Contents
- Find all (7) partitions of the number 5
- Find all ways to break a dollar into coins of denomination [1 5 10 25 50]
- Break a dollar into coins of denomination [1 5 10 25 50], but use no more than 4 of any coin
- Partitions of the number 13 into a sum of even integers
- Partitions of 29 into integers 1:29, but use no single element more than once
- Partitions of 100 into a sum of exactly 4 squares of the integers 1:9
Find all (7) partitions of the number 5
partitions(5)
ans = 5 0 0 0 0 3 1 0 0 0 1 2 0 0 0 2 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1
Find all ways to break a dollar into coins of denomination [1 5 10 25 50]
plist = partitions(100,[1 5 10 25 50]);
% There are 292 of them...
size(plist,1)
plist
ans = 292 plist = 100 0 0 0 0 95 1 0 0 0 90 2 0 0 0 85 3 0 0 0 80 4 0 0 0 75 5 0 0 0 70 6 0 0 0 65 7 0 0 0 60 8 0 0 0 55 9 0 0 0 50 10 0 0 0 45 11 0 0 0 40 12 0 0 0 35 13 0 0 0 30 14 0 0 0 25 15 0 0 0 20 16 0 0 0 15 17 0 0 0 10 18 0 0 0 5 19 0 0 0 0 20 0 0 0 90 0 1 0 0 85 1 1 0 0 80 2 1 0 0 75 3 1 0 0 70 4 1 0 0 65 5 1 0 0 60 6 1 0 0 55 7 1 0 0 50 8 1 0 0 45 9 1 0 0 40 10 1 0 0 35 11 1 0 0 30 12 1 0 0 25 13 1 0 0 20 14 1 0 0 15 15 1 0 0 10 16 1 0 0 5 17 1 0 0 0 18 1 0 0 80 0 2 0 0 75 1 2 0 0 70 2 2 0 0 65 3 2 0 0 60 4 2 0 0 55 5 2 0 0 50 6 2 0 0 45 7 2 0 0 40 8 2 0 0 35 9 2 0 0 30 10 2 0 0 25 11 2 0 0 20 12 2 0 0 15 13 2 0 0 10 14 2 0 0 5 15 2 0 0 0 16 2 0 0 70 0 3 0 0 65 1 3 0 0 60 2 3 0 0 55 3 3 0 0 50 4 3 0 0 45 5 3 0 0 40 6 3 0 0 35 7 3 0 0 30 8 3 0 0 25 9 3 0 0 20 10 3 0 0 15 11 3 0 0 10 12 3 0 0 5 13 3 0 0 0 14 3 0 0 60 0 4 0 0 55 1 4 0 0 50 2 4 0 0 45 3 4 0 0 40 4 4 0 0 35 5 4 0 0 30 6 4 0 0 25 7 4 0 0 20 8 4 0 0 15 9 4 0 0 10 10 4 0 0 5 11 4 0 0 0 12 4 0 0 50 0 5 0 0 45 1 5 0 0 40 2 5 0 0 35 3 5 0 0 30 4 5 0 0 25 5 5 0 0 20 6 5 0 0 15 7 5 0 0 10 8 5 0 0 5 9 5 0 0 0 10 5 0 0 40 0 6 0 0 35 1 6 0 0 30 2 6 0 0 25 3 6 0 0 20 4 6 0 0 15 5 6 0 0 10 6 6 0 0 5 7 6 0 0 0 8 6 0 0 30 0 7 0 0 25 1 7 0 0 20 2 7 0 0 15 3 7 0 0 10 4 7 0 0 5 5 7 0 0 0 6 7 0 0 20 0 8 0 0 15 1 8 0 0 10 2 8 0 0 5 3 8 0 0 0 4 8 0 0 10 0 9 0 0 5 1 9 0 0 0 2 9 0 0 0 0 10 0 0 75 0 0 1 0 70 1 0 1 0 65 2 0 1 0 60 3 0 1 0 55 4 0 1 0 50 5 0 1 0 45 6 0 1 0 40 7 0 1 0 35 8 0 1 0 30 9 0 1 0 25 10 0 1 0 20 11 0 1 0 15 12 0 1 0 10 13 0 1 0 5 14 0 1 0 0 15 0 1 0 65 0 1 1 0 60 1 1 1 0 55 2 1 1 0 50 3 1 1 0 45 4 1 1 0 40 5 1 1 0 35 6 1 1 0 30 7 1 1 0 25 8 1 1 0 20 9 1 1 0 15 10 1 1 0 10 11 1 1 0 5 12 1 1 0 0 13 1 1 0 55 0 2 1 0 50 1 2 1 0 45 2 2 1 0 40 3 2 1 0 35 4 2 1 0 30 5 2 1 0 25 6 2 1 0 20 7 2 1 0 15 8 2 1 0 10 9 2 1 0 5 10 2 1 0 0 11 2 1 0 45 0 3 1 0 40 1 3 1 0 35 2 3 1 0 30 3 3 1 0 25 4 3 1 0 20 5 3 1 0 15 6 3 1 0 10 7 3 1 0 5 8 3 1 0 0 9 3 1 0 35 0 4 1 0 30 1 4 1 0 25 2 4 1 0 20 3 4 1 0 15 4 4 1 0 10 5 4 1 0 5 6 4 1 0 0 7 4 1 0 25 0 5 1 0 20 1 5 1 0 15 2 5 1 0 10 3 5 1 0 5 4 5 1 0 0 5 5 1 0 15 0 6 1 0 10 1 6 1 0 5 2 6 1 0 0 3 6 1 0 5 0 7 1 0 0 1 7 1 0 50 0 0 2 0 45 1 0 2 0 40 2 0 2 0 35 3 0 2 0 30 4 0 2 0 25 5 0 2 0 20 6 0 2 0 15 7 0 2 0 10 8 0 2 0 5 9 0 2 0 0 10 0 2 0 40 0 1 2 0 35 1 1 2 0 30 2 1 2 0 25 3 1 2 0 20 4 1 2 0 15 5 1 2 0 10 6 1 2 0 5 7 1 2 0 0 8 1 2 0 30 0 2 2 0 25 1 2 2 0 20 2 2 2 0 15 3 2 2 0 10 4 2 2 0 5 5 2 2 0 0 6 2 2 0 20 0 3 2 0 15 1 3 2 0 10 2 3 2 0 5 3 3 2 0 0 4 3 2 0 10 0 4 2 0 5 1 4 2 0 0 2 4 2 0 0 0 5 2 0 25 0 0 3 0 20 1 0 3 0 15 2 0 3 0 10 3 0 3 0 5 4 0 3 0 0 5 0 3 0 15 0 1 3 0 10 1 1 3 0 5 2 1 3 0 0 3 1 3 0 5 0 2 3 0 0 1 2 3 0 0 0 0 4 0 50 0 0 0 1 45 1 0 0 1 40 2 0 0 1 35 3 0 0 1 30 4 0 0 1 25 5 0 0 1 20 6 0 0 1 15 7 0 0 1 10 8 0 0 1 5 9 0 0 1 0 10 0 0 1 40 0 1 0 1 35 1 1 0 1 30 2 1 0 1 25 3 1 0 1 20 4 1 0 1 15 5 1 0 1 10 6 1 0 1 5 7 1 0 1 0 8 1 0 1 30 0 2 0 1 25 1 2 0 1 20 2 2 0 1 15 3 2 0 1 10 4 2 0 1 5 5 2 0 1 0 6 2 0 1 20 0 3 0 1 15 1 3 0 1 10 2 3 0 1 5 3 3 0 1 0 4 3 0 1 10 0 4 0 1 5 1 4 0 1 0 2 4 0 1 0 0 5 0 1 25 0 0 1 1 20 1 0 1 1 15 2 0 1 1 10 3 0 1 1 5 4 0 1 1 0 5 0 1 1 15 0 1 1 1 10 1 1 1 1 5 2 1 1 1 0 3 1 1 1 5 0 2 1 1 0 1 2 1 1 0 0 0 2 1 0 0 0 0 2
Break a dollar into coins of denomination [1 5 10 25 50], but use no more than 4 of any coin
This means no pennies. There are only 11 ways to do this.
plist = partitions(100,[1 5 10 25 50],4)
plist = 0 4 3 2 0 0 2 4 2 0 0 3 1 3 0 0 1 2 3 0 0 0 0 4 0 0 4 3 0 1 0 2 4 0 1 0 3 1 1 1 0 1 2 1 1 0 0 0 2 1 0 0 0 0 2
Partitions of the number 13 into a sum of even integers
partitions(13,2:2:12)
% It can't be done, of course.
ans = Empty matrix: 0-by-6
Partitions of 29 into integers 1:29, but use no single element more than once
plist = partitions(25,1:29,1); size(plist,1)
ans = 142
Partitions of 100 into a sum of exactly 4 squares of the integers 1:9
partitions(100,(1:9).^2,[],4)
ans = 0 0 0 0 4 0 0 0 0 1 0 0 0 2 0 1 0 0 2 0 0 0 0 0 2 0 0 0 1 0 2 0 0 0 1 0 1 0 2 0 0 0 0 0 1