FEA_Mesher2D Documentation

Finite Element Analysis Boundary Layer Triangular Mesh Generator

JULIETTE PARDUE* and ANDREY CHERNIKOV, 0ld Dominion University

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain

View, CA 94042, USA.

ACM Reference format:
Juliette Pardue and Andrey Chernikov. 2019. FEA_Mesher2D Documentation. 1, 1, Article 1 (September 2019), 19 pages.
DOIL: N/A

1 INTRODUCTION

FEA_Mesher2D is a parallel triangular mesh generator that is capable of generating boundary layer meshes, suitable for
finite element analysis simulations, and isotropic mesh regions. FEA_Mesher2D generates a high-fidelity, anisotropic
boundary layer mesh from a user-defined growth function, generates a globally Delaunay, graded, isotropic mesh region
in parallel, resolves potential interpolation errors in the boundary layer caused by the local mesh density, resolves self
intersections and multi-element intersections in the boundary layer, is a push-button mesh generator so no human
interaction is required after startup, and is scalable and efficient.

Information regarding the implementation of FEA_Mesher2D is available in the paper titled, "An Efficient Parallel
Anisotropic Delaunay Mesh Generator for Two-Dimensional Finite Element Analysis" by Juliette Pardue and Andrey
Chernikov.

2 INSTALLATION
The following packages are required to be properly configured before building the application.

e C++11 compiler or later

e C11 compiler or later

e MPI Version 3 Implementation
e POSIX Threads Implementation

e CMake Version 3 or later

“The corresponding author

Author’s addresses: J. Pardue and A. Chernikov, Computer Science Department, Old Dominion University, Norfolk, VA 23529.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 ACM. Manuscript submitted to ACM

Manuscript submitted to ACM 1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Juliette Pardue and Andrey Chernikov

To compile the application, run the compile.sh script

The build script assumes that you have gcc and g++ set to the C and C++ compiler of your choice. The build script

will find your system’s MPI libraries if they are correctly installed and loaded. The application will be built in the

FEA_Mesher2D directory where the compilation script is. If you want to change the directory where the application is
built, you can set the location in src/CMakeLists.txt as the CMAKE_RUNTIME_OUTPUT_DIRECTORY

3 USAGE

The class MeshGenerator is the object that the end user will interact with. An example of a sample calling procedure is

shown in main.cpp. The functions the end user should be concerned with are:

readInputModel(string filename)

Reads the input model referenced by the path filename

setBoundaryLayerGrowthFunction(double first_thickness, double growth_rate, int initial_layers)

Sets the growth function used to generate the anisotropic boundary layer.

first_thickness is the distance from the geometry that the points in the first layer will be placed.
growth_rate is the geometric rate at which each layer’s thickness will grow from the previous layer. A value
of 1 causes all layers to have the same thickness at first_thickness. A value greater than 1 cause subsequent
layers to grow in thickness, which is the intended usage.

initial_layers is the number of anisotropic layers that will be originally grown from the geometry. Some
triangles in some layers will be removed due to intersections or a poor quality shape.
setFarFieldDistance(double chord_lengths)

Sets the distance for the domain away from the geometry that will be meshed. A square is generated that
encloses the domain and each side is chord_lengths in each direction (+x, —x, +y, —y) from the center of the
mesh. One chord length is the length of the input geometry in the x-direction.
useUniformTrianglesForInviscidRegion()

This is an optional command. By default, the inviscid region uses smaller triangles near the geometry and
grades to larger triangles farther away from the geometry. This function is called if you want the same sized
triangles to be used for the entirety of the inviscid region.

meshDomain()

This is where the action happens. This function creates all the mesh vertices and mesh triangles using the
number of processes launched by MPL

collectFinalMesh()

This function collects all of the mesh entities on the root process so that the mesh can be output.

Four output formats are available, and the user may implement their own output format by adding and implementing

a function in the class MeshGenerator. The "output” folder is where mesh files will be written to. The four provided

output formats are:

outputTecplot() - used for Tecplot

outputShowMe() - used for Shewchuk’s "Show Me" application
outputFUN3D() - .msh file used for the flow solver FUN3D
outputVTK() - .vtk format, can be used with ParaView

Manuscript submitted to ACM

FEA_Mesher2D Documentation 3

H File ‘ first_thickness | growth_rate | initial_layers | chord_lengths | Uniform Inviscid Region H
naca0012.poly 0.0001 1.15 30 2 Yes
wright1903.poly 0.00005 1.10 50 30 No
airfoil30p30n.poly | 0.000075 1.10 30 10 No

Table 1. Suggested Input Parameters

3.1 Input Geometry File Format

The following describes how a user should format their input files.

First line: number_of_points, number_of_elements

The number of elements is the number of polygons that are in the input geometry. The points should be ordered
counter-clockwise for each element.

Next number_of_points lines: id, xcoordinate, ycoordinate, element;d

id’s should start at zero and increment. element;d is the corresponding element that the point is part of. The
first element should be 0 and all points that are part of element 0 should appear before any points of element 1.
Next line: number_of_edges

This should be the same as number_of _points since each polygon should be water tight and simple, meaning
each point is incident upon two edges.

Next number_of_edges lines: id, point_a_id, point_b_id

id’s should start at zero and increment.

Next line: number_of _holes

This should be the same as the number_of_elements. One hole should be defined for each element. A hole is a
point inside the element’s polygon, not on an edge of the element’s polygon.

Next number_of _holes lines: id, xcoordinate, ycoordinate

id’s should start at zero and increment.

Three properly formatted input files are provided in the geometry folder with this package:

naca0012.poly - Standard benchmark airfoil
wright1903.poly - Wright Brother’s 1903 airfoil used for the first flight
airfoil30p30n.poly - Complex airfoil with three elements

The output meshes in the VTK format of the suggested input parameters of the three provided geometries are located

in the output folder.

4 FEA_MESHER2D OBJECTS

This section details the different classes, structs, and namespaces used for data structures in the application.

4.1 ADT2D

The ADT2D class is used to efficiently determine if there are intersections while generating the boundary layer. Each ray

segment or border segment has their axis-aligned bounding box projected to a 4-dimensional halfspace. The 4D points

Manuscript submitted to ACM

4 Juliette Pardue and Andrey Chernikov

are stored in an alternating digital tree (ADT) and recursive searching is used to check for overlaps in the axis-aligned
bounding boxes, or extent boxes.

Class members:
e ADT2DElement” root - Root element of the tree, default initialized to nullptr
Public member functions:

e ADT2D() - Sets root to nullptr
e ADT2D(ADT2D&& other)
e ~ADT2D() - Cascades deletion of all ADT2DElements in the tree by starting with root
o void removeFirst(int id, const double* extent) - Removes the first occurrence of a 4D point in the tree that
overlaps with a provided extent box
Input:
id - the identifier of the 4D point to remove
extent - starting memory address for the testing extent box
e std::vector<int> retrieve(const double* extent) const - Retrieves the 4D points that overlap with a provided
extent box
Input:
extent - starting memory address for the testing extent box
Output:
vector of ids of the 4D points that overlap
o void store(int id, const double” x) - Stores an extent box as a 4D point
Input:
id - non-unique identifier

x - starting memory address for the 4D point

4.2 ADT2DElement

The ADT2DElement class is used to store individual nodes of the alternating digital tree.

Class members:

e int id - Non-unique identifier

e ADT2DElement” left_child - Initialized to nullptr

e int level - Used to determine which child to pick

o std::array<double, 4> object - The 4D point that the user provided

e ADT2DElement”* right_child - Initialized to nullptr

o std::array<double, 4> x_max - The upper bound of this element’s domain

e std::array<double, 4> x_min - The lower bound of this element’s domain
Public member functions:

e ADT2DElement(int adt_level, const std::array<double, 4>& x_minimum, const std::array<double, 4>& x_maximum,
int element_id, const double” object_coordinates)
e ~ADT2DElement()

Manuscript submitted to ACM

FEA_Mesher2D Documentation 5

e bool containsHyperRectangle(const std::array<double, 4>& a, const std::array<double, 4>& b) const - Returns
true if the hyper-rectangle is inside this element’s domain
Input:
a - the lower point of the hyper-rectangle
b - the upper point of the hyper-rectangle
e bool hyperRectangleContainsObject(const std::array<double, 4>& a, const std::array<double, 4>& b) const -
Returns true if the user-provided 4D point lies inside the hyper-rectangle Input:
a - the lower point of the hyper-rectangle
b - the upper point of the hyper-rectangle

4.3 ADT2DExtent

The ADT2DExtent class is used so that the user can interact with the ADT without having to worry about the coordinate
transformations.

Class members:

e ADT2D adt - The underlying ADT used to store the elements
e ADTSpaceTransformer space_trans former - Performs the coordinate transformations to unit space or real
space
Public member functions:

e ADT2DExtent(const Extent& domain) - Input:
domain - the 2D bounding box that will be projected to a 4D point and used as the root of the ADT
e ~ADT2DExtent()
o void removeFirst(int id, const Extent& extent) - Removes the first occurrence of a 4D point in the ADT that
overlaps with a provided bounding box
Input:
id - the identifier of the 4D point to remove
extent - the 2D bounding box that will be projected to a 4D point
o std:vector<int> retrieve(const Extent& domain) const - Searches the ADT for elements that contain the provided
bounding box
Input:
domain - the 2D bounding box that will be projected to a 4D point and checked for overlaps with other elements
Output:
vector of ids of the 4D points that overlap
e void store(int id, const Extent& extent) - Stores a 4D point in unit space in the ADT
Input:
id - the non-unique identifier for the new element

extent - the 2D bounding box that will be projected to a 4D point

4.4 ADT2DSpaceTransformer

The ADTSpaceTransformer class is used as a helper class with the ADT2D class. This class provides the coordinate
transformations from unit space to real space and real space to unit space
Manuscript submitted to ACM

6 Juliette Pardue and Andrey Chernikov

Class members:

e Extent extent - The real domain

e double over_scale - Used to convert from real space to unit space
Equal to 1/scale

e double scale - Used to convert from unit space to real space

The length of the longest side of the domain
Public member functions:

e ADTSpaceTransformer(const Extent& domain) - Input:
domain - the 2D bounding box that will represent the real domain
e ~ADTSpaceTransformer()
e inline const Extent& getDomain() const - Returns the domain in real space
e inline std::array<double, 2> toRealSpace(const std::array<double, 2>& unit_point) const

e inline std::array<double, 2> toUnitSpace(const std::array<double, 2>& real_point) const

4.5 Application

The Application namespace is used as set of helper functions to perform floating-point comparisons and basic mathe-
matical point and Euclidean vector operations.
std::array<double, 2> is used to represent point and vector types, point_t and vector_t, respectively.

Namespace members:

e static const double precision - Constant used as the floating-point precision for floating-point comparisons

e static const double degree,adian,atio - Constant used to convert between radians and degrees
Namespace functions:

e inline double angleBetweenEdgeAndAxis(const point_t& a, const point_t& b, bool axis) - Computes the angle
between edge ab and the x-axis or y-axis

e inline double angleBetweenVectors(const vector_t& u, const vector_t& v)

e inline bool areEqual(const double& a, const double& b) - Returns true if the difference is less than precision

e inline bool areEqual(const point_t& a, const point_t& b)

e inline double calculateDistance(const point_t& a, const point_t& b)

e inline double calculateMagnitude(const vector_t& v)

e inline std::array<point_t, 2> computeBoundingBox(std::vector<point_t>:iterator first, std::vector<point_t>::iterator
last)

e std::array<point_t, 2> computeBoundingBox(std::vector<Vertex>:iterator first, std::vector<Vertex>::iterator
last)

e inline double crossProduct(const vector_t& a, const vector_t& b)

e inline double degreesToRadians(double angle)

e inline double dotProduct(const vector_t& a, const vector_t& b)

e inline double elapsedMsecs(const timeval& start, const timeval& stop)

e bool isClockwise(std::vector<Vertex>:iterator first, std::vector<Vertex>:iterator last)

e inline bool isZero(const double& value) - Returns true if value is less than precision

Manuscript submitted to ACM

FEA_Mesher2D Documentation 7

e inline point_t midPoint(const point_t& a, const point_t& b)

e inline bool pointRightOfEdge(const point_t& a, const point_t& b, const point_t& t)

e inline double radiansToDegrees(double radians)

e inline int relativeQuadrantToControlPoint(const point_t& p, const point_t& control) - The control point is
treated as the origin
The top-right quadrant is 0, the top-left quadrant is 1, the bottom-left quadrant is 2, and the bottom-right
quadrant is 3

e inline double triangleArea(const point_t& a, const point_t& b, const point_t& c) - The triangle defined by abc
should be wound counter-clockwise for a positive area

e inline double vectorDifference(const vector_t& a, const vector_t& b)

4.6 BoundaryLayerMesh

The BoundaryLayerMesh class is responsible for generating the high-fidelity anisotropic boundary layer points, edges,
and initial subdomains that will be triangulated. This class checks for intersections in the boundary layer and resolves
them, smooths poor quality ray regions, adds points to ensure a smooth transition to the inviscid region, and removes
points that would result in poor quality triangles.

Class members:

o std:vector<long> boundary_layer_element_start - The id of the first vertex of each element that is not on the
model’s surface

e double chord_length - The distance along the x-axis of the input model

e double cusp_angle_tolerance - Ray angles larger than this value, but less than trailing_edge_angle_tolerance
will be marked as a cusp

o std:vector<int> cusps

o std::vector<Edge> edges

e double growth_rate

o std:vector<double> holes

e std::vector<bl subdomain_t> initial subdomains

o InviscidRegionMesh* inviscid_region - The neighboring inviscid region

o std::vector<std::tuple<int, int, double» large_angles

o double last_thickness - The thickness of the final layer of the boundary layer

o std::vector<double> layer_of fsets - The thicknesses of each layer

o std::vector<Vertex> local_vertices - A process’ subset of the boundary layer vertices that it created

o long max_boundary_layer_vertex_id

o std::vector<AABB> max_element_extent_boxes - The largest extent box of each element

o AABB max_extent_box - The extent box that contains the entire boundary layer

e int max_layers - The maximum number of layers that can exist in the boundary layer. This value is used for
gradation control and is set to 1.25 * num_layers

e std::array<double, 2> mesh_center

e MeshGenerator& mesher - The owning MeshGenerator

e int next_edge_id

Manuscript submitted to ACM

8 Juliette Pardue and Andrey Chernikov

e int next_recv_process - Used by the root process to distribute initial subdomains

o long next_vertex_id

e int num_elements

e int num_enclosing_edges

o int num_layers

o int num_model_edges

e int num_model vertices

e double ray_angle_tolerance - If the angle between two rays is greater than this value, then those rays will be
added to large_angles

o std::vector<int> ray_element_start - The index of the first ray of each element

o std::vector<Ray> rays

o std:vector<int> sharp_trailing_edges

o std::vector<int> sur face_element_start - The id of the first vertex of each element

e int total_initial_subdomains

e double trailing_edge_angle_tolerance - Ray angles larger than this value will be marked as being a sharp
trailing edge

o std::vector<std::vector<Vertex*» transition_vertices - The vertices that are on the enclosing border of the
boundary layer

e std::vector<Vertex> vertices

Public member functions:

e BoundaryLayerMesh(MeshGenerator& owning_mesher)

e ~BoundaryLayerMesh()

e void createBoundaryLayerSubdomains() - Creates the initial boundary layer subdomains

e void decomposelnitialSubdomains() - Decomposes the initial subdomains of the boundary layer until each
process has a subdomain or a subdomain cannot be further decomposed

e void initializeModelSurface(std::string filename) - Reads the input model referenced by the path filename

e void insertBoundaryLayerPoints()

e void receivelnitialSubdomains()

e void setGrowthFunction(double first_layer_thickness, double layer_growth_rate, int initial_layers) - Sets the
growth function used to generate the anisotropic triangles
Input:
first_layer_thickness - the distance from the geometry that the points in the first layer will be placed
layer_growth_rate - the geometric rate at which each layer’s thickness will grow from the previous layer. A
value of 1 causes all layers to have the same thickness as first_layer_thickness. A value greater than 1 causes
subsequent layers to grow in thickness
initial_layers - the number of anisotropic layers that will be originally grown from the geometry. Some

triangles in some layers will be removed due to intersections or a poor quality shape

Manuscript submitted to ACM

FEA_Mesher2D Documentation 9

4.7 BoundaryLayerSubdomain

The BoundaryLayerSubdomain class is responsible for performing the paraboloid and lower convex hull decomposition
steps in order to split a BoundaryLayerSubdomain into two new subdomains. The BoundaryLayerSubdomain class is
also responsible for calling Triangle to triangulate its vertices.

Class members:

e bool axis - The coordinate-axis orthogonal to the cut axis

e int decomposition_level - Represents how many times this subdomain has been decomposed

e static int decomposition_threshold - The maximum number of times a subdomain can be decomposed

o std::vector<std::array<long, 2» edges

o std:vector<Vertex> lower_convex_hull - The vertices that lie on the lower convex hull of the flattened parabo-
loid in the vertical plane

o static long max_vertex_id - The maximum id for all of the boundary layer vertices

o Vertex” median_vertex - The median vertex along the coordinate-axis specified by axis

o std::shared_ptr<BoundaryLayerSubdomain> sub_subdomain - The other subdomain that is formed by a de-
composition step

o std:array<std::vector<Vertex>*, 2> vertices - The memory addresses of x_vertices and y_vertices

o std:vector<Vertex> x_vertices - The vertices sorted lexicographically by their x-coordinates

o std::vector<Vertex> y_vertices - The vertices sorted lexicographically by their y-coordinates
Public member functions:

e BoundaryLayerSubdomain()

e ~BoundaryLayerSubdomain()

e Decomposition decompose() - Decomposes this subdomain into two new subdomains

¢ void mesh(BoundaryLayerMesh& owning_mesh) - Triangulates this subdomain and returns the output to
owning_mesh

e void recvSubdomain(int source)

e void sendSubdomain(int destination)

4.8 Edge

The Edge class is responsible for storing information about mesh edges.

Class members:

e int id - Unique identifier
e int type - Classification
0 for constrained
1 for geometry
2 for farfield boundary
3 for boundary layer outer border

o std:array<long, 2> vertices - Identifiers of its endpoints

Public member functions:

Manuscript submitted to ACM

10 Juliette Pardue and Andrey Chernikov

e Edge() - Default constructor
Sets everything to -1
e Edge(int edge_id, const Vertex& vertex_a, const Vertex& vertex_b, int edge_type) - Input:
edge_id - unique identifier
vertex_a - reference to starting endpoint
vertex_b - reference to ending endpoint
edge_type - classification of the type of edge
o Edge(int edge_id, long vertex_a, long vertex_b, int edge_type) - Input
edge_id - unique identifier
vertex_a - id of starting endpoint
vertex_b - id of ending endpoint
edge_type - classification of the type of edge
e ~Edge()
e static MPI_Datatype createMPIDatatype() - Defines the memory layout used for MPI communications
e int getld() const
o int getType() const
o long getVertexId(int index) const
e std:array<long, 2> getVertices() const
e void print() const
o void setType(int edge_type)
o void setVertices(Vertex& vertex_a, Vertex& vertex_b) - Sets the endpoint ids
Input:
vertex_a - reference to starting endpoint
vertex_b - reference to ending endpoint
e bool shouldBeInFinalMesh() const - Returns true if the edge is part of the geometry or farfield boundary
Used to apply boundary conditions

4.9 GeoPrimitives

This set of classes are used as helper objects for performing the boundary layer intersections tests.

The AABB class is used to prune the search space of candidate rays when checking for boundary layer intersections.
This class is also used for the sizing function for the inviscid region triangles.

Class members:

e std::array<double, 2> high - The upper point of the bounding box

e std::array<double, 2> low - The lower point of the bounding box
Public member functions:

e AABB()

o AABB(std::array<double, 2> lo, std::array<double, 2> hi)

o AABB(std::array<std::array<double, 2>, 2> bounding_box)

e ~AABB()
Manuscript submitted to ACM

FEA_Mesher2D Documentation 11

e bool containsPortionOf(Segment s) const

e Extent getExtent() const

e std::array<double, 2> getHighPoint() const

e std::array<double, 2> getLowPoint() const

¢ void inflateDomain(double inflation) - Expands the domain by in flation units in each direction (+x, —x, +y, —y)
e bool intersects(const AABB& other) const

o void setDomain(std::array<std::array<double, 2>, 2> bounding_box)

The Extent class is used with the ADT when performing the boundary layer intersection checks.

Class members:

e std::array<double, 2> hi - The upper point of the extent box

e std::array<double, 2> lo - The lower point of the extent box
Public member functions:

e Extent()
e Extent(const std::array<double, 2>& low, const std::array<double, 2>& high)
e ~Extent()

e bool contains(const Extent& extent) const

The Segment class is used for the boundary layer intersection checks.

Class members:

e std::array<double, 2> a - The starting endpoint
o std::array<double, 2> b - The ending endpoint

Public member functions:

e Segment()

e Segment(const Segment& s)

e Segment(std::array<double, 2> p1, std::array<double, 2> p2)

e ~Segment()

o bool doesIntersect(const Segment& s) const

o Extent getExtent() const

o std::array<double, 2> getPointA() const

o std::array<double, 2> getPointB() const

o std::vector<std::array<double, 2» intersectsAt(const Segment& s) const

e Orientation orientation2D(const std::array<double, 2>& t) const - Determines if a test point lies on, left, or
right of the directed line ab

e void setA(std::array<double, 2> p)

o void setB(std::array<double, 2> p)

4.10 InviscidRegionMesh

The InviscidRegionMesh class is responsible for creating the isotropic nearbody and inviscid subdomains. It also
contains tunable parameters to control the function that determines the desired triangle size for a point in space. These
parameters are fast_growth which controls the distance where the size of triangles will grow at a more rapid rate

Manuscript submitted to ACM

12

Juliette Pardue and Andrey Chernikov

and uni form which uses the size of the triangles in the nearbody region for the entirety of the inviscid region. The

last parameter is decoupling_work_threshold. If you want smaller subdomains during the initial decoupling procedure,

then decrease this number. The smaller the subdomains, the more subdomains there are, and the more concurrency

that can be exploited.

Class members:

std::vector<std::array<double, 2» aabb_centers - The center points of each input geometry element’s bounding
box

const int decoupling_work_threshold - The largest an inviscid subdomain can be in terms of estimated number
of triangles

double far field - The distance in chord lengths for the domain away from the geometry that will be meshed
std::vector<Edge> far field_edges - The edges that make up the outer border of the domain

Used to apply boundary conditions for the flow solver

double fast_growth - Number of chord lengths where triangles past this distance will grow at a faster rate
std::priority_queue<std::shared_ptr<InviscidRegionSubdomain>, std::vector<std::shared_ptr<InviscidRegionSubdomain»,
std::less<std::shared_ptr<InviscidRegionSubdomain» > initial_subdomains - Stores the subdomain with the
largest estimated number of triangles on top

Yes std::less should be used for this because std::greater would put the smallest estimated subdomain on top
double isotropic_area - The average area of triangles in the nearbody region.

Used as the base size to grow from when creating a graded inviscid region, where triangles are larger the
further they are away from the boundary layer

MeshGenerator& mesher - The MeshGenerator that this inviscid region mesh belongs to
std::array<std::array<double, 2>, 4> nearbody_box - The bounding box of the nearbody region

int next_edge_id

long next_vertex_id

std::vector<double> triangle_aabb_centers - Used to call Triangle, contains the same data as aabb_centers

bool uni form - True to generate uniform triangles with size isotropic_area in the entirety of the inviscid region

Public member functions:

InviscidRegionMesh(MeshGenerator& owning_mesher)

~InviscidRegionMesh()

void createlnitialSubdomains() - Creates the initial nearbody subdomain and four inviscid subdomains that
extent all the way to the farfield

void decouplelnitialSubdomains() - Decouples all subdomains larger than decoupling_work_threshold
Processes will send and receive subdomains from each other until everyone has some subdomains

void receivelnitialSubdomains() - Called by all other processes except the root

void setFarFieldDistance(double chord_lengths) - A square is generated that encloses the domain and each side
is chord_lengths in each direction (+x, —x, +y, —y) from the center of the mesh. One chord length is the length
of the input geometry in the x-direction.

void setNearBodyBoundingBox(std::vector<std::array<std::array<double, 2>, 2»& extents) -

void synchronizelnviscidParameters() - Called by all processes so everyone has the same values of the parameters

used for the triangle sizing functions

Manuscript submitted to ACM

FEA_Mesher2D Documentation 13

e void useUniformTriangles()

4.11 InviscidRegionSubdomain
Class members:

e int cost - Estimated number of triangles that will be in this subdomain

o std::vector<std::array<long, 2» edges

e bool nearboy - True if the subdomain contains a portion of the input geometry
o std::vector<Vertex> vertices - Wound counter-clockwise

Public member functions:

e InviscidRegionSubdomain() - Sets nearbody to false

¢ InviscidRegionSubdomain(bool nearbody_subdomain)

e ~InviscidRegionSubdomain()

o void createBorder() - Creates the counter-clockwise edges

e MPI_Datatype createMPIDataType() - Defines the memory layout used for MPI communications

o std::array<double, 2> getCenterPoint() const - Gets the center point of this subdomain’s bounding box

e std::array<std::array<double, 2>, 2> getExtentBox() const - Computes the bounding box, used to compute the
estimated number of triangles in the subdomain and to determine the center point

¢ void mesh(InviscidRegionMesh& owning_mesh) - Refines this subdomain and passes the resulting mesh back
to owning_mesh
This subdomain can be destroyed after this function returns

e void recvSubdomain(int source)

e void sendSubdomain(int destination)

4.12 MeshGenerator
Class members:

e BoundaryLayerMesh boundary_layer

o std::vector<std::shared_ptr<BoundaryLayerSubdomain» boundary_layer_subdomains

e int final_edges - Number of edges on the input geometry plus the edges on the farfield
Used to apply boundary conditions

o std:vector<std::array<long, 3» final_triangles - The endpoint vertex ids of the resulting mesh triangles

o std::vector<std::array<double, 2» final_vertices - The x and y coordinates of the resulting mesh vertices

e std::unordered_map<long, long> global_to_final - Maps the non-sequential global id of a mesh vertex to its id
in the resulting mesh

o std:string input_name - The name of the input file
Used to name the output files

o InviscidRegionMesh inviscid_region

o std::priority_queue<std::shared_ptr<InviscidRegionSubdomain>, std::vector<std::shared_ptr<InviscidRegionSubdomain»,
std::less<std::shared_ptr<InviscidRegionSubdomain» > inviscid_subdomains - Holds all of the inviscid subdo-
mains for a process

std::less makes it so the subdomain at the top of the queue is the most expensive
Manuscript submitted to ACM

14 Juliette Pardue and Andrey Chernikov

e MeshingManager manager

e bool meshing - Flag that denotes if the worker thread is currently triangulating or refining a subdomain

e long next_final_id - Unique sequential identifier to assign to the next final vertex that will be registered

o std:queue<TriangleData> outbox - Holds the triangulated or refined subdomain meshes

e const int processes - Number of distributed MeshGenerators working

e const int rank - Unique id for this process

o pthread_mutex_t subdomain_mutex - Used to synchronize access to inviscid_subdomains between the manager
and worker thread

o std::vector<long> subdomain_num_triangles - Number of triangles in each resulting subdomain mesh

Public member functions:

MeshGenerator()
e ~MeshGenerator()

void collectFinalMesh() - Collects all of the mesh entities on the root process so that the mesh can be output

e void meshDomain() - This function creates all the mesh vertices and mesh triangles using the number of
processes launched by MPI

void outputFUN3D() - Outputs the final mesh as a .msh file used for the flow solver FUN3D

void outputShowMe() - Outputs files for Shewchuk’s "Show Me" application

void outputTecplot() - Outputs the final mesh as a Tecplot file
void outputVTK() - Outputs the final mesh in the .vtk format, suitable for ParaView

void readInputModel(std::string filename) - Reads the input model referenced by the path filename

void setBoundaryLayerGrowthFunction(double first_thickness, double growth_rate, int initial_layers) - Sets
the growth function used to generate the anisotropic boundary layer
Input:
first_thickness - the distance from the geometry that the points in the first layer will be placed
growth_rate - the geometric rate at which each layer’s thickness will grow from the previous layer. A value of
1 causes all layers to have the same thickness as first_thickness. A value greater than 1 causes subsequent
layers to grow in thickness, which is the intended usage
initial_layers - the number of anisotropic layers that will be originally grown from the geometry. Some
triangles in some layers will be removed due to intersections or a poor quality shape
o void setFarFieldDistance(double chord_lengths) - Sets the distance for the domain away from the geometry
that will be meshed
Input:
chord_lengths - the distance in each direction (+x, —x, +y, —y) from the center of the mesh. One chord length
is the length of the input geometry in the x-direction
o void useUniformTrianglesForInviscidRegion() - Uses the same sized triangles to mesh the entirety of the inviscid
region
By default, the inviscid region uses smaller triangles near the geometry and grades to larger triangles farther

away from the geometry

Manuscript submitted to ACM

FEA_Mesher2D Documentation 15

4.13 MeshingManager

The MeshingManager class is responsible for managing the progress of the MeshGenerator it is associated with. The
MeshingManager will periodically update MeshGenerator’s work_units estimate, check for messages, send and request
work to and from other processes for load balancing. The MeshingManager of the root process keeps track of all of
the finished processes and notifies everyone once all processes are finished meshing their subdomains. There are
some tunable parameters in this class for the load balancing. You may need to tweak low_work_threshold and/or
min_work_threshold for how aggressive you want the load balancing.

Class members:

e bool all_finished

e bool finished - True if the MeshGenerator has no subdomains remaining, and all other processes have a low
amount of work

e int finished_processes - The root keeps track of this value

o int low_work_threshold - A process will request work if their work_units fall below this value

o MeshGenerator& mesher - The mesher that will be managed

e int min_work_threshold - The minimum value that low_work_threshold can reach

o std:vector<std::array<int, 2» work_loads - Contains candidate processes to request work from if this process’
work_units falls below low_work_threshold

e std::atomic_int work_units - The current work load estimate for the number of remaining subdomains
Concurrent accesses are well-defined

e int” work_units_memory - The underlying storage used by work_units_window

o MPI_Win work_units_window - The MPI object that facilitates RMA operations for checking how much work

each process has
Public member functions:

e MeshingManager(MeshGenerator& owning_mesher) - Input:
owning_mesher - The MeshGenerator that this object will manage
e ~MeshingManager()
e void manageMeshingProgress() - The main loop to manage progress once the MeshGenerator starts meshing

its subdomains

4.14 MPICommunications

The MPICommunications namespace provides a templated wrapper for many of the MPI operations used in FEA_Mesher2D.

Namespace functions:

e void initialize() - Wrapper for MPI_Init

e void finalize() - Wrapper for MPI_Finalize

e int myRank()

e int numberOfProcesses()

e MPI_Datatype getType(int value) - Returns MPI_INT

e MPI_Datatype getType(size_t value) - Returns MPI_LONG
e MPI_Datatype getType(long value) - Returns MPI_LONG

Manuscript submitted to ACM

16

Juliette Pardue and Andrey Chernikov

MPI_Datatype getType(double value) - Returns MPI_DOUBLE

Templated namespace functions:

All of these functions are wrappers for their corresponding MPI call and are templated by template<typename T>

void Send(std::vector<T>& send_buffer, int size, int destination

void Send(MPI_Datatype datatype, T& value, int destination)

void Recv(std::vector<T>& recv_buffer, int size, int source)

void Recv(MPI_Datatype datatype, T& value, int source)

void Scatter(std::vector<T>& send_buffer, T& recv_value, int root)

void Scatterv(std::vector<T>& send_buffer, std::vector<T>& recv_buffer, int root)

void Gather(T value, std::vector<T>& recv_buffer, int root)

void Gatherv(MPI_Datatype datatype, const std::vector<T>& send_buffer, std::vector<T>& recv_buffer, int
root)

void Gatherv(const std::vector<T>& send_buffer, std::vector<T>& recv_buffer, int root)
void Broadcast(T& value, int root)

void Broadcast(std::vector<T>& buffer, int buffer_size, int root)

void Broadcast(std::vector<T>& buffer, int root)

4.15 Ray

The Ray class is responsible for storing information about the normals emitting from the input geometry. Rays are

used to generate the anisotropic boundary layer and are smoothed, clipped, and grown to create valid and high-fidelity

triangles.

Class members:

bool can_grade - Flag to denote if this ray can have more points past last_layer

int element - The input geometry element that this ray is incident upon

int endpoint_id - The mesh id for the surface vertex that this ray is emitted from

int last_layer - The index of the last layer, essentially, the number of layers

long last_vertex_id - The id of the vertex at last_layer of this ray

std::array<double, 2> normal_vector - The unit vector where points will be inserted along

std::array<double, 2> point - The endpoint or base of the ray

Public member functions:

Ray() - Only used to allocate memory for MPI communications

Ray(const Vertex& end_point, std::array<double, 2> normal, int layers, int element_id) - Used when creating
the fans at trailing edges

Input:

end_point - the input geometry vertex that will be the base of the ray

normal - the unit vector that points will be inserted along

layers - the number of points to insert along normal_vector

element_id - the input geometry element that the ray is incident upon

Ray(const Vertex& end_point, int layers, const BoundaryLayerMesh& owning_mesh) - Used when creating the

initial rays from the input geometry

Manuscript submitted to ACM

FEA_Mesher2D Documentation 17

Input:
end_point - the input geometry vertex that will be the base of the ray
layers - the number of points to insert along normal_vector
owning_mesh - the mesh that this ray is a part of, used to calculate normal_vector
* ~Ray()
o void calculateNormalVector(const std::array<double, 2>& prev_point, const std::array<double, 2>& next_point)
- Calculates the unique, topological normal that points outwards from the model
Input:
prev_point - the neighboring point before this ray’s endpoint
next_point - the neighboring point after this ray’s endpoint
e void decreaseLayers(int desired) - Bounds checking to make sure the new value of last_layer is less than the
previous value, but not less than zero Input:
desired - the new value of last_layer
e double getMagnitude() const - Gets the length of normal_vector
¢ long layerVertexID(int layer) const - Gets the vertex id at the requested layer
e std::array<double, 2> pointAtDistance(double distance) const - Calculates the location of a point inserted along
normal_vector from point
Input:

distance - the distance along normal_vector from point

4.16 Triangle

The Triangle package by Jonathan Shewchuk is used as the off-the-shelf Delaunay triangulator and refiner for meshing
the subdomains. Only one function is used by FEA_Mesher2D, the triangulate function.

void triangulate(char* triswitches, struct triangulateio” in, struct triangulateio® out, struct triangulateio® vorout,
double iso_area, int u, int comps, double* centers)
Input:
triswitches - The command that controls how Triangle functions
in - The input data structure used which stores the vertices, edges, and holes of a subdomain
out - The output data structure used which stores the mesh vertices and mesh triangles
vorout - Not used with our application
iso_area - The isotropic area to use for the sizing function
u - A flag to represent if uniformly-sized triangles should be used in the inviscid region
comps - The number of elements in the input geometry

centers - The center point of each of the input geometry’s elements

4.17 TriangleData

The TriangleData struct is responsible for holding the output from calls to Triangle.

Class members:

o std::vector<long> global_ids - Unique global identifiers for the vertices

Manuscript submitted to ACM

18 Juliette Pardue and Andrey Chernikov

e int num_triangles

e int* triangles - Starting memory address for the endpoints of the mesh triangles
Length is equal to three times num_triangles

e double” vertices - Starting memory address for the coordinates of the vertices
Length is equal to twice the size of global_ids

Public member functions:

e TriangleData(double*& vertices_in, int num_triangles_in, int*& triangles_in, std::vector<long>& global_ids_in)
- Acquires ownership of vertices_in, triangles_in, and global_ids_in and sets the arguments to a null state

o TriangleData(TriangleData&& td)

e ~TriangleData()

4.18 Vertex

The Vertex class is responsible for storing information about mesh vertices.

Class members:

e bool boundary - Flag for if the vertex is on a boundary edge

e std::array<double, 2> coordinates - The x and y coordinates of the point

o static MPI_Datatype datatype - Defines the memory layout used for MPI communications

e long id - Unique identifier

e bool lower_convex_hull - Flag for if the vertex is on the lower convex hull when decomposing the boundary
layer

e std::array<double, 2> projected - The coordinates of the projected point on the vertical plane for decomposing

the boundary layer
Public member functions:

e Vertex() - Sets id to -1
e Vertex(std::array<double, 2> point, bool boundary, long id) - Input:
point - the x and y coordinates
boundary - true if the vertex is on a boundary edge
id - unique identifier
e ~Vertex()
o void calculateProjected(Vertex* median, bool axis) - Calculates the project coordinates of this vertex on the
paraboloid
Input:
base - the base of the paraboloid
axis - the non-z axis that is used in the vertical plane
e static void createMPIDataType() - Sets datatype
Only needs to be called once by each process
e bool getBoundary() const
e double getCoordinate(int index) const - x-coordinate is index 0 & y-coordinate is index 1
e long getID() const

e static MPI_Datatype getMPIDataType()
Manuscript submitted to ACM

FEA_Mesher2D Documentation 19

e std::array<double, 2> getPoint() const

e double getProjected(int index) const - Projected x-coordinate is index 0 & projected y-coordinate is index 1

e bool orientation2D(const Vertex* a, const Vertex& b) const - Used to determine if a vertex should be part of the
lower convex hull when decomposing the boundary layer
Answers the question: which side of the directed line a->b does this vertex lie towards
Input:
a - pointer to the starting vertex of the directed line
b - reference to the ending vertex of the directed line

e void print() const - Prints to std::cout

¢ void setBoundary(bool b)

e void setLowerConvexHull(bool exist)

e void setCoordinate(int index, double coordinate) - Sets the x-coordinate or y-coordinate to coordinate if index
is 0 or 1, respectively

e bool useLowerConvexHull() - Returns true and sets to false if this vertex is on the lower convex hull when

decomposing the boundary layer

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Installation
	3 Usage
	3.1 Input Geometry File Format

	4 FEA_Mesher2D Objects
	4.1 ADT2D
	4.2 ADT2DElement
	4.3 ADT2DExtent
	4.4 ADT2DSpaceTransformer
	4.5 Application
	4.6 BoundaryLayerMesh
	4.7 BoundaryLayerSubdomain
	4.8 Edge
	4.9 GeoPrimitives
	4.10 InviscidRegionMesh
	4.11 InviscidRegionSubdomain
	4.12 MeshGenerator
	4.13 MeshingManager
	4.14 MPICommunications
	4.15 Ray
	4.16 Triangle
	4.17 TriangleData
	4.18 Vertex

