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Remark on Algorithm 982: Explicit solutions of triangular systems
of first-order linear initial-value ordinary di�erential equations
with constant coe�icients

W. VAN SNYDER

Algorithm 982: Explicit solutions of triangular systems of �rst-order linear initial-value ordinary di�erential
equations with constant coe�cients provides an explicit solution for an homogeneous system, and a brief

description of how to compute a solution for the inhomogeneous case. �e method described is not directly

useful if the coe�cient matrix is singular. �is remark explains more completely how to compute the solution

for the inhomogeneous case, and for the singular coe�cient matrix case.
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�e formal solution for the homogeneous system

dN(t)
dt
= A N(t) (1)

in which A is a constant triangular matrix, is

N(t) = exp(A t)N(0) . (2)

Because this requires to compute the exponential of the matrix A t , Algorithm 982 [1] provides

an explicit solution

Ni (t) = Ni (0) eaii t +
i−1∑
j=1

zi j
(
Nj (t) − Nj (0) eaii t

)
(3)

where the constant coe�cients zi j are calculated using the recurrence
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0:2 W. Van Snyder

zi j = 0 if i ≤ j, and

zi j =
ai j −

∑i−j−1
k=1 ai−k, j zi,i−k

aj j − aii
if i > j .

(4)

�is solution requires to compute the exponential of only the diagonal elements of At . �is is, of

course, equivalent to computing

N(t) = exp(A t)N(0) = M exp(Λ t) M−1 N(0) , (5)

where M is the modal matrix of A, and Λ is the diagonal matrix consisting of the eigenvalues

of A, which are the diagonal elements of A. Computing exp(Λ t) requires to compute only the

exponential of the diagonal elements of At . But this method does not require to compute and invert

the modal matrix. It is well known, and obvious from Equation (4), that this method does not work

if A is defective.

�e solution given in [1] for an inhogeneous equation

dN(t)
dt
= A(N(t) + B) (6)

with B constant is

N(t) = exp(At) N̂(0) − B , (7)

where N̂(0) = N(0) + B. For a system of the form

dN(t)
dt
= AN(t) + C (8)

the general solution if A is nonsingular is

N(t) = exp(At) (N(0) + A−1C) − A−1C (9)

where B in Equations (6) and (7) has been replaced by A−1C. But this is not useful if A is singular.

Singular systems arise when modeling nuclear decay if nonradioactive daughter isotopes are

included.

Assume that if A is singular, it has been permuted to a form that has a leading nonsingular

triangle Am withm rows and columns, i.e., aii , 0 for i ≤ m, and aii = 0 for i > m. �e solutions

for the �rstm equations Nm are given by the �rstm rows of Equation (7), viz.

Nm(t) = exp(Amt) N̂m(0) − Bm . (10)

where Bm = A−1m Cm .

�e �rst term in Equation (10) is of the same form as the formal solution given by Equation

(2), and is therefore given by the �rstm solutions in Equation (3), with Nm(t) replaced by N̂m(t).
Equation (3) becomes

Ni (t) = N̂i (0) eaii t +
i−1∑
j=1

zi j
(
N̂j (t) − N̂j (0) eaii t

)
− Bi , i ≤ m . (11)

If A is singular, remaining equations are of the form
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dNk (t)
dt

=

k−1∑
l=1

akl Nl (t) +Ck , k > m , (12)

for which the solutions are simply

Nk (t) =
k−1∑
l=1

akl

∫ t

0

Nl (t) dt +Ck t + Nk (0) , k > m , (13)

because the right-hand sides do not depend upon Nk (t). �e Ck t term in Equation (13) does not

appear in Equation (11). �erefore, it is clear that Equation (11) does not produce a correct solution

for k > m .

From Equation (11),

∫ t

0

Nl (t) dt = N̂l (0)
eal l t − 1

al l
+

l−1∑
j=1

zl j

(∫ t

0

N̂j (t) dt − N̂j (0)
eal l t − 1

al l

)
− Bl t , l ≤ m . (14)

n

m

n-m

Zero

Non Zero

m

A =

Fig. 1. Shape of nondefective matrix for
which this method works

Algorithm 982 was motivated by study

of nuclear decay. If isotope j does not de-
cay, it cannot contribute to accumulation

of isotope i . �erefore, if aj j = 0, then

ai j = 0 for i > j , it is not necessary to com-

pute

∫ t
0
Nl (t) dt for l > m, and the upper

bound for the summations in Equations

(12) and (13) ism instead of k − 1.
In equations where aj j = 0 and ai j , 0

for i > j, integrals of Equation (13) are

required in the right-hand side of Equa-

tion (13). �is results in multi-dimensional

quadratures, which can be reduced to one

dimension using integration by parts. �e

provided so�ware does not compute solu-

tions for this case.

�e Compute_Solution subroutine pro-
vided with Algorithm 982 has been revised

to allow to provide B:
subroutine Compute_Solution ( T, A, Z, N0, N_T, B )
real(rk), intent(in) :: T ! Independent variable
real(rk), intent(in) :: A(:,:) ! Coefficient matrix for ODE
real(rk), intent(in) :: Z(:,:) ! Coefficient matrix solutions
real(rk), intent(in) :: N0(:) ! Initial condition
real(rk), intent(out) :: N_T(:) ! Solution N(T)
real(rk), intent(in), optional :: B(:) ! For inhomogeneous equations.
! Let M be the index in A of the last nonzero diagonal element.
! Then B(1:m) is B in d N(t)/d t = A ( N(t) + B )
! and B(m+1:) is C in d N(t)/d t = A N(t) + C. Remember that here,
! columns of A after M are zero, so this is just a quadrature.
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0:4 W. Van Snyder

! Backsolve_A_C_B can compute B(1:m) if all you have is C.
end subroutine Compute_Solution

Because the new argument B is optional, the revised procedure can be used in so�ware that

solves the homogeneous case by simply omi�ing the B argument, and used in existing so�ware

that used the original version, without adding the B argument.

As a convenience, a generic subroutine is included to solve AmBm = Cm :

subroutine Solve_A_C_B ( A, C, B, Status )
real(rk), intent(in) :: A(:,:) ! Lower triangular coefficient matrix
real(rk), intent(in) :: C(:) ! Right hand side of A B = C
real(rk), intent(out) :: B(:) ! Solution of A_m B_m = C_m, where M is the

! index of the last nonzero diagonal in A
integer, intent(out) :: Status ! M, the index of the last nonzero diagonal

! in A, if there are no nonzeroes after M,
! else the negative of the index of the
! first column after M containing any
! nonzero element.

end subroutine Solve_A_C_B

�e named constant RK has the value KIND(0.0d0) in the double precision speci�c subroutines,

and KIND(0.0e0) in the single precision speci�c subroutines.
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