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1. INTRODUCTION
Permutation problems are ubiquitous in the industry, society, and research. In trans-
portation problems, sequence alignment, scheduling, or ranking determination, the
goal is usually to find the permutation that optimizes a given criterion expressed as an
objective function. There are a variety of optimization approaches to deal with these
problems. One class of optimization algorithms that has recently deserved consider-
able attention comprises methods that learn a probability model on a set of selected
solutions and use the model to organize a more efficient search. These algorithms are
usually called Estimation of Distribution Algorithms (EDAs) [Larrañaga and Lozano
2002; Lozano et al. 2006; Pelikan et al. 2002].
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perm mateda implements different variants of EDAs for optimizing permutation
problems. This User’s Manual focuses on the technical details needed to install and
use this Matlab toolbox. The manual has been conceived as a supplementary material
to the paper where perm mateda is formally introduced1. For an introduction to proba-
bilistic models for permutations, discussion on related work, and consideration of the
advantages and drawbacks of these algorithms, we recommend the reader to address
the original paper. Furthermore, perm mateda inherits several of the functions and pro-
cedures2 of MATEDA-2.0. Therefore, for a detailed review of MATEDA-2.0 functional-
ities, we recommend the reader the original MATEDA-2.0 paper by Santana et al.
[2010].

2. INSTALLING PERM MATEDA
In order to use perm mateda, the user has to download it (perm mateda.zip) and unzip
the file in a working directory. Then:

(1) Run MATLAB.
(2) Inside MATLAB, change to the directory containing perm mateda. It can be done

by using the left panel (Current Folder), or throughout the command window (cd
command).

(3) Run InitEnvironments.m by typing InitEnvironments in MATLABs command win-
dow.

Please note that steps 2 and 3 must be completed each time Matlab is started.

The folder permutations/Scripts Perm Mateda/ contains three EDA examples for
three permutation problems, which have been used to run the experiments in the orig-
inal paper. If the reader is familiar with the Matlab environment and EDAs for permu-
tation problems, these examples should be sufficient for a basic EDA implementation.
Otherwise, the following sections provide a detailed explanation of the perm mateda
components.

3. DEFINING AND EXECUTING AN EDA FOR A PERMUTATION PROBLEM
perm mateda inherits from MATEDA-2.0 the same organization of the EDA compo-
nents. Algorithm 1 shows the pseudocode of a general EDA where each of the main
methods that can be implemented by the practitioner are emphasized (italics).

3.1. Implementation of a general EDA
The general EDA program RunEDA.m is called as:
[AllStat,Cache] = RunEDA(PopSize,n,F,Card,cache,edaparams);
where the input and output parameters follow the description below.

3.1.1. Input parameters

— PopSize: Size of the population (number of individuals or solutions).
— n: Number of variables used to represent a solution.
— F : Name of the Matlab file that implements the objective function used to evaluate

the quality of a solution (individual).
—Card: Cardinalities of the variables.

1Irurozki et al. perm mateda: A matlab toolbox of EDAs for permutation-based problems. 2017. Submmitted
for publication.
2Some MATEDA-2.0 functions that are not relevant for the solution of permutation problems, e.g., those
require to create Bayesian network models, have not been included in perm mateda
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ALGORITHM 1: General pseudocode of Estimation of Distribution Algorithms (EDAs)
k = 0;
Generate an initial population Dk using a seeding method;
If required, apply a repairing method to Dk;
Evaluate (all the objectives of) population Dk using an evaluation method;
If required, apply a local optimization method to Dk;
while The termination criterion is not met do

Select a set DS
k of solutions from Dk according to a selection method;

Compute a probabilistic model of DS
k using a learning method;

Sample a DSampled population using a sampling method;
If required, apply a repairing method to DSampled;
Evaluate (all the objectives of) population DSampled using an evaluation method;
If required, apply a local optimization method to DSampled;
k = k + 1;
Create Dk population from populations Dk−1 and DSampled using a replacement method;

end

— cache: A vector specifying which components of the algorithm will be stored.
cache(i) = 1 determines that the i-th component of EDA (i = 1, 2, . . . , 5) will be
saved in each generation (cache(i) = 0 otherwise). The five components considered
are the following:
(1) Entire population.
(2) Selected population.
(3) Probabilistic model.
(4) Fitness values of the entire population.
(5) Fitness values of the selected population.

— edaparams: An array of cells specifying all the components and pa-
rameters used by the EDA. The i-th row of edaparams has the form:
{type of method, name of implementation, implementation parameters}.
+ type of method defines an EDA component. It is a string that can take one of the

following values:
- ’seeding pop method’
- ’sampling method’,
- ’repairing method’
- ’local opt method’
- ’replacement method’
- ’selection method’
- ’learning method’
- ’statistics method’
- ’verbose method’
- ’stop cond method’

+ name of implementation is the name of a Matlab program where the EDA compo-
nent has been implemented. It can be added by the user or be one of the methods
included by default in perm mateda.

+ implementation parameters is a cell array containing the parameters used by the
program name of implementation and are passed to it during the execution of
RunEDA.

3.1.2. Output parameters
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—AllStat: For each generation k, the cell array AllStat{k, :} contains the following in-
formation:
+AllStat{k, 1}: Matrix of 5 rows and number objectives columns. Each row shows

information about maximum, mean, median, minimum, and variance values of
the corresponding objective in the current population.

+AllStat{k, 2}: Stores the best individual.
+AllStat{k, 3}: Number of different individuals.
+AllStat{k, 4}: Matrix of 5 rows and n columns. Each row shows information about

maximum, mean, median, minimum, and variance values of the corresponding
variable in the current population.

+AllStat{k, 5}: Number of function evaluations until generation k.
+AllStat{k, 6}: Matrix with the time, in seconds, spent at the main EDA steps, each

of the 8 columns stores the times elapsed in the following steps: sampling, re-
pairing, evaluation, local optimization, replacement, selection, learning and total
(which represents the time spent by the previous 7 steps and other EDA minor
operations).

— If cache(i) = 1, for each generation k, Cache{i, k} will store the corresponding com-
ponent of the EDA. The order is the one presented in the explanation of the input
parameter cache.

4. AN INTRODUCTORY EXAMPLE
Here we present an introductory example of how to define and execute an EDA for
a permutation problem. Details on the methods used in this example are explained
later in this manual. The example is intended to serve as a general overview of all the
steps involved in the solution of the problem. In this section, we briefly explain the
main stages of this code.

1 global LOPInstance
2 ReadLOPInstance(’permutations/Problems/Instances/LOP/N-be75eec’);
3 [matrix, NumbVar] = LOPInstance{:};
4 Card = [ones(1,NumbVar); NumbVar*ones(1,NumbVar)];
5 PopSize = 10*NumbVar;
6 F = ’EvalLOP’;
7 cache = [0,0,1,0,0];
8 edaparams{1} = {’seeding_pop_method’,’InitPermutations’,{}};
9 selparams(1:2) = {NumbVar/PopSize,’fitness_ordering’};
10 edaparams{2} = {’selection_method’,’truncation_selection’,selparams};
11 edaparams{3} = {’replacement_method’,’pop_aggregation_theta’,{’fitness_ordering’}};
12 edaparams{4} = {’stop_cond_method’,’max_gen’,{100}};
13 global FitnessImprovement
14 edaparams{5}= {’learning_method’,’Mallows_kendall_learning’,{0.001,10,100,
’Borda’,0.1}};

15 edaparams{6}= {’sampling_method’,’Mallows_kendall_sampling’,{PopSize-1,1}};
16 FitnessImprovement = 0
17 [AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams)

The first step defines the optimization problem that will be addressed and up-
loads an instance of that problem. In this example, the Linear Ordering Problem
(LOP) (see Section 7 for description of this and other problems) has been considered.
In lines 1-3, a global variable that stores the characteristics of the instances is defined
and the instance is loaded (from file ’N-be75eec’). This instance corresponds to a
problem of size 50.
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The next step deals with the general parameters of the EDA: size of the solution
(individual) and cardinality of the variables (given by the instance), size of the popu-
lation, the evaluation function to be used, and the cache (lines 4-7). The meaning of
the cache parameter has been explained in Section 3.1.1. In this example, by setting
cache(3) = 1, we indicate the algorithm to store only the probabilistic model learned
at each generation.

Now, we tackle the design of our particular EDA. First, line 8, the method used
to initialize the population is chosen. In this case, a random initialization has been
preferred. With respect to the selection operator, lines 9-10, the NumbVar/PopSize per-
centage of the solutions with the best fitness are selected by truncation. In relation to
the replacement operator, line 11, the population is updated by adding the newly cre-
ated solutions and preserving the PopSize solutions with the best fitness. As regards
the stopping criterion, line 12, this is set to 100 generations.

Finally, we specify the probabilistic model that is going to be used. In this example,
we propose using the Mallows model under the Kendall-τ distance. To this end, the
learning and sampling methods must be detailed and, accordingly, any global variable
required by the learning or sampling procedure should be defined previously. In this
example, the global variable FitnessImprovement (line 13) is used to exchange infor-
mation between the replacement method and the learning procedure. This allows the
implementation of adaptive learning algorithms that can modify its internal parame-
ters if, for example, there has been any improvement in the population (which is the
case shown in the example).

With respect to the learning method (line 14), the Borda function is used to compute
an approximation of the central permutation. The spread parameters are estimated
in the range [0.001, 10] with a maximum of 100 iterations of the Newton-Raphson algo-
rithm. An initial delta value for theta variation is set to 0.1. Every iteration without
improvement of the best solution, the lower θ (set at the beginning as 0.001) is in-
creased by 0.1. If a better solution is found, the lower θ is reset to the original value
(0.001 in this example). For a list of other learning methods and a description of the
parameters they use see Section 5.2. For a detailed explanation of these methods and
relevant bibliographic references, we refer the interested reader the original paper.

According to the sampling step (line 15), PopSize-1 new solutions are sampled from
the model at each generation, using the sampling method conceived for the Mallows
model with Kendall distance. For a list of sampling methods see Section 6.

In line 16, the FitnessImprovement variable is initialized and this step finishes the
configuration of the algorithm.

Once the algorithm has been configured, it is executed by calling the RunEDA func-
tion (line 17) using the input and output parameters explained in Section 3.1.1 and
Section 3.1.2.

5. LEARNING MODELS IN PERM MATEDA
In an EDA, the learning procedure involves representing the most salient patterns of
the selected solutions using a probabilistic graphical model. The model captures (or
tries to capture) the dependence and independence relationships between the vari-
ables. In probabilistic models defined for permutation problems, the probabilities are
associated to distances between permutations. Therefore, different distances deter-
mine different probabilistic models.

5.1. Probabilistic models for permutations: distances
In perm mateda, three distances are implemented: Kendall’s, Cayley, and Ulam3.

3See the original paper for a discussion and references on the different distances.
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Kendall’s-τ . The two auxiliary methods are (1) vVector for extracting the decom-
position vector V associated to a given permutation, and (2) GeneratePermuFromV for
obtaining a permutation consistent with V (see Table II). These conversions between
σ and X(σ) can be run in time O(n2).

Cayley. Two methods analogous to those included for the Kendall’s-τ distance are
introduced (see Table II), namely (1) xVector, which obtains the decomposition vector
of a permutation and (2) GeneratePermuFromX, obtains a permutation associated to a
given X decomposition (note that we wil obtain one among the possibly many compat-
ible permutations). These conversions between σ and X(σ) can be run in time O(n).

Ulam. In the case of the Ulam distance, for which no distance decomposition vector
is defined, we need to take different stragtegies to work with the distribution, namely
(1) ComputeFerrerShapes, computes the distribution of the Ulam distances (this func-
tion stores its result in files and are reusable, so it is computed only the first time), and
(2) GeneratePermuAtLIS, to generate a permutation at a given Ulam distance.

Table I: Learning methods and related auxiliary functions for the different model and
distance combinations.

Main Methods Description
Mallows {kendall,cayley,ulam} learning Main methods for the learning step.
GMallows {kendall,cayley} learning

Methods called by the main learning method Description
{Borda,SetMedianPermutation,BestValue} Methods to approximate the central permutation.
CalculateThetaParameter{K,GK,C,GC,U} Learn θ parameter(s).
{Kendall,GKendall,Cayley,Ulam}ThetaFuncion Auxiliary methods used to define the functions to be solved

by applying Newton-Raphson.{Kendall,GKendall,Cayley,Ulam}ThetaDevFuncion

Auxiliary functions Description
{Kendall,cayley,ulam} distance Distance between two permutations.
Mallows {kendall,cayley,ulam} Probability Probability assigned by the model to a particular

permutation.GMallows {kendall,cayley} Probability
Mallows {kendall,cayley,ulam} Probability exp Value of the exponential part of the probability equation.
GMallows {kendall,cayley} Probability exp
CalculatePsiConstants{K,GK,C,GC} Normalization term.

5.2. Learning methods
The parameters of the learning algorithms can be divided into two groups: first,
those related to the EDA, and second, some specific parameters, which are passed in
the learning params vector and which shape the way that the learning algorithm is
implemented. The following example shows how to call the method for learning the
Generalized Mallows (GM) model under the Kendall’s-τ distance:

[model] = GMallows_kendall_learning(k,NumbVar,Card,SelPop,AuxFunVal,learning_params)

where k is the current generation of the EDA, and NumbV ar is the number of vari-
ables of the permutation. Card is a matrix with the dimensions of all the variables.
SelPop parameter is the population of permutations from which the model is learned,
AuxFunVal are the evaluation values of the solutions in the population for the selected
problem, and learning params is the set of additional learning parameters (which can
be different for each model).

In all the cases –except for GM with Cayley– learning params consists of the fol-
lowing: the first three parameters are related to the Newton-Raphson method used for
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estimating the θ value: initialTheta and upperTheta are the interval values for θ, and
maxit is the maximum number of iterations allowed. The fourth parameter, Ranking-
Fun, indicates the function to be used for approximating the central permutation (σ0).
In the case of GM with Cayley, as Newton-Raphson is not needed, only one parameter
is used (RankingFun).

In Table I, the different learning methods, together with related auxiliary functions
are presented4. Different functions have been defined for each step (or even sub-step)
of the learning phase, taking into account the modular design of the Mateda-2.0 tool-
box. Particularly, the main learning method calls two secondary methods, one for ap-
proximating the central permutation and the other for estimating the spread parame-
ter(s). Moreover, as this last method uses Newton-Raphson, it calls ThetaFunction and
ThetaDevFunction methods (except for GM-Cayley). This way, it is straightforward to
modify some parts of the code or write new code: just change the particular method and
the call to it. Replacing Newton-Raphson by another numerical method, or including a
new proposal to obtain the central permutation are interesting exptensions than can
be made and, at the same time, good examples of the modularity of this toolbox.

6. SAMPLING MODELS IN PERM MATEDA
The sampling step consists of generating permutations from the model obtained in the
learning stage. The sampling algorithm also depends on the distance considered in
the model. For instance, the method for sampling the GM model with the Kendall’s-τ
distance is called:

[pop] = GMallows_kendall_sampling(n,model,Card,AuxPop,AuxFunVal,sampling_params)

where k is the current generation of the EDA, and NumbV ar is the number of vari-
ables of the permutation. Card is a matrix with the dimensions of all the variables,
AuxPop is the population from which the model was learned, and AuxFunVal is the
evaluation (fitness values) of the AuxPop data set. The sampling params are the addi-
tional sampling parameters. In this case, our methods only require one parameter, N,
which is the number of new individuals to be generated.

Table II shows the different sampling methods, together with related auxiliary func-
tions5.

7. PERMUTATION PROBLEMS
Mateda-2.0 toolbox includes implementations of discrete and continuous optimization
problems. Following the same idea, we have incorporated four problems defined on
permutations: Traveling Salesman Problem (TSP), Permutation Flowshop Scheduling
Problem (PFSP), Linear Ordering Problem (LOP), and Quadratic Assignment Problem
(QAP). These problems are challenging and they appear frequently in the literature.

Table III describes the modules implemented for each optimization problem. Each
problem is defined by two modules: one for reading the instance file and processing
the parameters (Read{TSP,PFSP,LOP,QAP}instance), and the other for evaluating the
solutions (permutations) (Eval{TSP,PFSP,LOP,QAP}).

4In order to avoid repeating each model - distance combination, we represent the different options be-
tween curly brackets. For example, the name of the learning method for GM with Cayley will be GMal-
lows cayley learning.
5As with the learning phase, we represent the different options between keys, V (or v) is for Kendall’s-τ and
X (or x) is for Cayley
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Table II: Sampling methods and related auxiliary functions for the different model and
distance combinations.

Main methods Description
Mallows {kendall,cayley,ulam} sampling Main methods for the sampling step.GMallows {kendall,cayley} sampling

Auxiliary functions Description
{v,x}Vector Decompose the permutation
GeneratePermuFrom{V,X} Obtain a new permutation from the {v,x}Vector.
ComputeFerrerShapes Compute the auxiliary structures to get the

distribution of the Ulam distances
GeneratePermuAtLIS Generate a permutation at a given Ulam distance

Table III: Functions defined to read the instances and evaluate a solution for the four
permutation-based problems implemented: TSP, PFSP, LOP, and QAP.

Methods Description
Read{TSP,PFSP,LOP,QAP}Instance Method to read an instance of a given problem
Eval{TSP,PFSP,LOP,QAP} Method to evaluate a given solution (permutation)

The Read{TSP,PFSP,LOP,QAP}instance module takes, as the only parameter, the file-
name of the instance to load. The output is a global variable with the name of the
problem that contains the parameters needed by the EDA.

For example, to read a QAP problem, the method ReadQAPInstance is called:

ReadQAPInstance(InstanceName);

where InstanceName is the path and filename of the instance to read. This module
creates a global variable, in this case called QAPInstance, that holds the data of the
problem. The global variable is used in order to avoid unnecessary traffic of arguments
across the main RunEDA process.

For the evaluation of a solution in the QAP problem, the method EvalQAP is called:

[val] = EvalQAP(permutation);

where permutation contains the permutation that will be evaluated. As previously
mentioned, the instance data is taken from the global variable of the problem, in this
case called QAPInstance. The output parameter val is the fitness of the permutation.

All problems described in Table III have the same input parameter. For the four
problems, the methods to read and evaluate the problem are called in the same way.
However, regarding the global variables, each problem has its own structure and, thus,
the information stored for each problem is different.

— Traveling Salesman Problem (TSP): This problem is described by one matrix of size
n×n containing the distances between the cities. The TSP implementation can work
with both symmetric and asymmetric matrices. Once the data is read, the distance
matrix of the problem and the number of cities are stored, in this order, in a global
variable named TSPInstance.

— Permutation Flowshop Scheduling Problem (PFSP): The information about this
problem is stored in one matrix of size m × n containing the processing times of
executing job j, j = 1, 2, . . . , n in machine i, i = 1, 2, . . . ,m. The matrix that contains
the processing times, the number of machines, and the number of jobs are stored, in
this order, in a global variable named PFSPInstance.
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— Linear Ordering Problem (LOP): It is described by one matrix of size n × n with
arbitrary natural numbers. Once the data is read, the matrix and the problem size
are stored, in this order, in a global variable named LOPInstance.

— Quadratic Assignment Problem (QAP): The information about this problem is con-
tained in two matrices of sizes n× n. The first matrix contains the flow between the
facilities and the second one the distances between the locations. Once the data is
read, the distance matrix, flow matrix and problem size are stored, in this order, in
a global variable named QAPInstance.

8. ANALYZING THE RESULTS OF THE EDAS
As discussed in Section 3.1.2, in addition to the variable Cache, the output variable
AllStat gathers diverse statistics of the EDA behavior. These statistics can be used to
analyze the results of the algorithm. It is also possible to analyze the time spent by the
algorithm in each of the main steps.

In order to illustrate the capabilities of the toolbox, we have run the code of the
example presented in Section 4. In the following code we show how to extract, from
the information stored in AllStat and Cache, the mean fitness of the population and
the theta parameter learned at each generation.

1 for i=1:100,
2 MeanFitness(i) = AllStat{i,1}(2);
3 Theta(i) = Cache{3,i}{3};
4 end
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Fig. 1: Mean fitness of the population and θ values learned in each generation through
out the optimization.

Fig 1a shows the mean fitness of the individuals in the population across 100 genera-
tions. In addition, using the information about the probabilistic model stored in Cache
(see line 8, where cache(3) was set to 1), a figure showing the evolution (convergence)
of the θ variable has been also plotted (see Fig 1b).
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