threads = 8
0.5619 % number of threads = 9
0.5382 % number of threads = 10
0.5148 % number of threads = 11
0.5002 % number of threads = 12

Linux

SPEEDUP OMP_Talbot12_DE():

1 % number of threads = 1
1.6053 % number of threads = 2
1.986 % number of threads = 3
2.1417 % number of threads = 4
2.2525 % number of threads = 5
2.3141 % number of threads = 6
2.1939 % number of threads = 7
2.0988 % number of threads = 8
2.0095 % number of threads = 9
2.0172 % number of threads = 10
1.9086 % number of threads = 11
1.1043 % number of threads = 12
Windows

% 1 2 3 4 5 6 = inner thrd
1 0.16732 0.10982 0.083051 0.066951 0.055109%1 outer thrd
1.9021 0.29243 0.181 0.13003 0.099481 0.080269%2
2.6767 0.40253 0.22604 0.15341 - -%3
3.3398 0.47466 0.24365 0.15956 - -%h4
3.9631 0.50974 - - - -%5
4.8215 0.51562 - - - -%6
Linux
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SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd
1 0.5544 0.41171 0.32714 0.25499 0.11068%1 outer thrd
1.8266 1.0448 0.44461 0.18256 0.08936 0.04444%2
2.7359 1.086 0.33756 0.10397 - -%3
3.6728 0.9168 0.23077 0.08062 - -%4
4.4443 0.8377 - - - -%5
5.1239 0.7058 - - - -%6

Fig. 3.4 shows the graphs of these results.

Speedup OMP_Talbot11_DE Speedup OMP_Talbot12_DE Speedup=T(1)/T(p) OMP_Talbot13_DE
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Figure 3.4: Speedup of OMP_Talbot1x_DE in solving (2.3) for 120¢ € [0.5,20], 120z € [0, 1].

The only remark about previous results is concerned with the poor parallel performance provided
by OMP_Talbot12_DE: this is due to the small value of NOPTS (73) so that it is not convenient to
parallelize the summation of only 73 terms inside a sequential for-loop over (n,t). This is also
shown by the speedup of OMP_Talbot13_DE: the fine-grained parallelism is not suited for this case.

3.5 Example 1

The two problems (2.7) and (2.9), both based on the unidirectional wave equation, lead to IVPs
solved by ode.c and ode45.m. The difference between them stays in the number of addends
used in the summation step: Example la always gives small values, whereas Example 1b may
produce large values. Besides ode.c and ode45.m, we also compute the LT samples directly by
a function in order to evaluate the parallel code without the cost of the user-defined function
(based on ODE solvers). The function for LT samples usually consists of a for-loop with a call
to the ODE solver within. We do not make any change to the solver: this means that ode.c is
always sequential and this may affect the total performance. Only for ode45.m, in Example la
we avoid the for-loop as already mentioned in sect. 2.4 enabling the vectorization capabilities of
MATLAB in LT_samples.m, and in Example 1b we make use of the Parallel Computing Toolbox
by calling ode45.m inside a parfor construct. Then Example 1b requires that PCT is installed,
while Example 1a does not.

Example la

The sample code is located in the sub-folder exla_IVP/2PAR of the main folder.
In the following, we report output results for LT samples computed by means of a function and
by solving an ODE problem by means of ode.c or ode45.m.
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LT samples by a function

This case is considered to highlight the performance of the Talbot Suite DE parallel functions
not influenced by any software used to solve the ODE problems. The user-defined function
OMP_LTsamples_fun.c simply computes the LT samples inside a parallel for-loop on the NOPTS
points of the Talbot contour.

About accuracy, the problem (2.7) has been solved for NTval = 5 ¢ € [100,500], NXval = 9
x € [10,20] and tol = 10~!2; relative errors from the three OMP-based parallel implementations
of modified Talbot’s method are reported in the following.

Ex. la: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c

LT samples by a function

5 t in [100, 500], 9 x in [10, 20], t0l1=1.000000e-012
RELERR1: OMP_Talbot11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method
RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
.426520e-012 .308440e-015 7.334635e-016 3.188777e-015 3.789561e-015

.426520e-012
.932020e-012
.448130e-012
.974500e-012
.512155e-012
.0569508e-012
.616614e-012
.182325e-012
.757794e-012

H

.308440e-015
.879682e-015
.496195e-015
.440661e-015
.004674e-014
.025153e-014
.149936e-014
.208329e-014
.201463e-014

.334635e-016 3.188777e-015 5.572884e-015
.652589e-016
.456968e-016
.623485e-016
.022765e-016
.189681e-016
.951720e-016
.248326e-015
.552714e-016

.764422e-015
.893847e-015
.923403e-015
.109163e-016
.775290e-015
.361519e-015
.036182e-015
.894781e-015

.112518e-015
.996452e-015
.425765e-016
.311267e-015
.725633e-015
.098424e-015
.068175e-015
.749028e-015

[ i o o (o I (o I o I |
WHFE 00N O WU w-N
P NP, P, NDN
W oW =N

8 7
7.932020e-012 8.879682e-015 1.095777e-015 3.593748e-015 5.892814e-015
7.448130e-012 9.496195e-015 1.273293e-015 3.858462e-015 5.989355e-015
6.974500e-012 1.037143e-014 1.449394e-015 2.747718e-015 1.327729e-015
6.512155e-012 1.004674e-014 9.022765e-016 2.191553e-015 5.077276e-015
6.059508e-012 1.025153e-014 7.189681e-016 8.193646e-016 1.321300e-015
5.616614e-012 1.149936e-014 8.951720e-016 2.314582e-015 8.128334e-015
5.182325e-012 1.208329e-014 1.248326e-015 2.850655e-015 4.383107e-016
4.757794e-012 1.291896e-014 1.065814e-015 3.654220e-015 6.340227e-015
1

% FINE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR2 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(h)
8.426520e-012 7.308440e-015 7.334635e-016 3.188777e-015 2.897900e-015
7.931254e-012 8.879682e-015 1.095777e-015 3.593748e-015 5.559259e-016
7.448130e-012 9.496195e-015 5.456968e-016 1.102418e-015 1.996452e-015
6.975375e-012 1.023846e-014 1.268220e-015 4.533735e-015 4.425765e-016
6.512279e-012 1.017894e-014 9.022765e-016 3.150358e-015 6.622534e-016
6.059386e-012 1.038296e-014 8.987102e-016 2.594655e-015 1.321300e-015
5.616735e-012 1.149936e-014 8.951720e-016 2.314582e-015 2.416532e-015
5.182444e-012 1.208329e-014 1.248326e-015 2.850655e-015 3.068175e-015
4.757794e-012 1.201463e-014 1.065814e-015 1.894781e-015 0.000000e+000
1

% NESTED OMP PARALLELISM with 3 outer, 4 inner threads for modified Talbot’s method

RELERR3 = [ % Tval(1l) Tval (2) Tval (3) Tval(4) ... Tval(5s)
8
7
7
6
6
6
5
5
4
].

About efficiency, the problem (2.7) has been solved for NTval = 120 ¢ € [100, 500], NXval = 120
x € [10,20] and tol = 10~!2; the following output shows the speedup provided by the three OMP-
based parallel implementations.

Ex. la: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
120 t in [100, 500], 120 x in [10, 20], t0l=1.000000e-12, NOPTS = 26

SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
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.0017 % number of threads = 2
. 9445 % number of threads = 3
.7464 % number of threads = 4
.6876 % number of threads = 5
.204 % number of threads = 6

number of threads = 7
.8305 % number of threads = 8
.2902 % number of threads = 9
.7605 % number of threads = 10
.0639 % number of threads = 11
.6897 % number of threads = 12

OO OO W NN
-
S
[oe]
s
BS

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.0962 % number of threads = 2
.0322 % number of threads = 3
.0371 % number of threads = 4
.9521 % number of threads = 5
.8804 % number of threads = 6
.7957 % number of threads = 7
L4497 % number of threads = 8
.0663 % number of threads = 9
.7185 % number of threads = 10
.3076 % number of threads = 11
.8202 % number of threads = 12

DN OO O D WN

Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
0.5356 % number of threads = 2
0.4330 % number of threads = 3
0.4347 % number of threads = 4
0.4004 % number of threads = 5
0.3804 % number of threads = 6
0.3639 % number of threads = 7
0.3327 % number of threads = 8
0.3049 % number of threads = 9
0.2902 % number of threads = 10
0.2764 % number of threads = 11
0.2629 % number of threads = 12
Linux
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.2331 % number of threads = 2
1.3834 % number of threads = 3
1.3302 % number of threads = 4
1.3982 % number of threads = 5
1.2917 % number of threads = 6
1.2288 % number of threads = 7
1.1731 % number of threads = 8
1.0866 % number of threads = 9
1.0202 % number of threads = 10
0.9695 % number of threads = 11
0.8927 % number of threads = 12
Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 0.10433 0.06978 0.05233 0.04167 0.033987%1 outer thrd
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2.1 0.193 0.11442 0.08246 0.06310 0.050786%2

2.7828 0.25712 0.14249 0.09629 - -%3

3.4939 0.29936 0.15387 0.10082 - -h4

4.1709 0.32873 - - - -%5

4.7004 0.33213 - - - -%6
Linux

% 1 2 3 4 5 6 = inner thrd
1 0.30119 0.20666 0.15909 0.12896 0.048576%1 outer thrd
1.9035 0.56968 0.24768 0.067798 0.029103 0.014893%2
2.6679 0.60398 0.16344 0.043071 - -%3
3.4974 0.47376 0.11342 0.032639 - -%h4
2.9007 0.41022 - - - -%5
4.9041 0.39475 - - - -%6

Fig. 3.5 shows the graphs of these results.
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Figure 3.5: Speedup of OMP_Talbotly_DE in solving (2.7) for LT samples returned by a function and
120¢ € [100,500], 120z € [10, 20].

The same remark as in the previous example holds about the poor parallel performance provided
by OMP_Talbot12_DE: this is due to the very small value of NOPTS (26) so that it is not worthwhile
to parallelize the summation of only 26 addends inside a sequential for-loop over the data. This
is also shown by the speedup of OMP_Talbot13_DE: the fine-grained parallelism is not suited for
this case.

LT samples by ode.c

After the application of the Laplace Transform method we have to solve an IVP for each point on
the Talbot contour; in practice, we have NOPTS different independent IVPs. Then the user-defined
function OMP_LTsamples_ode.c, to compute the LT samples on the contour, has been parallelized
by solving these problems in parallel.

About accuracy, the problem (2.7) has been solved for NTval = 5 ¢ € [100,500], NXval =9 = €
[10,20] and tol = 107'2; the relative errors from the three OMP-based parallel implementations
of modified Talbot’s method are similar, then in the following only those from OMP_Talbot11_DE
(coarse-grained parallelism) are reported.

Ex. la: output from ./2PAR/LTS2_ode/OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of ode.c

5 t in [100, 500], 9 x in [10, 207, t01=1.000000e-012
RELERR1: OMP_Talbotl11_DE




% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
8.426520e-012 7.308440e-015 7.334635e-016 3.188777e-015 3.789561e-015
7.932020e-012 8.879682e-015 1.095777e-015 2.764422e-015 7.671777e-015
7.448130e-012 9.496195e-015 1.273293e-015 3.858462e¢-015 1.042591e-014
6.975375e-012 1.037143e-014 1.449394e-015 2.747718e-015 6.638647e-015
6.512155e-012 1.004674e-014 9.022765e-016 4.930995e-015 1.302432e-014
6.059508e-012 1.025153e-014 7.189681e-016 4.369945e-015 9.469315e-015
5.616614e-012 1.149936e-014 8.951720e-016 4.084557e-015 5.492118e-015
5.183282e-012 1.208329e-014 1.248326e-015 3.800873e-015 8.547059e-015
4.757794e-012 1.201463e-014 1.065814e-015 3.654220e-015 4.591199e-015
1;

About efficiency, the problem (2.7) has been solved for NTval = 120 ¢ € [100, 500], NXval = 120
x € [10,20] and tol = 10~ !2. Since NOPTS is small for these parameters, the following output
shows the speedup provided by OMP_Talbot11_DE alone. Other parallelization strategies are not
suitable for this case.

Ex. la: output from ./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode.c

120 t in [100, 500], 120 x in [10, 20], tol=1.000000e-12, NOPTS = 26
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.0107 % number of threads = 2
2.923 % number of threads = 3
3.7078 % number of threads = 4
4.4289 % number of threads = 5
5.1648 % number of threads = 6
4.992 % number of threads = 7
5.4615 % number of threads = 8
6.2188 % number of threads = 9
6.6914 % number of threads = 10
7.1306 % number of threads = 11
7.5919 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.0171 % number of threads = 2
2.9204 % number of threads = 3
3.7414 % number of threads = 4
4.3896 % number of threads = 5
5.1688 % number of threads = 6
4.5221 % number of threads = 7
4.8341 % number of threads = 8
5.5631 % number of threads = 9
6.0323 % number of threads = 10
6.3742 % number of threads = 11
5.9569 % number of threads = 12

Fig. 3.6 shows the graphs of these results. Only the coarse-grained parallelism is considered since

the very small value of NOPTS.
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Figure 3.6: Speedup of OMP_Talbot11_DE in solving (2.7) for LT samples computed by ode.c and 120t €
[100,500], 120z € [10, 20].

LT samples by ode45.m

After the application of the Laplace Transform method we have to solve an IVP for each point on
the Talbot contour; in practice, we have NOPTS different independent IVPs. Then the user-defined
function LT_samples.m, to compute the LT samples on the contour, puts together these IVPs
into a single IVP formed by NOPTS independent differential equations so that no for-loop is used.
Moreover, among the options for ode45.m the *Vectorized’ is set to >on’.

About accuracy, the problem (2.7) has been solved for NTval = 5 ¢ € [100,500], NXval = 9
x € [10,20] and tol = 10~!2; relative errors from the three OMP-based parallel implementations
of modified Talbot’s method are similar, then in the following only those from OMP_Talbot11_DE
(coarse-grained parallelism) are reported.

Ex. la: output from ./2PAR/LTS3_mex/0OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of MATLAB ode45.m

5 t in [100, 500], 9 x in [10, 20], t01=1.000000e-012
RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)
8.425616e-12 8.120488e-15 7.334635e-16 2.218280e-15 1.226035e-15
7.931254e-12 8.879682e-15 3.652589e-16 9.675476e-16 1.223037e-15
7.447246e-12 9.496195e-15 1.273293e-15 2.067033e-15 4.214732e-15
6.974500e-12 1.037143e-14 3.623485e-16 3.709419e-15 3.098035e-15
6.512155e-12 1.004674e-14 9.022765e-16 2.191553e-15 6.622534e-16
6.059508e-12 1.117154e-14 7.189681e-16 1.775290e-15 3.303250e-15
5.616614e-12 1.149936e-14 8.951720e-16 3.131494e-15 7.249595e-15
5.182325e-12 1.208329e-14 1.248326e-15 2.850655e-15 8.547059e-15
4.757794e-12 1.291896e-14 1.953993e-15 2.706829e-15 4.591199e-15
1;

About efficiency, the problem (2.7) has been solved for NTval = 120 ¢ € [100, 500], NXval = 120
x € [10,20] and tol = 10~!2. Since NOPTS is small for this example, the following output shows
the speedup provided by OMP_Talbot11_DE alone. Other parallelization strategies are not suitable
for this case. This example does not require the MATLAB Parallel Computing Toolboz.

Ex. la: output from ./2PAR/LTS3_mex/O0OMP_main_TIMES.c
LT samples by solving ODE problems by means of MATLAB ode45.m
120 t in [100, 500], 120 x in [10, 20], t0l=1.000000e-12, NOPTS = 26

SPEEDUP OMP_Talbot11 _DE():

1 % number of threads = 1
1.9152 % number of threads = 2
2.4324 % number of threads = 3
2.916 % number of threads = 4
3.2726 % number of threads = 5
3.6078 % number of threads = 6
2.7258 % number of threads = 7
2.9595 % number of threads = 8
3.2012 % number of threads = 9

og)
Ut




3.3832 % number of threads = 10

3.4353 % number of threads = 11
3.6009 % number of threads = 12
Linux

SPEEDUP OMP_Talbot11_DE():

1 % number of threads = 1
1.8951 % number of threads = 2
2.52 % number of threads = 3
3.0355 % number of threads = 4
3.4326 % number of threads = 5
3.8487 % number of threads = 6
2.9786 % number of threads = 7
3.1919 % number of threads = 8
3.2296 % number of threads = 9
3.8108 % number of threads = 10
3.9431 % number of threads = 11
3.6443 % number of threads = 12

Fig. 3.7 shows the graphs of these results. Only the coarse-grained parallelism is considered since
the very small value of NOPTS.
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Figure 3.7: Speedup of OMP_Talbot11_DE in solving (2.7) for LT samples computed by ode45.m and
120¢ € [100,500], 120z € [10, 20].

Comparing all the speedups of OMP_Talbotll_DE() we can see that the best performance is
reached when ode.c is used to compute the LT samples. Otherwise it is sufficient to schedule a
few threads.

Example 1b

The sample code is located in the sub-folder ex1b_IVP/2PAR of the main folder.

As in the previous example, we report output results for LT samples computed by means of a
function and by solving an ODE problem by means of ode.c or ode45.m. But, unlike the previous
example, the application of the Laplace Transform method to the (2.9) leads to the problem (2.11)
that produces higher values of NOPTS when Talbot’s method is applied to invert the Laplace
Transform.

LT samples by a function

About accuracy, the problem (2.9) has been solved for NTval = 5 ¢ € [100,500], NXval = 9
x € [10,20] and tol = 10~!2; relative errors from the three OMP-based parallel implementations
of modified Talbot’s method are reported in the following.

Ex. 1b: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c

LT samples by a function

5 t in [100, 500], 9 x in [10, 20], t0l=1.000000e-012
RELERR1: OMP_Talbot11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE
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% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR1 =

L%

=D 0RO W w

1;

Tval (1)

.941366e-013
.073993e-014
.825946e-014
.273708e-015
.702157e-014
.429727e-012
.835898e-014
.085715e-014
.130003e-014

WRrOBNDR O

Tval (2)

.166942e-014
.833758e-014
.219989e-013
.480344e-014
.709868e-014
.002287e-014
.585515e-014
.049281e-013
.618232e-014

OwWwN oOoweRLN

Tval (3)

.881391e-012
.024240e-013
.808624e-013
.762756e-013
.004696e-013
.843331e-011
.103174e-014
.610986e-013
.690028e-013

Tval (4)

3.
.538550e-012
.979091e-012
.985834e-012
.957247e-012
.220226e-012
.469448e-012
.687828e-012
.706859e-012

BN W R e 0

% FINE-GRAIN OMP PARALLELISM with 3 threads for modified

RELERR2 =

% NESTED O
RELERR3 =

L%

()]

)

SR, DO O WOPRRREOORAR, RO DO

B

Tval (1)

.264304e-013
.989615e-014
.272630e-014
.071331e-016
.530266e-014
.982051e-012
.141240e-013
.728837e-014
.854117e-015

P PARALLELISM
Tval (1)
.349409e-013
.740913e-014
.923051e-014
.857065e-015
.451776e-014
.601067e-012
.502758e-014
.369445e-014
.074429e-014

DR WO R O W

w

O N WWO 0NN W

Tval (2)

.595009e-014
.126519e-014
.160329e-014
.245723e-013
.307037e-014
.982571e-014
.865851e-014
.507272e-014
.569131e-013

ith 3 outer,
Tval (2)

.819697e-014
.641955e-014
.456634e-014
.099994e-014
.024047e-014
.943140e-014
.009437e-014
.898567e-016
.340945e-014

O WNNOOWwOoN

G W NN©UWE N

Tval (3)

.905294e-012
.794293e-014
.790245e-013
.722356e-013
.071139e-013
.903542e-011
.219963e-014
.593804e-013
.655710e-013

4 inner threads
Tval (3)

.890136e-012
.094656e-013
.812865e-013
.762756e-013
.022181e-013
.837826e-011
.840597e-014
.646781e-013
.677674e-013

Tval (4)

3.
.436449e-012
.482672e-012
.571125e-012
.057641e-012
.211208e-012
.370013e-012
.308474e-012
.038067e-012

BNA W o

Tval (4)

3.
.532310e-012
.855715e-012
.890936e-012
.989173e-012
.219201e-012
.452530e-012
.644269e-012
.638431e-012

AN WR oD

276427e-012

Talbot’s method
Tval (5)
2.
.906826e-012
.5567925e-012
.046465e-011
.218235e-011
.888116e-011
.720820e-012
.622582e-012
.071300e-011

266839e-012

282679e-012

O N WR ko — O N WR ko

= O NP P PO

Tval (5)
2.
.832279e-012
.437923e-012
.054888e-011
.226057e-011
.880479e-011
.593039e-012
.647305e-012
.081070e-011

473385e-011

629876e-011

for modified Talbot’s method
Tval (5)

2.
.5567017e-012
.383773e-012
.056485e-011
.229968e-011
.095242e-011
.417280e-012
.632256e-012
.087276e-011

798815e-011

About efficiency, the problem (2.9) has been solved for NTval = 120 ¢ € [100, 500], NXval = 5
x € [10,20] and tol = 107!2; the following output shows the speedup provided by the three
OMP-based parallel implementations.

120 t in [100,

Ex. 1b

output from

LT samples by solving ODE problems by a function

5007,

5 x in [10,

201,

t0l1=1.000000e-12,

./2PAR/LTS1_fun/0OMP_main_TIMES.c

NOPTS =

1192

SPEEDUP 0OMP_Talbot11_DE():

1

0 00 ~NO OO Od WNN

.0344
.8314
.6006
.5526
.3703
.4423
.0541
.8159
.5035
.1858

h
h
h
h
h
h
h
h

number
number
number
number
number
number
number
number
number
number
number
number

threads

threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =

SPEEDUP OMP_Talbot11_DE():

1
2.0
2.9

323
526

yA
h
pA

number
number
number

threads
threads =
threads =
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3.7745 % number of threads = 4
4.6456 % number of threads = 5
5.4962 % number of threads = 6
4.5965 % number of threads = 7
5.187 % number of threads = 8
5.7271 % number of threads = 9
6.0187 % number of threads = 10
6.9565 % number of threads = 11
6.2712 % number of threads = 12
Windows

SPEEDUP OMP_Talbot12_DE():

1 % number of threads 1
1.7314 % number of threads = 2
2.298 % number of threads = 3
2.768 % number of threads = 4
3.0567 % number of threads = 5
3.2974 % number of threads = 6
2.4967 % number of threads = 7
2.5764 % number of threads = 8
2.706 % number of threads = 9
2.7796 % number of threads = 10
2.8328 % number of threads = 11
2.8439 % number of threads = 12
Linux
SPEEDUP 0OMP_Talbot12_DE():
1 % number of threads = 1
1.8637 % number of threads = 2
2.6027 % number of threads = 3
3.2545 % number of threads = 4
3.8623 % number of threads = 5
4.5632 % number of threads = 6
3.9615 % number of threads = 7
4.4283 % number of threads = 8
4.8794 % number of threads = 9
5.2596 % number of threads = 10
5.7411 % number of threads = 11
5.3364 % number of threads = 12
Windows

% 1 2 3 4 5 6 = inner thrd
1 0.9855 0.9219 0.8023 0.6896 0.59043%1 outer thrd
2.0012 1.8892 1.6007 1.2987 1.055 0.87734%2
2.8817 2.6702 1.9838 1.496 - -%3
3.6347 3.114 2.2275 1.6098 - -%4
4.6614 3.5673 - - - -%5
4.9687 3.9798 - - - -%6
Linux

SPEEDUP 0OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd
1 1.5442 1.8578 2.0164 1.997 1.3031%1 outer thrd
1.9085 2.926 3.1567 1.709 0.9359 0.4833%2
2.7377 3.7927 2.1448 0.96367 - -%3
3.6326 3.4151 1.6975 0.91105 - -h4
3.1794 2.4393 - - - -%5
5.1489 2.4347 - - - -%6

Fig. 3.8 shows the graphs of these results.
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Figure 3.8: Speedup of OMP_Talbotlx_DE in solving (2.9) for LT samples returned by a function and
120 € [100,500], 5 € [10, 20].

To get a better performance of the fine-grained parallelism, the software is run again for NTval =
120 t € [1000, 3000] since now NOPTS has a very larger value than before. In the following, the
corresponding results are reported.

Ex. 1b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by solving ODE problems by a function
120 t in [1000, 3000], 5 x in [10, 20], t01=1.000000e-12, NOPTS = 182814

SPEEDUP OMP_Talbot11_DE():
1 % number of threads =

1

1.9835 % number of threads = 2
2.8878 % number of threads = 3
3.7108 % number of threads = 4
4.4365 % number of threads = 5
5.106 % number of threads = 6
5.7393 % number of threads = 7
6.3142 % number of threads = 8
6.9014 % number of threads = 9
7.4469 % number of threads = 10
7.7837 % number of threads = 11
8.3078 % number of threads = 12

Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9934 % number of threads = 2
2.8928 % number of threads = 3
3.769 % number of threads = 4
4.6021 % number of threads = 5
5.5258 % number of threads = 6
4.8797 % number of threads = 7
5.4203 % number of threads = 8
5.9089 % number of threads = 9
6.5414 % number of threads = 10
7.0982 % number of threads = 11
7.7418 % number of threads = 12
Windows

89



SPEEDUP OMP_Talbot12_DE():
1 % number of threads =

1
.9355 % number of threads = 2
L7426 % number of threads = 3
.5539 % number of threads = 4
.269 % number of threads = 5§
.0529 % number of threads = 6
.069 % number of threads = 7

8

.7303 % number of threads =
.4033 % number of threads = 9
.0934 % number of threads = 10
L7769 % number of threads = 11
.3268 % number of threads = 12

0 ~N~NOOOOOoWN -

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.8349 % number of threads = 2
.5519 % number of threads = 3
.1944 % number of threads = 4
.8263 % number of threads = 5§
.5966 % number of threads = 6
.006 % number of threads = 7
.6753 % number of threads = 8
.0857 % number of threads = 9
.6692 % number of threads = 10
.2641 % number of threads = 11
L7417 % number of threads = 12

DO GO DD WwWN R

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8954 2.6441 3.3855 4.144 4.8128%1 outer thrd
1.9837 3.5868 5.0927 5.7902 6.7802 7.886%2
2.8941 5.2235 6.4079 8.1392 - -%3
3.7025 6.0975 8.1795 8.4636 - -%h4
4.3761 7.2147 - - - -%5
5.0927 8.4341 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.7234 2.4984 3.0612 3.5703 4.4267%1 outer thrd
1.9387 3.3762 4.7044 4.8514 5.2171 5.9322%2
2.9123 4.9406 5.4124 5.5325 - -%3
3.7673 5.2319 5.9334 6.1333 - %4
4.2941 6.1529 - - - -%5
3.8957 6.5923 - - - -%6

Fig. 3.9 shows the graphs of these results.
Now OMP_Talbot12_DE() behaves as OMP_Talbot11_DE().
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Figure 3.9: Speedup of OMP_Talbotlx_DE in solving (2.9) for LT samples returned by a function and
120 € [1000,3000], 5 € [10,20].

LT samples by ode.c

The IVP, obtained by the application of the Laplace Transform method to (2.9), is solved by
means of ode.c. About accuracy, the problem (2.9) has been solved for NTval = 5 ¢ € [100, 500],
NXval = 9 z € [10,20] and tol = 107!2; relative errors from the three OMP-based parallel
implementations of modified Talbot’s method are reported in the following.

Ex. 1b: output from ./2PAR/LTS2_ode/0OMP_main_ACCURACY.c
LT samples by solving ODE problems by means of ode.c

5 t in [100, 5001, 9 x in [10, 20], tol=1.000000e-012
RELERR1: OMP_Talbotl11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
.983451e-013 4.269073e-014 2.873229e-012 3.272883e-012 2.791702e-011
.485497e-014 8.636643e-014 2.696311e-012 3.554842e¢-011 4.332149e-011
.593261e-014 2.208888e-012 1.037687e-012 1.998779e-010 1.194611e-010
.149251e-013 1.935619e-012 3.924561e-014 1.067333e-010 3.057342e-010
.625552e-013 2.509625e-013 6.569640e-013 2.189744e-011 3.355467e-010
.547834e-012 3.197886e-013 9.395560e-010 5.140556e-011 1.566773e-009
.334301e-014 1.516756e-014 1.089130e-011 1.509362e-011 2.595391e-010
.383334e-013 3.444222e-012 1.975304e-012 8.440240e-011 7.313927e-010
.704928e-013 8.664003e-012 3.106522e-013 1.169467e¢-010 1.085196e-009

% FINE-GRA

WNOWOANOOR, A HSWNWNOTN 000w

N OMP PARALLELISM with 3 threads for modified

Talbot’s method

RELERR2 = % Tval (1) Tval (2) Tval (3) Tval (4) Tval (5)
.286261e-013 3.554157e-014 2.917731e-012 3.245371e-012 2.907527e-011
.047207e-013 1.347799e-013 2.704206e-012 3.543290e-011 4.309758e-011
.146577e-014 2.425613e-012 1.031467e-012 1.994116e-010 1.194166e-010
.224131e-013 2.080441e-012 3.852418e-014 1.063256e-010 3.056880e-010
.904955e-013 2.869342e-013 6.569640e-013 2.179179e-011 3.355414e-010
.101538e-012 3.207744e-013 9.391288e-010 5.141253e-011 1.566516e-009
.774403e-014 5.380873e-014 1.088020e-011 1.519305e-011 2.595818e-010
.324696e-013 3.592049e-012 1.969577e-012 8.402142e-011 7.313591e-010
.767912e-013 8.864667e-012 3.061222e-013 1.162593e-010 1.084999e-009

] .

% NESTED OMP PARALLELISM with 3 outer,

RELERR3 = [ %

Tval (1)

Tval (2)

4 inner threads

Tval (3)

Tval (4)

for modified Talbot’s method
Tval (5)

4.347579e-013 3.901402e-014 2.886638e-012 3.262254e-012 3.111808e-011
8.882811e-014 1.157364e-013 2.768221e-012 3.446393e-011 2.850840e-011
5.107735e-014 2.436856e-012 1.237449e-012 2.022396e-010 1.349855e-010
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.118894e-013
.763550e-013
.447411e-012
.243366e-014
.218770e-013

.161581e-012
.468871e-013
.750754e-013
.009437e-015
.091182e-012

.430694e-014
.289932e-012
.183161e-010
.001824e-011
.695245e-012

.238848e-010
.414895e-011
.545466e-011
.188748e-012
.025367e-011

.578800e-010
.018599e-010
.3056212e-009
.666493e-011
.176490e-010

O > W WN
R RO NN
= o NS WwN

.625272e-013

H

.367343e-012 .192915e-013 .394753e-011 .029203e-009

=W NWNoN

Compared to previous results (LT samples by a function), now a small loss in accuracy occurs for
the last values of ¢ and z: this is due to the approximation returned by ode.c.

About efficiency, the problem (2.9) has been solved for tol = 107!2, NXval = 5 x € [10,20]
and NTval = 120 ¢ € [100,500]; the following output shows the speedup provided by the three
OMP-based parallel implementations.

Ex. 1b: output from ./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode.c
120 t in [100, 500], 5 x in [10, 20], t0l1=1.000000e-12, NOPTS = 1192
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.8581 % number of threads = 2
2.7589 % number of threads = 3
3.5043 % number of threads = 4
4.0272 % number of threads = 5
4.407 % number of threads = 6
4.6971 % number of threads = 7
5.3207 % number of threads = 8
5.6945 % number of threads = 9
6.3623 % number of threads = 10
6.8584 % number of threads = 11
7.3455 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.878 % number of threads = 2
2.7881 % number of threads = 3
3.5322 % number of threads = 4
4.3463 % number of threads = 5§
5.063 % number of threads = 6
4.8094 % number of threads = 7
4.966 % number of threads = 8
5.504 % number of threads = 9
6.0255 % number of threads = 10
6.3699 % number of threads = 11
6.9851 % number of threads = 12
Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.8235 % number of threads = 2
2.6627 % number of threads = 3
3.3548 % number of threads = 4
3.9116 % number of threads = 5
4.1601 % number of threads = 6
4.5613 % number of threads = 7
4.9935 % number of threads = 8
5.257 % number of threads = 9
5.3876 % number of threads = 10
6.0237 % number of threads = 11
6.1536 % number of threads = 12




SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.8653 % number of threads = 2
L7649 % number of threads = 3
L4974 % number of threads = 4
.2888 % number of threads = 5§
.9705 % number of threads = 6
.3795 % number of threads = 7
.8882 % number of threads = 8
.3908 % number of threads = 9
.9157 % number of threads = 10
.3644 % number of threads = 11
L7971 % number of threads = 12

DO DO D DD WN R

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.6851 2.2637 2.6037 2.6874 2.6828%1 outer thrd
1.8599 3.2025 3.7617 3.9245 3.9516 4.0903%2
2.737 4.0493 4.5755 5.2625 - -%3
3.3803 4.7465 5.8372 5.0993 - -%4
4.0398 5.5816 - - - -%5
4.5703 6.1096 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.7628 1.9898 3.0519 3.037 3.4192%1 outer thrd
1.784 3.314 4.6162 4.1703 4.1662 2.9719%2
2.7011 4.7206 4.7761 4.6336 - -%3
3.519 4.7135 5.3307 4.3822 - -%4
4.3224 5.3823 - - - -%5
3.8441 5.833 - - - -%6
Fig. 3.10 shows the graphs of these results.
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Figure 3.10: Speedup of OMP_Talbotlx_DE in solving (2.9) for LT samples computed by ode.c and
120 € [100,500], 5 € [10, 20].

Performance from ode. c is similar to the previous one.
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LT samples by ode45.m

The IVP, obtained by the application of the Laplace Transform method to (2.9), is solved by
means of the MATLAB ode45.m function. About accuracy, the problem (2.9) has been solved for
NTval = 5t € [100,500], NXval = 9 z € [10,20] and tol = 107'2; relative errors from the three
OMP-based parallel implementations of modified Talbot’s method are reported in the following.

Ex. 1b: output from ./2PAR/LTS3_mex/0OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of ode45.m

5 t in [100, 5001, 9 x in [10, 20], t01=1.000000e-012
RELERR1: OMP_Talbot11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)
3.871834e-13 4.350778e-14 2.899853e-12 3.261420e-12 2.849078e-11
3.460891e-13 3.434541e-13 4.417034e-13 3.975464e-12 1.789346e-10
8.310266e-13 1.571621e-12 1.597671e-12 9.454188e-12 2.318965e-11
1.365645e-12 3.896376e-13 2.065733e-12 1.484328e-11 8.625909e-11
1.952077e-12 1.607215e-12 9.888264e-13 1.519331e-11 6.795789e-10
1.599514e-13 1.661639e-12 4.211592e-10 1.822424e-11 2.678085e-09
2.177450e-12 2.323406e-12 3.219185e-12 1.021864e-11 2.068701e-10
2.867188e-12 4.476112e-12 6.258660e-12 1.336668e-11 2.293747e-10
3.406681e-12 2.246442e-12 6.564192e-12 1.793625e-11 7.135468e-11
1;

% FINE-GRAIN OMP PARALLELISM with 3 threads for modified Talbot’s method

RELERR2 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
5.286261e-13 3.554157e-14 2.918703e-12 3.244538e-12 2.903440e-11
3.677995e-13 2.955770e-13 4.363688e-13 3.856500e-12 1.788759e-10
8.362703e-13 1.350940e-12 1.595833e-12 9.932929e-12 2.314353e-11
1.358157e-12 5.344599e-13 2.065733e-12 1.527237e-11 8.635512e-11
1.925499e-12 1.645465e-12 9.905749e-13 1.509740e-11 6.796038e-10
7.138283e-13 1.659076e-12 4.215597e-10 1.821973e-11 2.677206e-09
2.203215e-12 2.285246e-12 3.208443e-12 1.011921e-11 2.067814e-10
2.873430e-12 4.327416e-12 6.254222e-12 1.376896e-11 2.294351e-10
3.400753e-12 2.448029e-12 6.558839e-12 1.727012e-11 7.150490e-11
1;

% NESTED OMP PARALLELISM with 3 outer, 4 inner threads for modified Talbot’s method

RELERR3 = [ % Tval(1) Tval (2) Tval (3) Tval (4) ... Tval(5)
4.347579e-13 3.901402e-14 2.887610e-12 3.262254e-12 3.120146e-11
3.536097e-13 3.096585e-13 4.425569e-13 3.942536e-12 1.787213e-10
8.335513e-13 1.420476e-12 1.598943e-12 9.597974e-12 2.309812e-11
1.363014e-12 4.878151e-13 2.066599e-12 1.494014e-11 8.629729e-11
1.944069e-12 1.632036e-12 9.905749e-13 1.516139e-11 6.794866e-10
3.176596e-13 1.659865e-12 4.211210e-10 1.822158e-11 2.679928e-09
2.186847e-12 2.297284e-12 3.220975e-12 1.019369e-11 2.070407e-10
2.869836e-12 4.375822e-12 6.255940e-12 1.345272e-11 2.294281e-10
3.404829e-12 2.385818e-12 6.563369e-12 1.788748e-11 7.142577e-11
:I.

B

About efficiency, the problem (2.9) has been solved for NTval = 120 ¢ € [100, 500], NXval = 5
x € [10,20] and tol = 107'%; the following output shows the speedup provided by the three
OMP-based parallel implementations. The ode45 function is called inside a MATLAB parfor
loop, with the specification of the number of parallel "workers" to be used, so that the Parallel
Computing Toolboz is required. The sample code checks for the installation of PCT.

Ex. 1b: output from ./2PAR/LTS3_mex/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode45.m + PCT
120 t in [100, 500], 5 x in [10, 20], t0l1=1.000000e-12, NOPTS = 1192

SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9524 % number of threads =
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2.8244 % number of threads = 3
3.4892 % number of threads = 4
3.8044 % number of threads = 5
4.295 % number of threads = 6
4.6468 % number of threads = 7
4.9747 % number of threads = 8
5.2011 % number of threads = 9
5.4063 % number of threads = 10
5.5317 % number of threads = 11
5.5758 % number of threads = 12

SPEEDUP OMP_Talbot11_DE():

.2908 % number of threads = 11
.2214 % number of threads = 12

1 % number of threads = 1
1.857 % number of threads = 2
2.7418 % number of threads = 3
3.5074 % number of threads = 4
4.1116 % number of threads = 5
4.31 % number of threads = 6
4.8242 % number of threads = 7
5.1077 % number of threads = 8
5.1474 % number of threads = 9
5.244 % number of threads = 10
5

5

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.9509 % number of threads = 2
.8183 % number of threads = 3
.5326 % number of threads = 4
.8694 % number of threads = 5
.3175 % number of threads = 6
L6712 % number of threads = 7
.0008 % number of threads = 8
.2284 % number of threads = 9
.4346 % number of threads = 10
.5607 % number of threads = 11

OO o DWW WN

.605 % number of threads = 12

1 % number of threads = 1
1.8571 % number of threads = 2
2.6722 % number of threads = 3
3.395 % number of threads = 4
3.7633 % number of threads = 5
4.7246 % number of threads = 6
4.4829 % number of threads = 7
4.9284 % number of threads = 8
4.924 % number of threads = 9
4.984 % number of threads = 10
5.0053 % number of threads = 11
4.9182 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.9231 2.7717 3.4695 3.859 4.1791%1 outer thrd
1.9257 3.3977 4.2428 4.9859 5.3624 5.5285%2
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2.7667 4.1258 5.2008 5.5346
3.4322 4.9836 5.5508 5.554
3.84 5.3865 - -
4.1604 5.5526 - -
Linux

SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4
1 1.9067 2.5101 3.5909
1.9564 3.6066 4.0525 5.0391
2.5573 4.8198 5.2498 5.2840
3.0243 4.9770 5.3239 5.2810
4.0123 5.2738 - -
4.4178 5.2635 - -

5 6 =
4.2983%1
5.1579%2
- -%3
- -h4
- -%5
- -%6

inner
outer

Fig. 3.11 shows the graphs of these results.
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Figure 3.11: Speedup of OMP_Talbot1x_DE in solving (2.9) for LT samples computed by ode45.m + PCT

and 120t € [100,500], 5z € [10, 20].

If the Parallel Computing Toolbox of MATLAB is not used® then, unlike Example 1a, the perfor-
mance get worse. Only for Windows, Fig. 3.12 shows the graphs of the speedup when PCT is not

used.
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Figure 3.12: Speedup of OMP_Talbot1x_DE in solving (2.9) for LT samples computed by ode45.m without
PCT and 120¢ € [100,500], 52 € [10, 20)].

In the function to compute the LT samples, unlike Example 1a, the software behaves as sequential
if the Parallel Computing Toolbox is not used. This is due to a more difficult differential problem

6 We recall that the ODE problems consist of the same (first order) differential equation with a different initial
condition due to a single point on the Talbot contour; then we can think to the ODE problems as a system of
decoupled first order differential equations so that we pass a row-wise array of initial conditions U0 to the MATLAB

solver. The solver is called just once.
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whose resolution takes a much longer time than the summation.

3.6 Example 2

The sample code is located in the sub-folder ex2_IVP/2PAR of the main folder.

Problem (2.13) leads to an IVP as in the previous section so that the same algorithms can be used
to solve the ODE problems. The current LT function has simple poles at s = +i: this produces
a number of terms in the final summation step of Talbot’s algorithm greater than in Example la
but smaller than in Example 1b. As before, we report output results for LT samples computed by
means of a function and by solving an ODE problem by means of ode.c or ode45.m.

LT samples by a function

About accuracy, the problem (2.13) has been solved for NTval = 5 ¢t € [100,500], NXval = 9
x € [0,5] and tol = 10712; absolute errors from the three OMP-based parallel implementations
of modified Talbot’s method are reported in the following.

Ex. 2: output from ./2PAR/LTS1_fun/0OMP_main_ACCURACY.c

LT samples by a function

5 t in [100, 500], 9 x in [0, 5], t0l1=1.000000e-012
ABSERR1: OMP_Talbot11_DE
ABSERR2: OMP_Talbot12_DE
ABSERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

ABSERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
1.089129e-013 3.763656e-014 1.491030e-013 6.868950e-013 7.960521e-012
1.089129e-013 3.730349e-014 1.548761e-013 6.313838e-013 7.818080e-012
1.092459e-013 3.863576e-014 1.605382e-013 5.148104e-013 8.240963e-012
1.098011e-013 3.730349e-014 1.539879e-013 6.070699e-013 6.615763e-012
1.086908e-013 3.752554e-014 1.527667e-013 6.482592e-013 8.812173e-012
1.091349e-013 3.830269e-014 1.502132e-013 4.698464e-013 8.780587e-012
1.092459e-013 3.930190e-014 1.498801e-013 7.173151e-013 9.617862e-012
1.093570e-013 3.763656e-014 1.837419e-013 6.777912e-013 9.150736e-012
1.099121e-013 3.685940e-014 1.606493e-013 7.541745e-013 6.660117e-012

1;

% FINE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

ABSERR2 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)

.093570e-013 .530509e-014 .317035e-013 1.492473e-012 1.158984e-011
.093570e-013 .652634e-014 .445821e-013 .675882e-012 .911960e-012
.096900e-013 .630429e-014 .386980e-013 .476042e-012 .211520e-012
.096900e-013 .574918e-014 .436940e-013 .409761e-012 .745094e-012
.093570e-013 .286260e-014 .291500e-013 .466050e-012 .070666e-011
.088019e-013 .674838e-014 .061684e-013 .399436e-012 .137390e-011
.096900e-013 .386180e-014 .102762e-013 .450395e-012 .218708e-011
.095790e-013 .530509e-014 .663425e-013 .374567e-012 .049272e-011
.092459e-013 .297362e-014 .379208e-013 .626366e-012 .5568765e-012

[ure

W wWwwWwwwwwww
NDNDNDNDNDNDNDNDDN
e e
0 = = = = O OO

P PARALLELISM with 4 outer, 3 inner threads for modified Talbot’s method
% Tval(1l) Tval (2) Tval (3) Tval(4) ... Tval(h)
.109113e-013 .919087e-014 1.375566e-013 6.661338e-016 7.053191e-012
.106892e-013 .963496e-014 .859624e-013 .640732e-014 .118816e-012
.106892e-013 .174439e-014 .632028e-013 .787770e-013 .541700e-012
.104672e-013 .885781e-014 .513234e-013 .126033e-014 .754108e-012
.106892e-013 .752554e-014 .589839e-013 .972201e-014 .229628e-012
.106892e-013 .985701e-014 .679767e-013 .465805e-013 .941658e-012
.103562e-013 .007905e-014 .489919e-013 .237855e-014 .244705e-012
.102451e-013 .074519e-014 .952882e-013 .229150e-014 .103307e-012
.108003e-013 .074519e-014 .721956e-013 .072475e-013 .938017e-012

H

% NESTED 0
ABSERR3 =

SO wWww W ww
[ e = = S SR Se
= 01T N O ©ON D

H R R R R R RRRRASI AR R R BB R R
WoND O WD D

To show an acceptable performance of the fine-grained parallelism the problem (2.13) has been
solved for NTval = 120 ¢ € [1000, 3000], NXval = 5 x € [10,20] and tol = 1072, The following
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output shows the speedup provided by the three OMP-based parallel implementations.

Ex. 2: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
120 t in [1000, 3000], 5 x in [0, 5], t0l=1.000000e-12, NOPTS = 5688

1 % number of threads = 1
1.9864 % number of threads = 2
2.9064 % number of threads = 3
3.7306 % number of threads = 4
4.1596 % number of threads = 5
5.0944 % number of threads = 6
5.387 % number of threads = 7
6.0545 % number of threads = 8
6.7065 % number of threads = 9
7.3619 % number of threads = 10
8.001 % number of threads = 11
8.4344 % number of threads = 12

SPEEDUP OMP_Talbotl11l _DE():

% number of threads = 1
.0032 % number of threads = 2
L9277 % number of threads = 3
.8012 % number of threads = 4
L6171 % number of threads = 5§
.5386 % number of threads = 6
.7464 % number of threads = 7
.4385 % number of threads = 8
.0282 % number of threads = 9
.6205 % number of threads = 10
L2275 % number of threads = 11
.8554 % number of threads = 12

NN OO WNN

SPEEDUP OMP_Talbot12_DE():

1 % number of threads = 1
1.8857 % number of threads = 2
2.6446 % number of threads = 3
3.3558 % number of threads = 4
3.9598 % number of threads = 5
4.609 % number of threads = 6
4.5301 % number of threads = 7
4.8926 % number of threads = 8
5.3869 % number of threads = 9
5.7571 % number of threads = 10
5.9589 % number of threads = 11
6.271 % number of threads = 12
Linux
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.8403 % number of threads = 2
2.5641 % number of threads = 3
3.2185 % number of threads = 4
3.8575 % number of threads = 5
4.6239 % number of threads = 6
4.0469 % number of threads = 7
4.5518 % number of threads = 8
5.0118 % number of threads = 9
5.6132 % number of threads = 10
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number of
number of

threads = 11
threads = 12

Windows
SPEEDUP 0OMP_Talbot13_DE():
% 1 2 3 4
1 1.5103 1.8679 2.0138
1.9798 3.0019 3.5078 3.278
2.8432 4.3816 4.4414 4.2064
3.6122 5.0901 5.3143 5.1589
4.4471 5.9942 - -
5.1166 6.9277 - -

Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4
1 1.7186 2.2861 2.7544
1.8476 3.2343 4.0806 3.7379
2.7601 4.3197 3.6497 2.2474
3.7649 4.9313 2.8791 3.2589
3.2641 5.0890 - -
3.8821 4.0201 - -

5 6 = inner thrd|
1.9968 1.9008%1 outer thrd
3.1169 2.8767%2

- -%3

- -%h4

- -%5

- -%6

5 6 = inner thrd
3.2485 2.9947%1 outer thrd|
2.9240 1.8677%2

- -%3

- -%h4

- -%5

- -%6

Fig. 3.13 shows the graphs of these results.
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Figure 3.13: Speedup of OMP_Talbot1x_DE in solving (2.13) for LT samples returned by a function and
120¢ € [1000, 3000, 5z € [0, 5].

A slightly better performance comes from the coarse-grained parallelism.

LT samples by ode.c

About accuracy, the problem (2.13) has been solved for NTval = 5 ¢t € [100,500], NXval = 9
x € [0,5] and tol = 10712; absolute errors from the three OMP-based parallel implementations

of modified Talbot’s method are reported in the following.

Ex. 2:

output from

5 t in [100, 500], 9 x in [0, 5],
ABSERR1: OMP_Talbotl11_DE
ABSERR2: OMP_Talbot12_DE
ABSERR3: OMP_Talbot13_DE

./2PAR/LTS2_ode/0OMP_main_ACCURACY.c
LT samples by solving ODE problems by means of ode.c

t01=1.000000e-012



)

h

COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method
ABSERR1 = [ %

N R e =)

1;

Tval (1)

.000000e+000
.000755e-014
.831025e-014
.114664e-013
.367795e-013
.409983e-013
.392775e-013
.666445e-013
.401101e-013

WWNNRE =P = O

Tval (2)

.000000e+000
.637579e-014
.414424e-013
.304512e-013
.793010e-013
.471356e-013
.541301e-013
.649303e-013
.466116e-013

Tval (3)

P NP, P, OONFP WO

.000000e+000
.483325e-013
.266764e-013
.757794e-013
.608847e-013
.082134e-012
.133205e-012
.327694e-012
.180278e-012

Tval (4)
.000000e+000
.016742e-012
.044520e-012
.216649e-012
.192979e-012
.003487e-012
.735546e-012
.262369e-012
.592282e-012

0

= © O 00> wWwao

FINE-GRAIN OMP PARALLELISM with 4 threads for modified
ABSERR2 = [ ¥

o

Tval (1)

.000000e+000
.992429e-014
.842127e-014
.116884e-013
.368350e-013
.416645e-013
.397216e-013
.665890e-013
.396661e-013

P PARALLELISM

% NESTED O
ABSERR3 = % Tval (1)
.000000e+000

SR Rr R, RrP PP OO0 R, R, R, R R R OO0

B

.064593e-014
.925394e-014
.126321e-013
.376677e-013
.424971e-013
.414424e-013
.683653e-013
.414424e-013

WWNNR PR PO

w

WWNNE R P RP2, O

Tval (2)

.000000e+000
.493250e-014
.381117e-013
.291189e-013
.770806e-013
.441380e-013
.510214e-013
.611555e-013
.458345e-013

ith 4 outer,
Tval (2)

.000000e+000
.670886e-014
.403322e-013
.304512e-013
.793010e-013
.479128e-013
.480238e-013
.588241e-013
.427258e-013

3 inner threads
Tval (4)
.000000e+000
.497891e-013
.710232e-012
.625344e-012
.436806e-012
.110312e-012
.123724e-012
.683298e-012
.230749e-014

Tval (3)

[ O N AN )

.000000e+000
.936851e-013
.786349e-013
.427258e-013
.876100e-013
.003198e-012
.051714e-012
.242651e-012
.101785e-012

Tval (3)

P NP P, ONFP WO

.000000e+000
.582135e-013
.412204e-013
.923217e-013
.584422e-013
.066036e-012
.193046e-012
.371547e-012
.216360e-012

Tval (4)
.000000e+000
.337763e-012
.684009e-012
.842371e-012
.021206e-012
.840151e-012
.068276e-011
.013700e-011
.420952e-012

0

N == 000 WOo -

Talbot’s method
Tval (5)
0.
.806244e-012
.646239e-011
.504002e-011
.542411e-013
.298528e-011
.693246e-012
.620498e-011
.476741e-011

B WNRFE, PPN

WP, NP NGO

Tval (5)
0.
.108441e-012
.574380e-011
.348460e-011
.336042e-012
.034939e-011
.998213e-012
.304695e-011
.228567e-011

000000e+000

000000e+000

for modified Talbot’s method

0

W N0 ~NWN N

S W0 NN

Tval (5)
0.
.189199e-012
.050937e-011
.761625e-012
.337908e-012
.766187e-012
.861301e-012
.946721e-011
.766021e-011

000000e+000

To show an acceptable performance of the fine-grained parallelism the problem (2.13) has been
solved for NTval = 120 ¢ € [1000,3000], NXval = 5 x € [0,5] and tol = 10~!2; the following
output shows the speedup provided by the three OMP-based parallel implementations.

120 t in [1000,

Ex. 2:

300017,

output from

5 x in [

./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode.c

0,

51,

t0l1=1.000000e-12,

NOPTS =

5688

1
1.9901
2.8494
3.6848
4.2858
4.9984
5.3145
5.8531
6.2008
6.9223
7.5495
8

% number
% number
% number
% number
% number
% number
% number
% number
% number
% number
% number
% number

threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =
threads =

SPEEDUP OMP_Talbot11_DE():

1
1.9851
2.8711

% number of
% number of
% number of

threads =
threads =
threads =

100




.6893 % number of threads = 4
.5089 % number of threads = 5§
.3673 % number of threads = 6
.6204 % number of threads = 7

number of threads = 8
.7352 % number of threads = 9
.2907 % number of threads = 10
.7964 % number of threads = 11
L3776 % number of threads = 12

No oo oW
-
o
S
o
e

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1

.9625 % number of threads = 2
.7824 % number of threads = 3
.5706 % number of threads = 4
.3052 % number of threads = 5
.708 % number of threads = 6
.987 % number of threads = 7
8

.5839 % number of threads =

.8857 % number of threads = 9
.4183 % number of threads = 10
.1165 % number of threads = 11
.4853 % number of threads = 12

NN DD WN R

SPEEDUP 0OMP_Talbot12_DE():

1 % number of threads = 1
1.9265 % number of threads = 2
2.7607 % number of threads = 3
3.5652 % number of threads = 4
4.3264 % number of threads = 5
5.155 % number of threads = 6
4.4761 % number of threads = 7
5.0249 % number of threads = 8
5.4761 % number of threads = 9
6.0257 % number of threads = 10
6.4639 % number of threads = 11
7.087 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8643 2.5531 3.1143 3.4327 3.642%1 outer thrd
1.9892 3.4892 4.4748 4.9583 5.4005 5.696%2
2.8571 4.7288 5.6409 6.6984 - -%3
3.6872 5.4737 6.974 6.4372 - -%4
4.3348 6.5831 - - - -%5
4.8481 7.457 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.9371 2.6759 3.4155 4.1232 4.0289%1 outer thrd
1.4178 3.4037 5.0064 4.7805 4.6799 4.0768%2
2.7562 5.1005 5.0352 4.929 - -%3
3.7581 5.0326 5.4391 5.4107 - -%4
4.5644 6.004 - - - -%5
5.4482 6.5104 - - - -%6

Fig. 3.14 shows the graphs of these results.
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Speedup OMP_Talbot11_DE
120 t€[1000,3000], 5 x£[0,5], tol=1e-12, NOPTS=5688

Speedup OMP_Talbot12_DE
120 t€[1000,3000], 5 x€[0,5], tol=1e-12, NOPTS=568¢

Speedup=T(1)/T(p) OMP_Talbot13_DE
120 t€[1000,3000], 5 x£[0,5], tol=le-12, NOPTS=5688
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120 t€[1000,3000], 5 X €[0,5], tol=1e-12, NOPTS=5688

2

number of parallel threads [Windows]

4 6 8 10

Speedup OMP_Talbotll_DE

12

2 4

6

number of parallel threads [Windows]
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Figure 3.14: Speedup of OMP_Talbotly_DE in solving (2.13) for LT samples computed by ode.c and
120t € [1000, 3000], 5z € [0, 5.

LT samples by ode45.m

About accuracy, the problem (2.13) has been solved for NTval = 5 t € [100,500], NXval = 9
x € [0,5] and tol = 10~'2; absolute errors are reported in the following.

Ex. 2: output from ./2PAR/LTS3_mex/OMP_main_ ACCURACY.c
LT samples by solving ODE problems by means of ode45.m + PCT

5 t in [100, 5007, 9 x in [0, 5], tol=1.000000e-012
ABSERR1: OMP_Talbotl1l_DE
ABSERR2: OMP_Talbot12_DE
ABSERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

ABSERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
9.003354e-13 1.219386e-11 5.107370e-11 1.561196e-11 2.342846e-10
1.082745e-12 1.521483e-11 3.538592e-11 1.749023e-11 4.428372e-10
1.328160e-12 1.658884e-11 7.378820e-11 1.733227e-10 1.792397e-10
1.471157e-12 3.042611e-11 1.670997e-11 2.029690e-10 1.439373e-09
1.430245e-12 1.779732e-11 7.698231e-11 2.210184e-10 2.443612e-10
8.760215e-13 2.364431e-11 3.965506e-11 1.924806e-10 9.622899e-10
1.092348e-12 2.620726e-11 3.357381e-11 1.130828e-10 5.835623e-10
1.854072e-14 9.869883e-14 2.935430e-13 5.639933e-14 2.072059e-11
1;

% FINE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

ABSERR2 = [ % Tval(1l) Tval (2) Tval (3) Tval (4) Tval (5)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
9.004464e-13 1.219491e-11 5.103573e-11 1.599898e-11 2.351219e-10
1.082745e-12 1.521205e-11 3.532774e-11 1.692624e-11 4.414417e-10
1.328326e-12 1.659084e-11 7.372125e-11 1.726675e-10 1.818918e-10
1.471157e-12 3.042400e-11 1.663170e-11 2.022073e-10 1.442653e-09
1.430023e-12 1.779887e-11 7.690926e-11 2.201932e-10 2.469431e-10
8.756329e-13 2.364198e-11 3.971490e-11 1.932171e-10 9.603352e-10
1.093292e-12 2.620504e-11 3.365008e-11 1.139708e-10 5.807013e-10
1.854072e-14 1.018075e-13 3.658185e-13 9.451329e-13 2.197675e-11
1;

% NESTED OMP PARALLELISM with 4 outer, 3 inner threads for modified Talbot’s method

ABSERR3 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
9.011958e-13 1.219319e-11 5.106832e-11 1.525929e-11 2.330285e-10
1.081801e-12 1.521594e-11 3.538214e-11 1.794642e-11 4.451405e-10
1.329270e-12 1.658629e-11 7.378365e-11 1.739767e-10 1.767971e-10
1.469935e-12 3.042966e-11 1.670430e-11 2.036239e-10 1.437489e-09
1.431855e-12 1.779588e-11 7.698397e-11 2.216166e-10 2.415696e-10
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8.746892e-13 2.364509e-11 3.964895e-11 1.916378e-10 9.657797e-10
1.091960e-12 2.620881e-11 3.357115e-11 1.124469e-10 5.862149e-10
1.965095e-14 1.002531e-13 2.944311e-13 5.786482e-13 1.792849e-11
1

To show an acceptable performance of the fine-grained parallelism the problem (2.13) has been
solved for NTval = 120 ¢ € [1000,3000], NXval = 5 x € [0,5] and tol = 107'2; the speedup is
displayed in the following output.

Ex. 2: output from ./2PAR/LTS3_mex/0OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode45.m + PCT
120 t in [1000, 3000], 5 x in [0, 5], t0l1=1.000000e-12, NOPTS = 5688

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.9731 % number of threads = 2
.8086 % number of threads = 3
.466 % number of threads = 4
.8323 % number of threads = 5§
.3023 % number of threads = 6
.801 % number of threads = 7
.0829 % number of threads = 8
.3612 % number of threads = 9
.5631 % number of threads = 10
.6899 % number of threads = 11
L7579 % number of threads = 12

OO gooD D WwWN =

1 % number of threads = 1
2.0301 % number of threads = 2
2.9076 % number of threads = 3
3.7315 % number of threads = 4
4.1571 % number of threads = 5
4.3375 % number of threads = 6
5.0336 % number of threads = 7
5.0807 % number of threads = 8
5.0811 % number of threads = 9
5.2912 % number of threads = 10
5.3806 % number of threads = 11
5.3781 % number of threads = 12

SPEEDUP OMP_Talbot12_DE():

1 % number of threads = 1
1.9529 % number of threads = 2
2.8181 % number of threads = 3
3.4768 % number of threads = 4
3.7799 % number of threads = 5
4.2169 % number of threads = 6
4.789 % number of threads = 7
5.1282 % number of threads = 8
5.3648 % number of threads = 9
5.5554 % number of threads = 10
5.6751 % number of threads = 11
5.7277 % number of threads = 12
Linux
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1

2.042 % number of threads =
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.9205
.3567
.688

.3947
.2421

2.9044 % number
3.1944 % number
4.2013 % number
4.7753 % number
5.1132 % number
5.163 % number
5.1881 % number
5.3209 % number
5.3375 % number
5.3705 % number

2
.9835
.5669
.2204
.1539
.6342

2
.9392
.0957
.2996
.1188
.3286
.3417

aoOs W

oo N

o W N

threads = 3
threads = 4
threads = b5
threads = 6
threads = 7
threads = 8
threads = 9
threads = 10
threads = 11
threads = 12
Windows
3 4
8548 3.5236
3485 5.1272
4083 5.7977
8056 5.7832
Linux
3 4
7881 3.2581
9629 5.1445
9751 5.2383
3244 5.3178

5 6 = inner thrd|
3.8525 4.3392%1 outer thrd
5.5924 5.7463%2

- -%3

- -%h4

- -%5

- -%6

5 6 = inner thrd|
4.0824 4.4432%1 outer thrd
5.2112 5.1771%2

- -%3

- %4

- -%5

- -%6

Fig. 3.15 shows the graphs of these results.
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Figure 3.15: Speedup of OMP_Talbot1lx_DE in solving (2.13) for LT samples computed by ode45.m and
120t € [1000, 3000], 5z € [0, 5].

3.7 Example 3

In this case the LT function has a double pole at s = 0 so that the number of addends in the
summation step is small and does not depend on ¢.
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For this kind of problems the sequential



version can be sufficient or, if we have many t¢-values, the parallel version implementing the data
distribution is suited. Only this strategy will be considered for results.

Example 3a

The sample code is located in the sub-folder ex3a_IVP/2PAR of the main folder.

Problem (2.19) leads to an IVP as in previous sections so that the same algorithms can be used to
solve the ODE problems. As before, we report output results for LT samples computed by means
of a function and by solving an ODE problem by means of ode.c or ode45.m.

LT samples by a function

About accuracy, the problem (2.17) has been solved for NTval = 5 ¢t € [100,500], NXval = 9
x € [0,1] and tol = 10712; relative errors from the coarse-grained parallelism implementation are
reported in the following.

Ex. 3a: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c

LT samples by a function

5 t in [100, 500], 9 x in [O,
RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

1], tol=1.000000e-012

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
1.282757e-011 2.984279e-015 9.473903e-016 1.989520e-015 4.661160e-015
1.285421e-011 2.842948e-015 1.326588e-015 2.274048e-015 4.889069e-015
1.287346e-011 2.132628e-015 1.326761e-015 2.416412e-015 ©5.116867e-015
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 3.411405e-015
1.288816e-011 2.701751e-015 7.582282e-016 2.274448e-015 2.046875e-015
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 3.411405e-015
1.287346e-011 2.132628e-015 3.790746e-016 2.416412e-015 2.501579e-015
1.285435e-011 2.842948e-015 3.790252e-016 2.274048e-015 5.684964e-016
1.282771e-011 2.984279e-015 9.473903e-016 1.989520e-015 5.684342e¢-015
1;

About efficiency, the problem (2.17) has been solved for NTval = 120 ¢ € [100,500], NXval =
120 2 € [0,1] and tol = 107'2; the following output only shows the speedup provided by the
coarse-grained parallelism implementation.

Ex. 3a: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function

120 t in [100, 500], 5 x in [0, 1], t0l=1.000000e-12, NOPTS = 26
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9841 % number of threads = 2
2.8517 % number of threads = 3
3.666 % number of threads = 4
4.303 % number of threads = 5
5.0701 % number of threads = 6
4.9729 % number of threads = 7
5.6716 % number of threads = 8
4.2139 % number of threads = 9
4.5978 % number of threads = 10
5.0455 % number of threads = 11
5.4995 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11l _DE():
1 % number of threads = 1
1.8286 % number of threads = 2
3.0735 % number of threads = 3
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3.7145 % number of threads = 4
4.7357 % number of threads = 5§
5.4354 % number of threads = 6
4.6308 % number of threads = 7
3.7128 % number of threads = 8
5.0559 % number of threads = 9
5.4265 % number of threads = 10
5.7865 % number of threads = 11
4.3297 % number of threads = 12

Fig. 3.16 shows the graphs of these results.

Speedup OMP_Talbot1l_DE
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Figure 3.16: Speedup of OMP_Talbot11 in solving (2.19) for LT samples returned by a function and
120t € [100,500], 5z € [0,1].

LT samples by ode.c

About accuracy, the problem (2.17) has been solved for NTval = 5 t € [100,500], NXval = 9
x € [0,1] and tol = 10~12; relative errors from the coarse-grained parallelism implementation are
reported in the following.

Ex. 3a: output from ./2PAR/LTS2_ode/OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of ode.c

5 t in [100, 500], 9 x in [0, 17, t01=1.000000e-012
RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
1.282757e-011 2.984279e-015 9.473903e-016 1.989520e-015 4.661160e-015
1.285421e-011 2.842948e-015 3.790252e-016 1.279152e-015 1.250692e-015
1.287346e-011 2.985679e-015 3.790746e-016 1.421419e-016 1.137082e-015
1.288502e-011 3.270413e-015 5.686563e-016 9.950513e-016 4.548540e-015
1.288816e-011 2.701751e-015 7.582282e-016 2.274448e-015 2.388021e-015
1.288502e-011 2.417262e-015 1.326865e-015 1.847953e-015 2.274270e-016
1.287261e-011 2.132628e-015 3.790746e-016 7.107093e-016 2.956412e-015
1.285435e-011 2.842948e-015 1.326588e-015 4.263839e-016 5.684964e-016
1.282771e-011 2.984279e-015 9.473903e-016 1.136868e-015 2.387424e-015
13

About efficiency, the problem (2.17) has been solved for NTval = 120 ¢ € [100, 500], NXval =
120 z € [0,1] and tol = 107!2; the following output only shows the speedup provided by the
coarse-grained parallelism implementation.

120 t in [100,

Ex.

5001]

3a:

s

output from

5 x in [

./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode.c

0,

11,

t0l1=1.000000e-12,

NOPTS =

SPEEDUP 0OMP_Talbot11_DE():

1 % number
1.9467 % number
2.7891 % number
3.5096 % number

threads =
threads =
threads =
threads =
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.1265 % number of threads =
L7041 % number of threads =
.7201 % number of threads =
number of threads =
.9006 % number of threads = 9
.3599 % number of threads = 10
.5851 % number of threads = 11
.78 % number of threads = 12

[o2 3o N e NN 2 I BT ST T
o
o
©
~
=

1 % number of threads = 1
2.2522 % number of threads = 2
2.9676 % number of threads = 3
3.8903 % number of threads = 4
4.5964 % number of threads = 5
5.4613 % number of threads = 6
4.655 % number of threads = 7
4.784 % number of threads = 8
5.5631 % number of threads = 9
5.8834 % number of threads = 10
6.0357 % number of threads = 11
6.1198 % number of threads = 12
Fig. 3.17 shows the graphs of these results.
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Figure 3.17: Speedup of OMP_Talbot11l in solving (2.19) for LT samples computed by ode.c and 120t €
[100,500], 5 € [0,1].

LT samples by ode45.m

About accuracy, the problem (2.17) has been solved for NTval = 5 t € [100,500], NXval = 9
x €[0,1] and tol = 10~!2; relative errors from the coarse-grained parallelism implementation are
reported in the following.

Ex. 3a: output from ./2PAR/LTS3_mex/0OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of ode45.m + PCT

5 t in [100, 5001, 9 x in [0, 11, t01=1.000000e-012
RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
1.282771e-11 2.984279e-15 9.473903e-16 2.842171e-16 1.136868e-15
1.285435e-11 2.842948e-15 1.326588e-15 4.263839e-16 1.364391e-15
1.287346e-11 2.985679e-15 3.790746e-16 1.563560e-15 1.137082e-15
1.288502e-11 2.417262e-15 5.686563e-16 1.847953e-15 2.842837e-15
1.288901e-11 2.701751e-15 7.582282e-16 2.274448e-15 1.137153e-15
1.288502e-11 2.417262e-15 5.686563e-16 9.950513e-16 1.023421e-15
1.287346e-11 2.132628e-15 3.790746e-16 1.563560e-15 2.956412e-15
1.285435e-11 2.842948e-15 3.790252e-16 4.263839e-16 5.684964e-16
1.282771e-11 2.984279e-15 9.473903e-16 1.136868e-15 2.387424e-15
1;
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About efficiency, the problem (2.17) has been solved for NTval = 120 ¢ € [100,500], NXval =
120 z € [0,1] and tol = 1072 the following output only shows the speedup provided by the
coarse-grained parallelism implementation. Similar results are obtained when ode45.m is called
with the ’Vectorized’ option to >on’ or to *off’. The following results refer to the first option.

Ex. 3a: output from ./2PAR/LTS3_mex/OMP_main_TIMES.c
LT samples by solving ODE problems by means of ode45.m + PCT
120 t in [100, 5001, 5 x in [0, 1], t0l=1.000000e-12, NOPTS = 26

1 % number of threads = 1
1.6607 % number of threads = 2
1.8839 % number of threads = 3
1.9393 % number of threads = 4
1.946 % number of threads = 5
1.9618 % number of threads = 6
1.8825 % number of threads = 7
1.9976 % number of threads = 8
1.9138 % number of threads = 9
1.8879 % number of threads = 10
1.8254 % number of threads = 11
1.8397 % number of threads = 12

Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.5195 % number of threads = 2
1.5907 % number of threads = 3
1.7493 % number of threads = 4
1.7925 % number of threads = 5
1.7417 % number of threads = 6
1.7539 % number of threads = 7
1.7383 % number of threads = 8
1.7665 % number of threads = 9
1.6276 % number of threads = 10
1.6029 % number of threads = 11
1.5409 % number of threads = 12
Fig. 3.18 shows the graphs of these results.
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Figure 3.18: Speedup of OMP_Talbot11 in solving (2.19) for LT samples computed by ode45.m + PCT
and 120¢ € [100,500], 5z € [0, 1].

About the poor parallel performance returned by using ode45.m, let us recall that as, highlighted
in section 2.6, for the modified method the LTS step is more expensive than the SUM step. Since
NOPTS is very small, it is not a good idea to call the ode45 function inside a parfor loop on the
points of the Talbot contour. The LTS step mainly influences the parallel performance.
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Example 3b

The sample code is located in the sub-folder ex3b_BVP/2PAR of the main folder.

Problem (2.21) leads to a BVP and we compare three ways to compute the LT samples: by a
function returning the LT value U(z, s), by twpbvp.F and by bvp5sc.m with PCT. Related code is
in C, in mixed C/FORTRAN and C/MATLAB respectively.

LT samples by a function

About accuracy, the problem (2.21) has been solved for NTval = 5 ¢t € [100,500], NXval = 9
x €[0,1] and tol = 10~12; relative errors from the coarse-grained parallelism implementation are
reported in the following.

Ex. 3b: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c

LT samples by a function

5 t in [100, 500], 9 x in [O,
RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

1], tol=1.000000e-012

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
1.282757e-011 2.984279e-015 9.473903e-016 1.989520e-015 4.661160e-015
1.285421e-011 2.842948e-015 1.326588e-015 2.274048e-015 4.889069e-015
1.287346e-011 2.132628e-015 1.326761e-015 2.416412e-015 5.116867e-015
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 3.411405e-015
1.288816e-011 2.701751e-015 7.582282e-016 2.274448e-015 2.046875e-015
1.288502e-011 2.417262e-015 5.686563e-016 9.950513e-016 3.411405e-015
1.287346e-011 2.132628e-015 3.790746e-016 2.416412e-015 2.501579e-015
1.285435e-011 2.842948e-015 3.790252e-016 2.274048e-015 5.684964e-016
1.282771e-011 2.984279e-015 9.473903e-016 1.989520e-015 5.684342e-015
1;

About efficiency, the problem (2.21) has been solved for NTval = 120 ¢ € [100, 500], NXval =
120 = € [0,1] and tol = 10~12; the following output shows the speedup provided by the coarse-
grained parallelism implementation.

Ex. 3b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function

120 t in [100, 500], 120 x in [0, 1], tol=1.000000e-12, NOPTS = 26
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.1443 % number of threads = 2
3.1716 % number of threads = 3
4.1345 % number of threads = 4
5.1428 % number of threads = 5
6.015 % number of threads = 6
5.6326 % number of threads = 7
6.4485 % number of threads = 8
4.722 % number of threads = 9
5.1567 % number of threads = 10
5.7416 % number of threads = 11
6.1597 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.171 % number of threads = 2
3.1185 % number of threads = 3
4.0315 % number of threads = 4
4.9327 % number of threads = 5
5.9067 % number of threads = 6
4.77 % number of threads = 7
5.4506 % number of threads = 8
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.0413 % number of threads = 9
.6956 % number of threads = 10
.266 % number of threads = 11
.6597 % number of threads = 12

N OO,

Fig. 3.19 shows the graphs of these results.
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Figure 3.19: Speedup of OMP_Talbot11 in solving (2.21) for LT samples returned by a function and
120 € [100,500], 5 € [0, 1].

LT samples by twpbvp.F

Since twpbvp.f makes use of some COMMON areas and several working arrays as input/output
parameters, and since these working arrays are often of a large size so that we allocated them
dynamically in the sequential version, in order to call the FORTRAN subroutine inside a parallel
for we need to make it "thread-safe" avoiding possible race conditions. The variables in COMMON
areas and those that are dynamically allocated must be considered as "global"; they are shared
among the parallel threads. To avoid any race condition, we applied some changes to twpbvp.f
and to testfun.f ’. In order to distribute in parallel the calls to twpbvp.f, a simple solution was
to provide, to each parallel process, its own copy of global variables. For the COMMON areas, this
solution is similar to the OpenMP threadprivate directive, not used in our code. Our solution
requires less memory than threadprivate since we duplicate just a single variable in the COMMON
area (the only required). Moreover, in order to use the OpenMP threadprivate directive, for
input/output parameters and working arrays, which are dynamically allocated in our code, we
would be obliged to make global their pointers. Since our solution requires less changes to the
original software, we do not use the threadprivate directive.
In order to run the FORTRAN code, modified by inserting OpenMP directives, on machines
with and without OpenMP, we need to enable gfortran to accept preprocessing directives and
conditional compilation: to do this we changed the ".f" extension into ".F" and then we use
#ifdef-#else-#endif as usual.

About accuracy, the problem (2.21) has been solved for NTval = 5 ¢ € [100,500], NXval = 9
x €[0,1] and tol = 10~12; relative errors from the coarse-grained parallelism implementation are
reported in the following.

Ex. 3b: output from ./2PAR/LTS2_twpbvp/OMP_main_ACCURACY.c

LT samples by solving ODE problems by means of twpbvp.F

5 t in [100, 5001, 9 x in [0, 11, t01=1.000000e-012
RELERR1: OMP_Talbotl11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
.282757e-011 .984279e-015 9.473903e-016 1.989520e-015 4.661160e-015
.285421e-011 .842948e-015 3.790252e-016 .279152e-015 3.183580e-015
.287346e-011 .985679e-015 1.326761e-015 .269263e-015 3.411245e-015
.288502e-011 .417262e-015 5.686563e-016 .847953e-015 3.411405e-015
.288816e-011 .701751e-015 7.582282e-016 .127365e-015 2.956597e-015

N e e
NN DNDDNN

1
3
1
3

7 We divided the original FORTRAN file into three parts removing the main program: twpbvp.f contains the
BVP solver alone, testfun.f contains the user-defined functions for the differential problem and prtfun.f contains
some display utilities.
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About efficiency, the problem (2.21) has been solved for NTval = 120 ¢t € [100,500], NXval =
120 = € [0,1] and tol = 10~12; the following output shows the speedup provided by the coarse-
grained parallelism implementation.

Ex. 3b: output from ./2PAR/LTS2_twpbvp/OMP_main_TIMES.c
LT samples by solving ODE problems by means of twpbvp.F
120 t in [100, 500], 120 x in [0, 1], t0l=1.000000e-12, NOPTS = 26

SPEEDUP OMP_Talbot11 _DE():

1 % number of threads = 1
1.9138 % number of threads = 2
2.8131 % number of threads = 3
3.6761 % number of threads = 4
4.4322 % number of threads = 5
4.3822 % number of threads = 6
4.4338 % number of threads = 7
4.163 % number of threads = 8
4.2665 % number of threads = 9
4.053 % number of threads = 10
4.6585 % number of threads = 11
4.5535 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.0855 % number of threads = 2
2.9504 % number of threads = 3
3.7481 % number of threads = 4
4.445 % number of threads = 5§
5.179 % number of threads = 6
4.1897 % number of threads = 7
4.4956 % number of threads = 8
5.1838 % number of threads = 9
5.5763 % number of threads = 10
3.5557 % number of threads = 11
4.1516 % number of threads = 12
Fig. 3.20 shows the graphs of these results.
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Figure 3.20: Speedup of OMP_Talbotll in solving (2.21) for LT samples computed by twpbvp.F and
120t € [100,500], 52 € [0, 1.

LT samples by bvp5c.m

About accuracy, the problem (2.21) has been solved for NTval = 5 t € [100,500], NXval = 9
x €[0,1] and tol = 10~!2; relative errors from the coarse-grained parallelism implementation are
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reported in the following.

Ex. 3b: output from ./2PAR/LTS3_mex/0OMP_main_ACCURACY.c
LT samples by solving ODE problems by means of MATLAB bvp5c.m + PCT
5 t in [100, 500], 9 x in [0, 11, t01=1.000000e-012

RELERR1: OMP_Talbot11_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(5)
1.282771e-11 2.984279e-15 9.473903e-16 2.842171e-16 1.136868e-15
1.285435e-11 2.842948e-15 1.326588e-15 1.421280e-15 2.273985e-15
1.287346e-11 2.985679e-15 3.790746e-16 1.563560e-15 3.411245e-16
1.288502e-11 2.417262e-15 5.686563e-16 9.950513e-16 1.591989e-15
1.288816e-11 2.701751e-15 7.582282e-16 4.264589e-16 1.478298e-15
1.288502e-11 2.417262e-15 5.686563e-16 1.421502e-16 6.822809e-16
1.287346e-11 2.985679e-15 3.790746e-16 1.563560e-15 3.411245e-16
1.285435e-11 2.842948e-15 1.326588e-15 4.263839e-16 2.273985e-15
1.282771e-11 2.984279e-15 9.473903e-16 2.842171e-16 1.136868e-15
1;

About efficiency, the problem (2.21) has been solved for NTval = 120 ¢ € [100,500], NXval =
120 = € [0,1] and tol = 10~!2; the following output shows the speedup provided by the coarse-
grained parallelism implementation.

Ex. 3b: output from ./2PAR/LTS3_mex/O0OMP_main_TIMES.c
LT samples by solving ODE problems by means of bvpbc.m + PCT
120 t in [100, 500], 120 x in [0, 1], t0l=1.000000e-12, NOPTS = 26

SPEEDUP OMP_Talbot11 _DE():

L7314 % number of threads = 11
.6725 % number of threads = 12

1 % number of threads = 1
1.9127 % number of threads = 2
2.6893 % number of threads = 3
3.3012 % number of threads = 4
3.6068 % number of threads = 5
3.8088 % number of threads = 6
4.3208 % number of threads = 7
4.4135 % number of threads = 8
4.5513 % number of threads = 9
4.748 % number of threads = 10
4

4

Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9488 % number of threads = 2
2.4283 % number of threads = 3
3.567 % number of threads = 4
3.552 % number of threads = 5
3.5341 % number of threads = 6
4.424 % number of threads = 7
4.5482 % number of threads = 8
4.5961 % number of threads = 9
4.4965 % number of threads = 10
4.5723 % number of threads = 11
4.5456 % number of threads = 12

Fig. 3.21 shows the graphs of these results.
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Figure 3.21: Speedup of OMP_Talbotll in solving (2.21) for LT samples computed by bvp5c.m and
120t € [100,500], 5z € [0, 1].

3.8 Example 4

For these two examples the LT function has double poles at s = £3i so that NOPTS may become
very large depending on ¢ (large) and tol.

Example 4a

The problem (2.25) is an IVP so that we can solve it by means of a function, ode.c and ode45.m.
The sample code is located in the sub-folder ex4a_IVP/2PAR of the main folder.

LT samples by a function

About accuracy, the problem (2.25) has been solved for NTval = 5 ¢t € [100,500], NXval = 9
x € [0,1] and tol = 10~ !2; relative errors from the three OMP-based parallel implementations of
modified Talbot’s method are reported in the following.

Ex. 4a: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c
LT samples by a function

5 t in [100, 500], 9 x in [0, 1], tol=1.000000e-012
RELERR1: OMP_Talbotl11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: 0OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
3.155580e-014 4.033067e-013 3.977830e-013 2.011336e-011 8.923009e-012
1.134392e-014 8.526362e-015 5.087207e-013 2.216717e-012 9.555893e-012
1.694620e-014 2.100592e-014 6.489252e¢-013 1.011430e-012 1.022577e-011
7.557469e-014 3.122724e-014 9.284873e-013 2.065592e-012 1.171094e-011
5.434823e-013 3.852808e-014 2.453077e-012 2.739706e-012 1.716147e-011
2.088875e-013 4.573705e-014 7.356310e-013 3.324264e-012 1.746506e-012
9.733167e¢-014 5.077901e-014 2.427260e-014 4.029498e-012 6.630023e-012
6.142122e-014 6.684011e-014 2.348925e-013 5.206641e-012 8.132135e-012
3.743456e-014 1.288878e-013 3.636198e-013 9.573173e-012 8.785285e-012

1;
% FINE-GRAIN OMP PARALLELISM with 4 threads for modified

Talbot’s method

RELERR2 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
3.262188e-014 4.147652e-013 3.986375e-013 1.944450e-011 8.936221e-012
9.188573e-015 9.805316e-014 5.100626e-013 2.046171e-012 9.648271e-012
2.136075e-014 6.236131e-014 6.476431e-013 1.085112e-012 1.023894e-011
8.616928e-014 4.943309e-014 9.250114e-013 2.105553e-012 1.180517e-011
5.959298e-013 4.152471e-014 2.446848e-012 2.753075e-012 1.750257e-011
2.292436e-013 3.430278e-014 7.374363e-013 3.317945e-012 1.181590e-012
1.066838e-013 2.545545e-014 2.291727e-014 3.992222e-012 6.523472e-012
6.486770e-014 8.379955e-015 2.372686e-013 5.124928e-012 8.046781e-012
3.914585e-014 6.473098e-014 3.617380e-013 9.339638e-012 8.706200e-012
1;

% NESTED OMP PARALLELISM with 4 outer, 3 inner threads for modified Talbot’s method

RELERR3 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
3.262188e-014 8.108350e-013 3.994920e-013 1.902526e-011 8.940682e-012
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.856932e-015
.161392e-014
.106545e-013
.262627e-013
.739509e-013
.234831e-013
.299154e-014

.478996e-013
.221847e-014
.016369e-014
.430729e-014
.968510e-014
.068338e-014
.094989e-014

.091680e-013
.485588e-013
.276183e-013
.477083e-012
.428520e-013
.663351e-014
.377778e-013

.917461e-012
.139376e-012
.124234e-012
.757387e-012
.296592e-012
.961992e-012
.058174e-012

.594046e-012
.019540e-011
.177145e-011
.724674e-011
.384199e-012
.578645e-012
.100180e-012
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About efficiency, the problem (2.25) has been solved for NTval = 5 t € [100, 500], NXval = 5
x € [0,1] and tol = 10~!2; the following output shows the speedup provided by the three OMP-
based parallel implementations.

Ex. 4a: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function

5 t in [100, 500], 5 x in [0, 1], t0l=1.000000e-12, NOPTS = 1192
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.0438 % number of threads = 2
3.045 % number of threads = 3
3.712 % number of threads = 4
5.1354 % number of threads = 5§
4.534 % number of threads = 6
3.887 % number of threads = 7
3.9919 % number of threads = 8
4.3974 % number of threads = 9
4.7735 % number of threads = 10
4.9485 % number of threads = 11
4.3064 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.5426 % number of threads = 2
4.0019 % number of threads = 3
4.9441 % number of threads = 4
6.4441 % number of threads = 5§
6.7435 % number of threads = 6
5.8895 % number of threads = 7
6.0107 % number of threads = 8
5.1968 % number of threads = 9
7.6911 % number of threads = 10
7.3991 % number of threads = 11
7.2233 % number of threads = 12
Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.9173 % number of threads = 2
2.8546 % number of threads = 3
3.3794 % number of threads = 4
3.3363 % number of threads = 5
4.7718 % number of threads = 6
3.4765 % number of threads = 7
3.6372 % number of threads = 8
3.6912 % number of threads = 9
3.9088 % number of threads = 10
4.0531 % number of threads = 11
3.95 % number of threads = 12
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1 % number of threads = 1
2.7962 % number of threads = 2
4.0359 % number of threads = 3
4.9952 % number of threads = 4
5.9042 % number of threads = 5§
7.0203 % number of threads = 6
6.5579 % number of threads = 7
7.129 % number of threads = 8
7.8631 % number of threads = 9
8.1592 % number of threads = 10
8.7748 % number of threads = 11
9.3901 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
yA 1 2 3 4 5 6 = inner thrd
1 1.4458 1.5987 1.453 1.2808 1.0969%1 outer thrd
2.5159 2.6757 2.6337 2.116 1.8451 1.497 %2
3.5512 3.8403 3.0014 2.3854 - -%3
4.4784 4.0875 3.1349 2.4183 - -h4
6.007 4.3864 - - - -%5
6.2382 4.2819 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
yA 1 2 3 4 5 6 = inner thrd
1 1.8702 2.3772 3.1091 1.9596 1.914 %1 outer thrd
2.5281 3.8103 4.0046 3.0195 2.1438 0.6416%2
3.3009 5.4336 1.8062 0.4263 - -%3
4.9476 4.664 0.8014 1.3489 - -h4
5.5753 1.7507 - - - -%5
6.1875 1.2937 - - - -%6
Fig. 3.22 shows the graphs of these results.
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Figure 3.22: Speedup of OMP_Talbot1x_DE in solving (2.25) for LT samples returned by a function and
5t € [100,500], 5 € [0, 1].

Because of the processor rate, the small problem size and the LT samples returned directly by a

function, the computed speedup often overcomes the ideal speedup.
For a comparison with the previous results we compute the speedup for 20¢ € [100,500], 202 €
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[0,1], for 80¢ € [100,500], 80x € [0, 1], and then for 5¢ € [1000,3000], 5z € [0,1] with the same
tol.

Ex. 4a: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
20 t in [100, 5007, 20 x in [0, 1], t0l=1.000000e-12, NOPTS = 1192

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.0771 % number of threads = 2
.9502 % number of threads = 3
.8793 % number of threads = 4
.6927 % number of threads = 5§
.271 % number of threads = 6
.2285 % number of threads = 7
.9683 % number of threads = 8
.6319 % number of threads = 9
.885 % number of threads = 10
.0764 % number of threads = 11
.0357 % number of threads = 12

0 0 OO U 01O WNN -

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.0056 % number of threads = 2
.8765 % number of threads = 3
.7256 % number of threads = 4
.5239 % number of threads = 5
.3451 % number of threads = 6
.424 % number of threads = 7
.0466 % number of threads = 8
.5858 % number of threads = 9
.3026 % number of threads = 10
.7635 % number of threads = 11
L2121 % number of threads = 12

OO OO WNN

SPEEDUP OMP_Talbot12_DE():

% number of threads
.7599 % number of threads
.3328 % number of threads
.7622 % number of threads
L1742 % number of threads
.5604 % number of threads
.3997 % number of threads
.9651 % number of threads
.035 % number of threads
.1154 % number of threads
.2521 % number of threads
.2219 % number of threads

WWWwWwNWWwWNNF- -

L4129 % number of threads =
.6983 % number of threads =

1 % number of threads = 1
1.8266 % number of threads = 2
2.6029 % number of threads = 3
3.2829 % number of threads = 4
3.831 % number of threads = 5
4.5531 % number of threads = 6
3.952 % number of threads = 7
4 8
4 9
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5.2119 % number of threads = 10
5.7057 % number of threads = 11
4.3936 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.1325 1.1339 1.0076 0.8875 0.7817%1 outer thrd
2.0999 2.2155 1.9935 1.6367 1.3875 1.175 %2
2.9313 3.111 2.4338 1.8783 - -%3
3.7886 3.6445 2.7623 2.077 - -%4
4.721 4.2477 - - - -%5
5.8401 4.6758 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.5781 1.8847 2.045 2.0033 1.3749%1 outer thrd
1.8913 2.9564 3.2732 1.8334 0.9878 0.4739%2
2.7442 3.8876 2.0949 0.9272 - -%3
3.675 3.3125 1.5586 1.2025 - -h4
3.0328 2.5009 - - - -%5
3.8342 2.4059 - - - -%6

Fig. 3.23 shows the graphs of these results. Enlarging the problem size, the speedup highlights
that, for this case, the coarse-grained parallelism behaves slightly better than the fine-grained
parallelism (especially for Windows).
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Figure 3.23: Speedup of OMP_Talbot1x_DE in solving (2.25) for LT samples returned by a function and
20t € [100,500], 20z € [0, 1].

Ex. 4a: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
80 t in [100, 5007, 80 x in [0, 17, t0l=1.000000e-12 NOPTS

1 % number of threads = 1
1.9918 % number of threads = 2
2.9061 % number of threads = 3
3.7716 % number of threads = 4
4.3094 % number of threads = 5§
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4.9884 % number of threads = 6
5.4511 % number of threads = 7
6.0898 % number of threads = 8
6.5478 % number of threads = 9
7.2831 % number of threads = 10
7.9723 % number of threads = 11
8.5365 % number of threads = 12

1 % number of threads = 1
1.997 % number of threads = 2
2.9234 % number of threads = 3
3.7951 % number of threads = 4
4.6138 % number of threads = 5
5.2261 % number of threads = 6
4.6641 % number of threads = 7
5.3462 % number of threads = 8
5.9221 % number of threads = 9
6.5496 % number of threads = 10
7.1222 % number of threads = 11
7.7527 % number of threads = 12

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
L7277 % number of threads = 2
.275 % number of threads = 3
L7278 % number of threads = 4
.1485 % number of threads = 5
.566 % number of threads = 6
.3214 % number of threads = 7
.7864 % number of threads = 8
.9407 % number of threads = 9
.0316 % number of threads = 10
.122 % number of threads = 11
.1285 % number of threads = 12

WWWNNWWWNNR- -

1 % number of threads = 1
1.8315 % number of threads = 2
2.5787 % number of threads = 3
3.2355 % number of threads = 4
3.8266 % number of threads = 5
4.5596 % number of threads = 6
3.8565 % number of threads = 7
4.3263 % number of threads = 8
4.7774 % number of threads = 9
5.1839 % number of threads = 10
5.5934 % number of threads = 11
5.9603 % number of threads = 12

Windows

SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd|
1 1.0599 1.0392 0.9246 0.8165 0.7134%1 outer thrd
1.9862 2.0548 1.8218 1.4875 1.258 1.0721%2

2.8817 2.9004 2.2796 1.7803 - -%3

3.7109 3.4748 2.6378 1.9313 - %4

4.4706 4.0582 - - - -%5
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5.1596 4.579 - - - -%6
Linux

SPEEDUP OMP_Talbot13_DE ():

% 1 2 3 4 5 6 = inner thrd
1 1.5429 1.9049 2.0284 2.0733 1.3058%1 outer thrd
1.8876 2.9453 3.1185 1.9912 1.2258 0.6263%2

2.7651 3.9104 2.4319 1.1179 - -%3

2.6107 4.0129 1.7657 1.2198 - -%4

3.1853 3.7612 - - - -%5

5.4744 3.2995 - - - -%6

Fig. 3.24 shows the graphs of these results. Enlarging again the problem size, the speedup high-
lights that, for this case, the coarse-grained parallelism behaves slightly better than the fine-grained
parallelism (especially for Windows).
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Figure 3.24: Speedup of OMP_Talbot1x_DE in solving (2.25) for LT samples returned by a function and
80t € [100,500], 80z € [0, 1].

Ex. 4a: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function

5 t in [1000, 3000], 5 x in [0, 1], t0l=1.000000e-12, NOPTS = 182814
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.8825 % number of threads = 2
2.714 % number of threads = 3
3.4336 % number of threads = 4
4.387 % number of threads = 5
4.6381 % number of threads = 6
4.7522 % number of threads = 7
5.4617 % number of threads = 8
6.0736 % number of threads = 9
6.3846 % number of threads = 10
6.2707 % number of threads = 11
5.9785 % number of threads = 12

Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9037 % number of threads =
2.683 % number of threads = 3
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.3599 % number of threads = 4
.4454 % number of threads = 5§
.6394 % number of threads = 6
.9316 % number of threads = 7

number of threads = 8
.267 % number of threads = 9
.7123 % number of threads = 10
.8849 % number of threads = 11
.9174 % number of threads = 12

(S IS, BG, B BN ST
o
©
o
=~
s<

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.9335 % number of threads = 2
L7244 % number of threads = 3
.5165 % number of threads = 4
.2545 % number of threads = 5
.9199 % number of threads = 6
.8163 % number of threads = 7
.4215 % number of threads = 8
.0535 % number of threads = 9
L7071 % number of threads = 10
.3514 % number of threads = 11
.4698 % number of threads = 12

NN DD WN R

1 % number of threads = 1
1.8224 % number of threads = 2
2.5121 % number of threads = 3
3.1806 % number of threads = 4
3.8043 % number of threads = 5
4.5597 % number of threads = 6
3.9352 % number of threads = 7
4.4815 % number of threads = 8
4.9624 % number of threads = 9
5.5421 % number of threads = 10
5.9756 % number of threads = 11
6.3877 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8875 2.6011 3.4007 4.1461 4.748 %1 outer thrd
1.8981 3.4387 4.8806 5.3187 6.452 7.5441%2
2.6579 4.8233 5.8179 7.5777 - -%3
3.225 5.2303 7.2131 7.327 - -%4
4.357 6.6062 - - - -%5
4.4107 6.8924 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.6311 2.4535 2.9802 3.4694 3.8036%1 outer thrd|
1.7914 3.128 4.4081 4.255 4.5998 4.6025%2
2.6183 4.5371 4.4174 4.8841 - -%3
3.3889 4.4238 4.6423 5.3508 - -%4
4.4445 5.0752 - - - -%5
3.518 5.2975 - - - -%6

Fig. 3.25 summarizes these results.
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Figure 3.25: Speedup of OMP_Talbot1x_DE in solving (2.25) for LT samples returned by a function and
5t € [1000,3000], 5 € [0, 1].

Results highlight that only when NOPTS is large with respect to the number of ¢-values, the fine-
grained parallelism behaves as the coarse-grained parallelism. The same holds for the hybrid
parallelism.

LT samples by ode.c

About accuracy, the problem (2.25) has been solved for NTval = 5 ¢ € [100,500], NXval = 9
x € [0,1] and tol = 107!2; relative errors from the three OMP-based parallel implementations of
modified Talbot’s method are reported in the following.

Ex. 4a: output from ./2PAR/LTS2_ode/OMP_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode.c

5 t in [100, 500], 9 x in [0, 1], to0l=1.000000e-012
RELERR1: OMP_Talbot11l_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1l) Tval (2) Tval (3) Tval (4) Tval (5)
3.198223e-014 4.033067e-013 4.003466e-013 2.021810e-011 8.993184e-012
2.064593e-014 8.657537e-014 7.428038e-013 9.893344e-012 1.212393e-012
3.560126e-015 3.446283e-015 1.066340e-012 1.479524e-012 1.597922e-011
5.026541e-014 1.048946e-014 9.906182e-014 9.429522e-012 5.192949e-011
8.157236e-013 1.006011e-014 3.347676e-012 9.198479e-012 1.763301e-010
3.536630e-013 2.044974e-014 4.350001e-012 1.041902e-011 2.735427e-010
1.905068e-013 9.667797e-014 2.322777e-012 1.032052e-011 8.187515e-011
1.390901e-013 2.270569e-013 1.918176e-012 2.533107e-012 3.184571e-011
1.001107e-013 6.989797e-013 5.646819e-013 1.965224e-011 1.244622e-012
1;

% FINE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR2 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
3.155580e-014 4.182329e-013 4.017708e-013 1.955286e-011 9.019779e-012
1.849059e-014 1.688876e-014 7.419092e-013 9.682847e-012 1.120898e-012
7.547466e-015 4.102718e-014 1.066889e-012 1.555806e-012 1.598113e-011
5.956510e-014 7.234110e-015 9.906182e-014 9.471215e-012 5.207874e-011
8.816046e-013 3.852808e-015 3.343264e-012 9.214435e-012 1.767103e-010
3.704044e-013 1.077459e-014 4.351807e-012 1.040921e-011 2.740098e-010
1.976075e-013 1.233205e-013 2.327335e-012 1.028850e-011 8.199767e-011
1.416750e-013 2.857165e-013 1.920722e-012 2.449711e-012 3.194956e-011
1.035333e-013 8.903021e-013 5.664189e-013 1.990093e-011 1.216151e-012
1;

h

NESTED OMP PARALLELISM with 4 outer,
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RELERR3 = [ % Tval(1) Tval (2) Tval (3) Tval (4) Tval (5)
3.262188e-014 8.072166e-013 4.003466e-013 1.909453e-011 9.018063e-012
1.361270e-014 6.886677e-014 7.428038e-013 9.530016e-012 1.200028e-012
1.965189e-014 6.236131e-014 1.065974e-012 1.620646e-012 1.601830e-011
8.440351e-014 1.796471e-014 9.906182e-014 9.492494e¢-012 5.190464e-011
1.022084e-012 1.498314e-015 3.327173e-012 9.218963e-012 1.756498e-010
4.162531e-013 5.717131e-015 4.347294e-012 1.039418e-011 2.722476e-010
2.140604e-013 1.366417e-013 2.320559e-012 1.025827e-011 8.130303e-011
1.510297e-013 3.140488e-013 1.914951e-012 2.369681e-012 3.130647e-011
1.048168e-013 9.858915e-013 5.638133e-013 2.012386e-011 1.796986e-012
1

About efficiency, the problem (2.25) has been solved for NTval = 5 ¢t € [100, 500], NXval = 5
x € [0,1] and tol = 10~!2; the following output shows the speedup provided by the three OMP-
based parallel implementations.

Ex. 4a: output from ./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c

5 t in [100, 500], 5 x in [0, 1], t0l1=1.000000e-12, NOPTS = 1192
Windows
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9066 % number of threads = 2
2.8167 % number of threads = 3
3.5183 % number of threads = 4
4.077 % number of threads = 5§
4.5683 % number of threads = 6
5.0154 % number of threads = 7
5.7177 % number of threads = 8
6.019 % number of threads = 9
6.706 % number of threads = 10
7.3033 % number of threads = 11
6.2058 % number of threads = 12
Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
1.9444 % number of threads = 2
2.8421 % number of threads = 3
3.5425 % number of threads = 4
4.351 % number of threads = 5§
5.1163 % number of threads = 6
4.5624 % number of threads = 7
4.9794 % number of threads = 8
5.4164 % number of threads = 9
5.8723 % number of threads = 10
6.2532 % number of threads = 11
6.7526 % number of threads = 12
Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.9457 % number of threads = 2
2.8582 % number of threads = 3
3.4889 % number of threads = 4
4.1518 % number of threads = 5
4.5813 % number of threads = 6
4.6747 % number of threads = 7
5.1583 % number of threads = 8
5.9562 % number of threads = 9
6.3918 % number of threads = 10
6.934 % number of threads = 11
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7.5739 % number of threads = 12
Linux
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.9531 % number of threads = 2
2.836 % number of threads = 3
3.5262 % number of threads = 4
4.3751 % number of threads = 5
5.1420 % number of threads = 6
4.5568 % number of threads = 7
4.9839 % number of threads = 8
5.4123 % number of threads = 9
5.8562 % number of threads = 10
6.2549 % number of threads = 11
6.7869 % number of threads = 12
Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd|
1 1.92 2.7524 3.4146 4.0465 4.4599%1 outer thrd|
1.9651 3.5165 4.4737 5.1677 6.0913 6.4495%2
2.8282 4.7352 5.9066 7.1925 - -%3
3.4088 5.1406 6.6174 5.7482 - -4
4.3374 6.0308 - - - -%5
4.4786 6.6387 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8931 2.7822 3.1571 3.4496 3.5419%1 outer thrd|
1.9026 3.5116 4.8373 4.4047 4.6937 6.1698%2
2.7545 4.973 5.0969 5.7006 - -%3
3.4441 4.8081 5.7354 5.554 - -%4
4.3707 5.3091 - - - -%5
5.1404 5.5897 - - - -%6

Fig. 3.26 shows the graphs of these results.
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Figure 3.26: Speedup of OMP_Talbotly_DE in solving (2.25) for LT samples computed by ode.c and

5t € [100,500], 5z € [0,1].
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Also for ode.c we compute the speedup at first for 20¢ € [100,500], 20z € [0,1], and then for
5t € [1000, 3000], 5z € [0,1] with the same tol.

Ex. 4a: output from ./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c
20 t in [100, 5007, 20 x in [0, 1], t0l=1.000000e-12, NOPTS = 1192

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.9153 % number of threads = 2
.7924 % number of threads = 3
L4912 % number of threads = 4
.2329 % number of threads = 5§
.5855 % number of threads = 6
.3127 % number of threads = 7
.1118 % number of threads = 8
L4722 % number of threads = 9
.7003 % number of threads = 10
.078 % number of threads = 11
.6502 % number of threads = 12

OO GO0 DD WN -

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.9132 % number of threads = 2
.8157 % number of threads = 3
.4202 % number of threads = 4
.3268 % number of threads = 5
.0693 % number of threads = 6
.3229 % number of threads = 7
L7967 % number of threads = 8
.3385 % number of threads = 9
.7389 % number of threads = 10
.3899 % number of threads = 11
.8623 % number of threads = 12

O OGO DO WN -

SPEEDUP OMP_Talbot12_DE():

% number of threads
.9054 % number of threads
L7712 % number of threads
.3821 % number of threads
.1589 % number of threads
.5784 % number of threads
.6847 % number of threads
.7934 % number of threads
.0807 % number of threads
.4087 % number of threads
.7856 % number of threads
.0735 % number of threads

OO DD D WN R

% number of threads =
.9108 % number of threads =
.7656 % number of threads =
LAT71 % number of threads =
.2844 % number of threads =
.0156 % number of threads =
.5781 % number of threads =
.8481 % number of threads =
.3587 % number of threads =

[ OV e
© 00 ~NOUd WN -
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5.6913 % number of threads = 10

6.0724 % number of threads = 11

6.6168 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8152 2.5128 2.9468 3.3121 3.4271%1 outer thrd|
1.9176 3.316 3.8881 4.3317 4.4763 4.719 %2
2.7356 4.1432 4.9927 5.3636 - -%3
3.444 4.7796 5.9483 5.2297 - -%4
4.0254 4.9207 - - - -%5
4.3844 5.6254 - - - -%6
Linux

SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8128 2.2285 3.2301 3.4179 3.7905%1 outer thrd
1.8423 3.3416 4.7757 4.4501 4.7691 4.6345%2
2.7075 4.9222 4.9044 5.5927 - -%3
3.4456 4.7576 5.8857 5.2143 - -%4
4.3028 5.5317 - - - -%5
3.5641 6.1444 - - - -%6

Fig. 3.27 summarizes these results.
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Figure 3.27: Speedup of OMP_Talbotly_DE in solving (2.25) for LT samples computed by ode.c and
20¢ € [100,500], 20z € [0, 1].

Ex. 4a: output from ./2PAR/LTS2_ode/OMP_main_TIMES.c
LT samples computed by solving ODE problems by means of ode.c
5 t in [1000, 3000], 5 x in [0, 1], tol=1.000000e-12, NOPTS = 182814
Windows
SPEEDUP 0OMP_Talbot11_DE():
1 % number of threads = 1
1.9336 % number of threads = 2
2.8313 % number of threads = 3
3.4524 % number of threads = 4
4.0983 % number of threads = 5
4.6415 % number of threads = 6
5.1017 % number of threads = 7
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5.5135 % number of threads = 8
5.7749 % number of threads = 9
6.0711 % number of threads = 10
6.2952 % number of threads = 11
6.5168 % number of threads = 12

SPEEDUP OMP_Talbot11l _DE():

% number of threads = 1
.9061 % number of threads = 2
.8204 % number of threads = 3
.5466 % number of threads = 4
.3337 % number of threads = 5
.1473 % number of threads = 6
.8532 % number of threads = 7
L3778 % number of threads = 8
.6266 % number of threads = 9
.9196 % number of threads = 10
L3779 % number of threads = 11
.7393 % number of threads = 12

OO0 OO 0D WN -

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.9313 % number of threads = 2
.8259 % number of threads = 3
L4738 % number of threads = 4
.1307 % number of threads = 5§
.6968 % number of threads = 6
.1028 % number of threads = 7
.4288 % number of threads = 8
.6807 % number of threads = 9
.0648 % number of threads = 10
.2873 % number of threads = 11
.4645 % number of threads = 12

O OO OO D WN -

SPEEDUP 0OMP_Talbot12_DE():

1 % number of threads = 1
1.9208 % number of threads = 2
2.8341 % number of threads = 3
3.5414 % number of threads = 4
4.3019 % number of threads = 5§
5.0942 % number of threads = 6
4.7793 % number of threads = 7
5.2237 % number of threads = 8
5.6096 % number of threads = 9
6.06 % number of threads = 10
6.238 % number of threads = 11
6

.7567 % number of threads = 12

Windows

SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd
1 1.9302 2.8274 3.5046 4.1003 4.6752%1 outer thrd
1.9306 3.4965 4.6187 5.4459 6.0766 6.5764%2

2.8032 4.6149 5.7359 6.5768 - -%3

3.478 5.5116 6.5845 6.1107 - -h4

4.1472 6.0982 - - - -%5

4.6081 6.5599 - - - -%6
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SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd
1 1.9235 2.8238 3.5292 3.8671 4.1402%1 outer thrd
1.9289 3.5436 5.144 5.3152 5.8557 6.8543%2
2.8315 4.8181 5.5108 6.7658 - -%3
3.5314 5.5596 6.8025 6.6922 - -%4
4.3397 5.9984 - - - -%5
4.3423 6.7093 - - - -%6

Fig. 3.28 summarizes these results.
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Figure 3.28: Speedup of OMP_Talbotly_DE in solving (2.25) for LT samples computed by ode.c and
5t € [1000,3000], 52 € [0, 1].

Comparing these results to those from LT samples computed by a function, for ode.c we note
a similar speedup between coarse-grained and fine-grained-parallelism: this is due to the time
required by ode.c to solve the differential problems. The parallel performance of this mixed-code
is very satisfactory.

LT samples by ode45.m

About accuracy, the problem (2.25) has been solved for NTval = 5 t € [100,500], NXval = 9
x €[0,1] and tol = 10~'2; relative errors from the three OMP-based parallel implementations of
modified Talbot’s method are reported in the following.

Ex. 4a: output from ./2PAR/LTS3_mex/OMP_main_ACCURACY.c
LT samples computed by solving ODE problems by means of ode45.m + PCT
5 t in [100, 500], 9 x in [0, 17, t01=1.000000e-012

RELERR1: OMP_Talbotl11_DE

RELERR2: OMP_Talbot12_DE

RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)
3.027651e-14 4.334605e-13 4.021981e-13 2.028480e-11 9.077428e-12
1.201321e-13 1.513429e-13 7.343052e-13 2.142091e-12 1.000807e-11
1.700316e-13 4.366933e-13 9.643215e-13 5.022477e-13 1.091848e-11
2.841703e-13 1.108025e-13 1.093880e-12 6.302184e-13 1.326704e-11
9.199041e-13 1.857910e-13 1.018785e-12 8.025274e-12 1.591776e-12
1.674144e-14 2.796996e-13 4.345188e-12 3.421876e-12 9.429604e-11
1.700706e-13 3.872394e-13 6.912146e-14 1.952046e-11 4.069373e-11
2.707949e-13 5.616565e-13 5.050868e-13 6.302570e-12 1.353165e-10
3.700673e-13 5.804259e-13 6.851164e-13 1.023227e-11 9.024121e-12
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1;

% FINE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR2 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)
.155580e-14 .182329e-13 .016284e-13 .955286e-11 9.019779e-12
.179767e-13 .571026e-13 .347525e-13 .931594e-12 .003827e-11
.656170e-13 .945174e-13 .628562e-13 .759292e-13 .102597e-11
.721631e-13 .127036e-14 .098370e-12 .675812e-13 .342872e-11
.685999e-13 .907140e-13 .039288e-12 .038642e-12 .027014e-12
.375604e-15 .717836e-13 .342630e-12 .410328e-12 .499765e-11
.785569e-13 .632348e-13 .170889e-14 .956927e-11 .050007e-11
.726413e-13 .029968e-13 .076326e-13 .219922e-12 .352251e-10
.715647e-13 .880988e-13 .877220e-13 .954314e-12 .971749e-12

WO WNE O WwN D
OGN R R O N
O O = WO o U=
0 D O NP ==

RELERR3 = % Tval(1) Tval (2) Tval (3) Tval (4) ... Tval(5)

.018063e-12
.001248e-11
.098497e-11
.336837e-11
.430083e-12
.449666e-11
.060140e-11
.352810e-10
.994772e-12

.240866e-14
.138929e-13
.530854e-13
.459121e-13
.415539e-13
.185361e-14
.9568757e-13
.797804e-13
.743456e-13

H

.073673e-13
.090806e-13
.731832e-13
.295113e-14
.924264e-13
.669460e-13
.485946e-13
.758617e-13
.948058e-13

.999193e-13
.369890e-13
.634057e-13
.091128e-12
.035784e-12
.361284e-12
.862861e-14
.057657e-13
.851164e-13

.909468e-11
.780647e-12
.222185e-13
.808190e-13
.043817e-12
.395294e-12
.959604e-11
.139143e-12
.787237e-12
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About efficiency, the problem (2.25) has been solved for NTval = 5 t € [100, 500], NXval = 5
x € [0,1] and tol = 10~!2; the following output shows the speedup provided by the three OMP-
based parallel implementations.

Ex. 4a: output from ./2PAR/LTS3_mex/OMP_main_TIMES.c
LT samples computed by solving ODE problems by means of ode45.m + PCT
5 t in [100, 500], 5 x in [0, 1], tol=1.000000e-12, NOPTS = 1192

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.9213 % number of threads = 2
.7820 % number of threads = 3
.2835 % number of threads = 4
.6788 % number of threads = 5§
L2267 % number of threads = 6
.5876 % number of threads = 7
.9571 % number of threads = 8
.1653 % number of threads = 9
.3346 % number of threads = 10
L4377 % number of threads = 11
L4733 % number of threads = 12

Qoo DD WwWN -

SPEEDUP OMP_Talbot11_DE():

.6649 % number of threads = 11
.6251 % number of threads = 12

1 % number of threads = 1
1.8863 % number of threads = 2
2.7750 % number of threads = 3
3.7803 % number of threads = 4
3.9073 % number of threads = 5§
4.5517 % number of threads = 6
4.8748 % number of threads = 7
5.2266 % number of threads = 8
5.4336 % number of threads = 9
5.493 % number of threads = 10
5

5
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Windows

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.9298 % number of threads = 2
.7682 % number of threads = 3
.2480 % number of threads = 4
.6821 % number of threads = 5§
.2970 % number of threads = 6
.6475 % number of threads = 7
.9737 % number of threads = 8
L2077 % number of threads = 9
.3216 % number of threads = 10
.4692 % number of threads = 11
.4649 % number of threads = 12

QOO DD WWN -

1 % number of threads = 1
1.9422 % number of threads = 2
2.8081 % number of threads = 3
3.1307 % number of threads = 4
3.7102 % number of threads = 5§
4.6311 % number of threads = 6
4.5641 % number of threads = 7
5.1420 % number of threads = 8
5.1970 % number of threads = 9
5.3788 % number of threads = 10
5.5123 % number of threads = 11
5.4562 % number of threads = 12

Windows
SPEEDUP OMP_Talbot13_DE():
yA 1 2 3 4 5 6 = inner thrd
1 1.9416 2.7555 3.2415 3.662 4.1881%1 outer thrd
1.9595 3.2633 4.1941 4.9024 5.3462 5.49277%2
2.7645 4.1941 5.1775 5.4936 - -%3
3.2683 4.9738 5.5199 5.5139 - -%h4
3.7839 5.3879 - - - -%5
4.2856 5.5066 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.964 2.7729 3.6447 4.0871 4.3537%1 outer thrd
2.017 3.299 4.4203 5.0037 5.3232 5.4871%2
2.8543 4.4281 5.2088 5.4664 - -%3
3.2376 5.0694 5.4643 5.4457 - -%4
4.3567 5.3857 - - - -%5
4.4309 5.4118 - - - -%6

Fig. 3.29 shows the graphs of these results.
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Figure 3.29: Speedup of OMP_Talbot1lx_DE in solving (2.25) for LT samples computed by ode45.m and
5t € [100,500], 5z € [0, 1].

For ode45.m we compute the speedup for 20¢ € [100,500], 20z € [0, 1] with the same tol.

Ex. 4a: output from ./2PAR/LTS3_mex/O0OMP_main_TIMES.c
LT samples computed by solving ODE problems by means of ode45.m + PCT
20 t in [100, 500], 20 x in [0, 1], tol=1.000000e-12, NOPTS = 1192

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.982 % number of threads = 2
.7984 % number of threads = 3
.4363 % number of threads = 4
.8893 % number of threads = 5
.3392 % number of threads = 6
.7106 % number of threads = 7
.0325 % number of threads = 8
.2241 % number of threads = 9
.4258 % number of threads = 10
.5424 % number of threads = 11
.5496 % number of threads = 12

OO D WwWwN -

% number of threads =

1 1
1.8918 % number of threads = 2
2.8093 % number of threads = 3
3.5957 % number of threads = 4
4.0824 % number of threads = 5
4.361 % number of threads = 6
4.5851 % number of threads = 7
4.8793 % number of threads = 8
4.9943 % number of threads = 9
5.1996 % number of threads = 10
5.2883 % number of threads = 11
5.3114 % number of threads = 12

SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.9121 % number of threads =
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Fig. 3.30 summarizes these results.
About parallel performance, for ode45.m the same remark as for ode.c holds.
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Figure 3.30: Speedup of OMP_Talbot1lx_DE in solving (2.25) for LT samples computed by ode45.m and
20¢ € [100,500], 20z € [0, 1].

Example 4b

Problem (2.27) leads to a BVP and, as before, we compare three ways to solve it for each s on
Talbot’s contour: by a function, by twpbvp.F and by bvpsc.m with PCT.
The sample code is located in the sub-folder ex4b_BVP/2PAR of the main folder.

LT samples by a function

About accuracy, the problem (2.27) has been solved for NTval = 5 t € [100,500], NXval = 9
x €[0,1] and tol = 10~'2; relative errors from the three OMP-based parallel implementations of
modified Talbot’s method are reported in the following.

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_ACCURACY.c
LT samples by a function
5 t in [100, 500], 9 x in [0, 11, t0l=1.000000e-012
RELERR1: OMP_Talbot11_DE
RELERR2: OMP_Talbot12_DE
RELERR3: OMP_Talbot13_DE

% COARSE-GRAIN OMP PARALLELISM with 4 threads for modified Talbot’s method

RELERR1 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)
.155580e-014 .033067e-013 .977830e-013 2.011336e-011 8.923009e-012
.134392e-014 .526362e-015 .087207e-013 .216717e-012 .555893e-012
.694620e-014 .100592e-014 .489252e-013 .011430e-012 .022577e-011
.557469e-014 .122724e-014 .284873e-013 .065592e-012 .171094e-011
.434823e-013 .852808e-014 .453077e-012 .739706e-012 .716147e-011
.088875e-013 .573705e-014 .356310e-013 .324264e-012 .746506e-012
.733167e-014 .077901e-014 .427260e-014 .029498e-012 .630023e-012
.142122e-014 .684011e-014 .348925e-013 .206641e-012 .132135e-012
.743456e-014 .288878e-013 .636198e-013 .573173e-012 .785285e-012
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N OMP PARALLELISM with 4 threads for modified Talbot’s method
% Tval(1l) Tval (2) Tval (3) Tval(4) ... Tval(5)
.198223e-014 .147652e-013 3.986375e-013 1.944450e-011 8.936221e-012
.188573e-015 .805316e-014 .100626e-013 2.046171e-012 .648271e-012
.136075e-014 .236131e-014 .476431e-013 1.085112e-012 .023894e-011
.616928e-014 .943309e-014 .250114e-013 2.105553e-012 .180517e-011
.959298e-013 .152471e-014 .446848e-012 2.753075e-012 .750257e-011
.292436e-013 .430278e-014 .374363e-013 3.317945e-012 .181590e-012
3
5
9

% FINE-GRA
RELERR2 =

.066838e-013 .545545e-014 .291727e-014 .992222e-012 .523472e-012
.486770e-014 .379955e-015 .372686e-013 .124928e-012 .046781e-012
.914585e-014 .473098e-014 .613037e-013 .339638e-012 .706200e-012
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1;

% NESTED OMP PARALLELISM with 4 outer, 3 inner threads for modified Talbot’s method
RELERR3 = [ % Tval(1) Tval (2) Tval (3) Tval(4) ... Tval(s)

.262188e-014 .108350e-013 .994920e-013 1.902526e-011 8.940682e-012
.856932e-015 .478996e-013 .091680e-013 .917461e-012 .594046e-012
.161392e-014 .221847e-014 .485588e-013 .139376e-012 .019540e-011
.106545e-013 .968141e-014 .276183e-013 .124234e-012 .177145e-011
.262627e-013 .430729e-014 .477083e-012 .757387e-012 .724674e-011
.739509e-013 .968510e-014 .428520e-013 .296592e-012 .384199e-012
.234831e-013 .068338e-014 .663351e-014 .961992e-012 .578645e-012
.299154e-014 .094989e-014 .377778e-013 .058174e-012 .100180e-012
.085715e-014 .588851e-013 .595667e-013 .121144e-012 .726586e-012
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About efficiency, the problem (2.27) has been solved for NTval = 5 ¢ € [100, 500], NXval = 5
x € [0,1] and tol = 1075; the following output shows the speedup provided by the three OMP-
based parallel implementations.

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
5 t in [100, 500], 5 x in [0, 1], t0l=1.000000e-06, NOPTS = 840

1 % number of threads = 1
1.7966 % number of threads = 2
2.5253 % number of threads = 3
3.2244 % number of threads = 4
4.3598 % number of threads = 5
2.6674 % number of threads = 6
3.2155 % number of threads = 7
3.2792 % number of threads = 8
3.6749 % number of threads = 9
3.7077 % number of threads = 10
3.3758 % number of threads = 11
3.3891 % number of threads = 12

Linux
SPEEDUP OMP_Talbot11_DE():
1 % number of threads = 1
2.5557 % number of threads = 2
4.7223 % number of threads = 3
5.6774 % number of threads = 4
7.8061 % number of threads = 5
6.828 % number of threads = 6
8.6097 % number of threads = 7
7.3878 % number of threads = 8
2.7687 % number of threads = 9
8.6114 % number of threads = 10
8.5431 % number of threads = 11
4.7722 % number of threads = 12

Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.5468 % number of threads = 2
2.0455 % number of threads = 3
3.0857 % number of threads = 4
3.0722 % number of threads = 5
3.8749 % number of threads = 6
2.9765 % number of threads = 7
3.0264 % number of threads = 8
3.0996 % number of threads = 9
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3.165 % number of threads = 10
3.2254 % number of threads = 11
3.3245 % number of threads = 12

SPEEDUP 0OMP_Talbot12_DE():

% number of threads = 1
.4581 % number of threads = 2
.6582 % number of threads = 3
.5175 % number of threads = 4
.3499 % number of threads = 5
.3715 % number of threads = 6
.4033 % number of threads = 7
.8988 % number of threads = 8
.8627 % number of threads = 9
.8386 % number of threads = 10
.1333 % number of threads = 11
.6294 % number of threads = 12

NN OOoo, o WN e

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.0962 1.4336 1.249 1.0847 0.94738%1 outer thrd
2.7596 2.6431 2.3052 1.8086 1.5034 1.2211%2
3.8348 3.4937 2.6063 1.9814 - -%3
4.8022 3.7863 2.7005 1.9253 - %4
6.2952 4.0718 - - - -%5
6.573 3.7982 - - - -%6
Linux

SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 2.2857 2.8159 2.5906 2.2212 2.269 %1 outer thrd
3.0059 4.9476 4.9444 4.1544 2.0511 0.7830%2
4.5429 5.0581 2.0306 0.7799 - -%3
5.0561 2.5119 0.7404 1.6132 - %4
7.0684 2.6906 - - - -%5
7.7341 0.7941 - - - -%6
Fig. 3.31 shows the graphs of these results.
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Figure 3.31: Speedup of OMP_Talbot1y_DE in solving (2.27) for LT samples returned by a function and
5t € [100,500], 52 € [0, 1].
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For a better performance evaluation, for LT samples computed by a function, for 52 € [0,1]
and with the same tol, we compute the speedup also for 20¢ € [100,500], 80¢ € [100,500],
5t € [1000, 3000] and 20t € [1000, 3000].

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
20 t in [100, 5007, 5 x in [0, 1], t0l=1.000000e-06, NOPTS = 840

% number of threads = 1
.1688 % number of threads = 2
.0931 % number of threads = 3
.0679 % number of threads = 4
.9345 % number of threads = 5§
.762 % number of threads = 6
.5878 % number of threads = 7
.969 % number of threads = 8
.6576 % number of threads = 9
.7568 % number of threads = 10
.514 % number of threads = 11
.5459 % number of threads

OO OO OO D WN

SPEEDUP OMP_Talbot11_DE():

% number of threads = 1
.6609 % number of threads = 2
.0259 % number of threads = 3
.836 % number of threads = 4
.3511 % number of threads = 5§
.0787 % number of threads = 6
.2524 % number of threads = 7
.6888 % number of threads = 8
.3871 % number of threads = 9
.8943 % number of threads = 10
.1640 % number of threads = 11
.3740 % number of threads = 12

0 00 ~NNOONO D PN

SPEEDUP OMP_Talbot12_DE():

1 % number of threads = 1
1.7777 % number of threads = 2
2.746 % number of threads = 3
3.6863 % number of threads = 4
4.0662 % number of threads = 5
4.4649 % number of threads = 6
3.4032 % number of threads = 7
3.4826 % number of threads = 8
3.638 % number of threads = 9
3.7577 % number of threads = 10
3.855 % number of threads = 11
4.0292 % number of threads = 12
Linux
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
2.1809 % number of threads = 2
3.1173 % number of threads = 3
3.8537 % number of threads = 4
4.5249 % number of threads = 5
5.5187 % number of threads = 6
4.6813 % number of threads = 7
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5.1661 % number of threads = 8
5.6797 % number of threads = 9
6.072 % number of threads = 10
5.4253 % number of threads = 11
5.861 % number of threads = 12
Windows

% 1 2 3 4 5 6 = inner thrd
1 1.353 1.3903 1.263 1.0928 0.9439%1 outer thrd|
2.4181 2.4584 2.2099 1.7846 1.4939 1.2409%2
3.4917 3.2161 2.3368 1.7525 - -%3
4.4565 3.6032 2.7329 2.0886 - -%4
5.9501 4.1472 - - - -%5
6.1862 4.3193 - - - -%6
Linux

% 1 2 3 4 5 6 = inner thrd
1 1.5939 2.8159 2.5906 2.2212 2.269%1 outer thrd
1.8982 3.0738 4.9444 4.1544 2.0511 0.78303%2
2.964 5.0581 2.0306 0.6814 - -%3
4.2907 2.6488 0.8812 1.6132 - -%4
3.6826 2.2511 - - - -%5
5.6818 0.6084 - - - -%6

Fig. 3.32 shows the graphs of these results.
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Figure 3.32: Speedup of OMP_Talbot1y_DE in solving (2.27) for LT samples returned by a function and
20¢ € [100,500], 5 € [0,1].

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
80 t in [100, 500], 80 x in [0, 1], t0l=1.000000e-06, NOPTS = 840

% number of threads =
.9989 % number of threads =
.9141 % number of threads =
.773 % number of threads =
.3773 % number of threads =

IOV S
g wWwN R
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4.7933 % number of threads = 6
5.2473 % number of threads = 7
5.9488 % number of threads = 8
6.6943 % number of threads = 9
7.3208 % number of threads = 10
8.0256 % number of threads = 11
8.4825 % number of threads = 12

1 % number of threads = 1
1.9968 % number of threads = 2
2.9184 % number of threads = 3
3.7848 % number of threads = 4
4.5994 % number of threads = 5
5.5114 % number of threads = 6
4.5023 % number of threads = 7
5.1779 % number of threads = 8
5.7358 % number of threads = 9
6.3393 % number of threads = 10
6.8209 % number of threads = 11
7.4374 % number of threads = 12

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.6998 % number of threads = 2
.246 % number of threads = 3
.6423 % number of threads = 4
.6456 % number of threads = 5
.1333 % number of threads = 6
.4063 % number of threads = 7
.4652 % number of threads = 8
.5393 % number of threads = 9
.6101 % number of threads = 10
.6088 % number of threads = 11
.5826 % number of threads = 12

NNNNNDNDWNDNNR-

1 % number of threads = 1
1.7484 % number of threads = 2
2.4805 % number of threads = 3
2.618 % number of threads = 4
3.7351 % number of threads = 5
4.0154 % number of threads = 6
3.8129 % number of threads = 7
4.3393 % number of threads = 8
4.6053 % number of threads = 9
4.9258 % number of threads = 10
5.2955 % number of threads = 11
5.5028 % number of threads = 12

Windows

SPEEDUP OMP_Talbot13_DE():

% 1 2 3 4 5 6 = inner thrd
1 0.9078 0.8287 0.7160 0.6136 0.5243%1 outer thrd|
1.9883 1.7349 1.4223 1.1267 0.9226 0.7841%2

2.8742 2.4309 1.7673 1.3256 - -%3

3.625 2.8999 2.0037 1.425 - %4

4.4056 3.364 - - - -%5
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Linux
SPEEDUP OMP_Talbot13_DE():
yA 1 2 3 4 5 6 = inner thrd
1 1.4915 1.7258 1.7862 1.7379 1.0369%1 outer thrd
1.9001 2.7821 2.7502 1.371 0.643 0.3376%2
2.7759 3.6402 2.0187 0.8462 - -%3
3.7798 3.428 1.5241 0.5969 - -%h4
4.6059 3.2223 - - - -%5
5.4985 2.7805 - - - -%6
Fig. 3.33 shows the graphs of these results.
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Figure 3.33: Speedup of OMP_Talbot1y_DE in solving (2.27) for LT samples returned by a function and
80¢ € [100,500], 80z € [0, 1].

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function

5 t in [1000, 3000], 5 x in [0, 1], tol=1.000000e-06, NOPTS = 120337
Windows
SPEEDUP OMP_Talbot11l _DE():
1 % number of threads = 1
1.8894 % number of threads = 2
2.6751 % number of threads = 3
3.3804 % number of threads = 4
4.4367 % number of threads = 5
4.3953 % number of threads = 6
4.555 % number of threads = 7
4.7622 % number of threads = 8
5.9106 % number of threads = 9
6.0893 % number of threads = 10
6.3588 % number of threads = 11
6.5459 % number of threads = 12
Linux
SPEEDUP OMP_Talbotl11l _DE():
1 % number of threads = 1
1.9074 % number of threads = 2
2.6889 % number of threads = 3
3.3845 % number of threads = 4
4.4444 % number of threads = 5
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.5626 % number of threads = 6
.9426 % number of threads = 7
.128 % number of threads = 8
number of threads = 9
.8192 % number of threads = 10
.8823 % number of threads = 11
.9503 % number of threads = 12

oo oo S
N
©
'S
o
B

.3146 % number of threads
.6705 % number of threads

1 % number of threads
1.9392 % number of threads
2.746 % number of threads
3.6863 % number of threads
4.2784 % number of threads
4.9771 % number of threads
4.8091 % number of threads
5.467 % number of threads
6.0771 % number of threads
6.681 % number of threads
7

7

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.8737 % number of threads = 2
.6253 % number of threads = 3
.289 % number of threads = 4
.9076 % number of threads = 5
L7073 % number of threads = 6
.0039 % number of threads = 7
.5167 % number of threads = 8
.9785 % number of threads = 9
.5324 % number of threads = 10
.0823 % number of threads = 11
.8671 % number of threads = 12

Ao DD WwWwNR--

Windows
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd|
1 1.8738 2.591 3.3871 4.1321 4.7604%1 outer thrd
1.9092 3.4471 4.667 5.3488 6.3863 7.2952%2
2.6808 4.8682 5.8108 7.3696 - -%3
3.3721 5.2178 7.0772 7.284 - %4
4.1367 6.5333 - - - -%5
4.6292 6.8002 - - - -%6
Linux
SPEEDUP OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.7335 2.4293 2.8336 3.2565 3.798 %1 outer thrd
1.805 3.1509 3.8039 4.063 4.7881 4.4578%2
2.5559 4.1195 4.3322 4.2706 - -%3
3.3872 4.3799 4.1259 4.7463 - -%4
4.4311 4.7289 - - - -%5
3.8958 4.7234 - - - -%6

Fig. 3.34 shows the graphs of these results.
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Figure 3.34: Speedup of OMP_Talbot1x_DE in solving (2.27) for LT samples returned by a function and
5t € [1000,3000], 5 € [0, 1].

Ex. 4b: output from ./2PAR/LTS1_fun/OMP_main_TIMES.c
LT samples by a function
20 t in [1000, 30001, 5 x in [0, 1], t0l=1.000000e-06, NOPTS = 120337

SPEEDUP OMP_Talbot11_DE():

1 % number of threads = 1
1.9824 % number of threads = 2
2.8397 % number of threads = 3
3.7331 % number of threads = 4
4.3891 % number of threads = 5
5.015 % number of threads = 6
5.3441 % number of threads = 7
5.817 % number of threads = 8
5.8825 % number of threads = 9
7.141 % number of threads = 10
7.2649 % number of threads = 11
7.6897 % number of threads = 12

SPEEDUP OMP_Talbotl11l _DE():

% number of threads = 1
.9861 % number of threads = 2
.8482 % number of threads = 3
L7647 % number of threads = 4
.5649 % number of threads = 5
.3812 % number of threads = 6
L7075 % number of threads = 7
.1335 % number of threads = 8
.8801 % number of threads = 9
.4186 % number of threads = 10
.0817 % number of threads = 11
.2592 % number of threads = 12

NN OO O WN e

Windows
SPEEDUP OMP_Talbot12_DE():
1 % number of threads = 1
1.9275 % number of threads = 2
2.7219 % number of threads = 3
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.5236 % number of threads = 4
.2251 % number of threads = 5§
.9916 % number of threads = 6
.9757 % number of threads = 7

number of threads = 8
.2233 % number of threads = 9
.799 % number of threads = 10
.4254 % number of threads = 11
.6034 % number of threads = 12

NN oSS W
o
o
D
©
e

SPEEDUP OMP_Talbot12_DE():

% number of threads = 1
.8073 % number of threads = 2
.5333 % number of threads = 3
.1426 % number of threads = 4
LTT4T % number of threads = 5§
.5356 % number of threads = 6
.9723 % number of threads = 7
.5049 % number of threads = 8
.0591 % number of threads = 9
L4511 % number of threads = 10
.0921 % number of threads = 11
.3809 % number of threads = 12

DO OO WD WWN -

Windows
SPEEDUP 0OMP_Talbot13_DE():
% 1 2 3 4 5 6 = inner thrd
1 1.8339 2.579 3.3708 4.0595 4.7069%1 outer thrd
1.9714 3.55867 5.0077 5.6249 6.6279 7.6411%2
2.8183 5.0614 6.2387 7.8095 - -%3
3.5905 5.9183 7.9021 8.1432 - -%ha
4.2852 6.8184 - - - -%5
4.771