
User Manual for the MDB-Spline Toolbox in MATLAB

HENDRIK SPELEERS

University of Rome Tor Vergata

1. INTRODUCTION

This guide explains the usage and functionality of the Matlab toolbox on multi-degree
B-splines (MDB-splines) accompanying the article

Hendrik Speleers. Algorithm 999: Computation of Multi-Degree B-Splines.
ACM Trans. Math. Softw. 45, 4, Article 43 (2019), 15 pages.

The toolbox has been developed in Matlab R2016a but should work with other Matlab
versions as well. It can be downloaded from the ACM Collected Algorithms (CALGO).
For its installation, just place the toolbox in any directory on your drive, and then add
it to the Matlab path.

2. MATLAB FUNCTIONS

The toolbox is divided in two parts: functions dealing with B-splines and functions dealing
with MDB-splines.

2.1 B-splines

The main B-spline data-structure is called B-spline patch and identifies a certain B-spline
space. It contains the open knot vector, spline degree, and spline dimension. Note that it
would be sufficient to store only the knot vector; however, the other parameters simplify
further operations.

The following Matlab functions are provided for working with B-spline patches.

• B patch: construction of a B-spline patch with open knot vector;

• B domain: computation of the end points of the domain related to a patch;

• B greville: computation of the Greville points;

• B evaluation all: evaluation of all B-splines in given points;

• B evaluation spline: evaluation of a spline in given points;

• B diffend all: full differentiation of all B-splines at one end point up to a given order;

• B differentiation all: differentiation of all B-splines in given points;

• B differentiation spline: differentiation of a spline in given points;

• B visualization all: visualization of all B-splines;

• B visualization spline: visualization of a spline;

• B conversion: conversion from source to destination B-spline form.

2.1.1 B patch

This function prepares the data-structure for a B-spline patch, starting from a sequence
of polynomial segments of fixed degree and smoothness relations. The B-spline patch is a
structure array containing the open knot vector U, spline degree p, and spline dimension n.



2 · Hendrik Speleers

Syntax:

P = B patch(p, xx, kk)

Input parameters:

p : B-spline degree

xx : vector of break points

kk : smoothness vector (optional)

Output parameters:

P : B-spline patch

Discussion:

The parameter p is a non-negative integer scalar, the parameter xx is a vector consisting
of a strictly increasing sequence of real values (indicating the different segments), and
the parameter kk can be a scalar or a vector whose elements are non-negative integers
less than the value of p. If kk is a scalar, smoothness kk is imposed at the break point
xx(i+1), and if kk is a vector, smoothness kk(i) is imposed at the break point xx(i+1),
for i = 1:length(xx)-2. Hence, length(kk) should be equal to 1 or length(xx)-2.
When no smoothness is specified, kk = 0 is assumed.

Example:

Create a B-spline patch of degree 4 and smoothness C2 defined on a domain partitioned
in the two intervals [0, 3] and [3, 4]:

>> P = B patch(4, [0, 3, 4], 2)

P =

p: 4

n: 7

U: [0 0 0 0 0 3 3 4 4 4 4 4]

2.1.2 B domain

This function computes the end points of the domain specified by a given B-spline patch.

Syntax:

[a, b] = B domain(P)

Input parameters:

P : B-spline patch

Output parameters:

a : left end point

b : right end point



User Manual for the MDS-Spline Toolbox in MATLAB · 3

Example:

Create a B-spline patch and show the end points of its domain:

>> P = B patch(4, [0, 3, 4], 2);

>> [a, b] = B domain(P)

a =

0

b =

4

2.1.3 B greville

This function computes the Greville points of a given B-spline patch, i.e., the coefficients
of the B-spline form of the identity function.

Syntax:

gg = B greville(P)

Input parameters:

P : B-spline patch

Output parameters:

gg : vector of Greville points

Discussion:

Each element of the vector gg corresponds to a B-spline, so length(gg) equals P.n.

Example:

Create a B-spline patch and show its Greville points:

>> P = B patch(4, [0, 3, 4], 2);

>> gg = B greville(P)

gg =

0 0.7500 1.5000 2.5000 3.5000 3.7500 4.0000

2.1.4 B evaluation all

This function evaluates all B-splines of a B-spline patch at a given set of points, and
stores the corresponding values in a matrix.

Syntax:

M = B evaluation all(P, xx, cl)

Input parameters:

P : B-spline patch

xx : vector of evaluation points

cl : closed domain if true (optional)



4 · Hendrik Speleers

Output parameters:

M : evaluation matrix

Discussion:

The parameter cl takes a boolean value. If cl is false, then the B-spline values are
computed by the B-spline recurrence relation on the half-open domain of the patch and
are zero outside; otherwise, at the right end point, they are computed by taking limits
from the left (making the spline space symmetric on the closed domain). When no value is
specified, cl = true is assumed. Each row in the resulting matrix M corresponds to a B-
spline and each column to an evaluation point, so size(M) equals [P.n, length(xx)].

Example:

Create a B-spline patch and evaluate all the corresponding B-splines at the break points
of the patch:

>> P = B patch(4, [0, 3, 4], 2);

>> M = B evaluation all(P, [0, 3, 4])

M =

1.0000 0 0

0 0 0

0 0.0625 0

0 0.3750 0

0 0.5625 0

0 0 0

0 0 1.0000

2.1.5 B evaluation spline

This function evaluates a spline in B-spline form at a given set of points, and stores the
corresponding values in a vector.

Syntax:

ss = B evaluation spline(P, cc, xx)

Input parameters:

P : B-spline patch

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of spline evaluation values



User Manual for the MDS-Spline Toolbox in MATLAB · 5

Discussion:

Each element of the vector cc corresponds to a B-spline in the B-spline patch. Hence,
length(cc) should be equal to P.n. Each element of the resulting vector ss corresponds
to an evaluation point, so length(ss) equals length(xx).

Example:

Create a B-spline patch and a vector of coefficients, and then evaluate the corresponding
spline in B-spline form at the break points of the patch:

>> P = B patch(4, [0, 3, 4], 2);

>> cc = [1, 2, 3, 4, 4, 3, 2];

>> ss = B evaluation spline(P, cc, [0, 3, 4])

ss =

1.0000 3.9375 2.0000

2.1.6 B diffend all

This function evaluates all the derivatives, up to a certain order r, of all B-splines of a
B-spline patch at one of the two end points of the domain, and stores the corresponding
values in a matrix.

Syntax:

K = B diffend all(P, r, el)

Input parameters:

P : B-spline patch

r : maximum order of derivative

el : left end if true, right end otherwise (optional)

Output parameters:

K : differentiation matrix at end point up to r-th order

Discussion:

The parameter r is a non-negative integer. The parameter el takes a boolean value. If
el is true, then the left end point of the domain is selected; otherwise, the right end
point. When no value is specified, el = true is assumed. Each row in the resulting
matrix K corresponds to a B-spline and each column to a derivative, so size(K) equals
[P.n, r+1].

Example:

Create a B-spline patch and evaluate all derivatives, up to fourth order, of all the corre-
sponding B-splines at the right end point of the domain:

>> P = B patch(4, [0, 3, 4], 2);

>> K = B diffend all(P, 4, false)



6 · Hendrik Speleers

K =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1.5000

0 0 0 -6.0000 -15.0000

0 0 12.0000 54.0000 85.5000

0 -4.0000 -24.0000 -72.0000 -96.0000

1.0000 4.0000 12.0000 24.0000 24.0000

2.1.7 B differentiation all

This function evaluates the r-th order derivative of all B-splines of a B-spline patch at a
given set of points, and stores the corresponding values in a matrix.

Syntax:

M = B differentiation all(P, r, xx, cl)

Input parameters:

P : B-spline patch

r : order of derivative

xx : vector of evaluation points

cl : closed domain if true (optional)

Output parameters:

M : differentiation matrix

Discussion:

The parameter r is a non-negative integer. The parameter cl takes a boolean value. If
cl is false, then the B-spline values are computed by the B-spline recurrence relation on
the half-open domain of the patch and are zero outside; otherwise, at the right end point,
they are computed by taking limits from the left (making the spline space symmetric on
the closed domain). When no value is specified, cl = true is assumed. Each row in the
resulting matrix M corresponds to a B-spline and each column to an evaluation point, so
size(M) equals [P.n, length(xx)].

Example:

Create a B-spline patch and evaluate the first derivative of all the corresponding B-splines
at the break points of the patch:

>> P = B patch(4, [0, 3, 4], 2);

>> M = B differentiation all(P, 1, [0, 3, 4])



User Manual for the MDS-Spline Toolbox in MATLAB · 7

M =

-1.3333 0 0

1.3333 0 0

0 -0.2500 0

0 -0.5000 0

0 0.7500 0

0 0 -4.0000

0 0 4.0000

2.1.8 B differentiation spline

This function evaluates the r-th order derivative of a spline in B-spline form at a given
set of points, and stores the corresponding values in a vector.

Syntax:

ss = B differentiation spline(P, r, cc, xx)

Input parameters:

P : B-spline patch

r : order of derivative

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of r-th order derivative spline values

Discussion:

The parameter r is a non-negative integer. Each element of the vector cc corresponds
to a B-spline in the B-spline patch. Hence, length(cc) should be equal to P.n. Each
element of the resulting vector ss corresponds to an evaluation point, so length(ss)

equals length(xx).

Example:

Create a B-spline patch and a vector of coefficients, and then evaluate the first derivative
of the corresponding spline in B-spline form at the break points of the patch:

>> P = B patch(4, [0, 3, 4], 2);

>> cc = [1, 2, 3, 4, 4, 3, 2];

>> ss = B differentiation spline(P, 1, cc, [0, 3, 4])

ss =

1.3333 0.2500 -4.0000



8 · Hendrik Speleers

2.1.9 B visualization all

This function visualizes all B-splines of a B-spline patch.

Syntax:

B visualization all(P, n, specs)

Input parameters:

P : B-spline patch

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The parameter n is a positive integer. When no value is specified, n = 100 is assumed.
The parameter specs allows for any number of input arguments, which are passed on to
the function plot. We refer the reader to the documentation of plot for all the plotting
options.

Example:

Create a B-spline patch and plot all the corresponding B-splines:

>> P = B patch(4, [0, 3, 4], 2);

>> B visualization all(P, 100, ’LineWidth’, 2);

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

2.1.10 B visualization spline

This function visualizes a spline in B-spline form.

Syntax:

B visualization spline(P, cc, n, specs)

Input parameters:

P : B-spline patch

cc : vector of coefficients

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)



User Manual for the MDS-Spline Toolbox in MATLAB · 9

Discussion:

Each element of the vector cc corresponds to a B-spline in the B-spline patch. Hence,
length(cc) should be equal to P.n. The parameter n is a positive integer. When no
value is specified, n = 100 is assumed. The parameter specs allows for any number of
input arguments, which are passed on to the function plot. We refer the reader to the
documentation of plot for all the plotting options.

Example:

Create a B-spline patch and a vector of coefficients, and then plot the corresponding
spline in B-spline form:

>> P = B patch(4, [0, 3, 4], 2);

>> cc = [1, 2, 3, 4, 4, 3, 2];

>> B visualization spline(P, cc, 100, ’LineWidth’, 2);

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

 

2.1.11 B conversion

This function converts a spline in B-spline form into another B-spline form. The conver-
sion is exact when the source and destination B-spline patches imply nested spaces.

Syntax:

ccd = B conversion(Pd, Ps, ccs)

Input parameters:

Pd : destination B-spline patch

Ps : source B-spline patch

ccs : source coefficient vector

Output parameters:

ccd : destination coefficient vector

Discussion:

The B-spline patches Ps and Pd preferably share the same break points for the best
conversion results. Each element of the vector ccs corresponds to a B-spline in the B-



10 · Hendrik Speleers

spline patch Ps. Hence, length(ccs) should be equal to Ps.n. Similarly, each element
of the resulting vector ccd corresponds to a B-spline in the B-spline patch Pd.

Example:

Create a B-spline patch of degree 4 and a vector of coefficients; then, raise the degree to 7
and compute the coefficients of the new B-spline form:

>> Ps = B patch(4, [0, 3, 4], 2);

>> ccs = [1, 2, 3, 4, 4, 3, 2];

>> Pd = B patch(7, [0, 3, 4], 2);

>> ccd = B conversion(Pd, Ps, ccs)

ccd =

Columns 1 through 7

1.0000 1.5714 2.1429 2.6857 3.1696 3.5625 3.9196

Columns 8 through 13

3.9911 3.8839 3.6000 3.1429 2.5714 2.0000

2.2 MDB-splines

The main MDB-spline data-structure is called MDB-spline multi-patch. It contains a
vector of B-spline patches and the corresponding cumulative dimension.

The following Matlab functions are provided for core operations on MDB-spline multi-
patches.

• MDB patch: construction of an MDB-spline multi-patch from B-spline segments;

• MDB patch poly: construction of an MDB-spline multi-patch from polynomial seg-
ments;

• MDB extraction: computation of the multi-degree spline extraction matrix;

• MDB extraction periodic: computation of the multi-degree spline extraction matrix
with periodicity;

• MDB nullspace: computation of the left null-space of a column of matrix L in the
extraction procedure; this is an auxiliary function for the functions MDB extraction

and MDB extraction periodic, and has no stand-alone usage;

• MDB extraction local: computation of the local multi-degree spline extraction matrix
corresponding to a single patch;

Furthermore, the following Matlab functions are provided for working with MDB-
splines. Thanks to the multi-degree spline extraction operator, their implementation
can be easily redirected to their B-spline analogues described in Section 2.1.

• MDB domain: computation of the end points of the domain related to a multi-patch;

• MDB greville: computation of the multi-degree Greville points;

• MDB evaluation all: evaluation of all MDB-splines in given points;

• MDB evaluation spline: evaluation of a multi-degree spline in given points;

• MDB differentiation all: differentiation of all MDB-splines in given points;

• MDB differentiation spline: differentiation of a multi-degree spline in given points;



User Manual for the MDS-Spline Toolbox in MATLAB · 11

• MDB visualization all: visualization of all MDB-splines;

• MDB visualization spline: visualization of a multi-degree spline;

• MDB conversion: conversion from source to destination MDB-spline form.

2.2.1 MDB patch

This function prepares the data-structure for an MDB-spline multi-patch, starting from
a sequence of B-spline segments. The MDB-spline multi-patch is a structure array con-
taining a vector of B-spline patches P and the corresponding cumulative dimension mu.

Syntax:

MP = MDB patch(PP)

Input parameters:

PP : vector of B-spline patches

Output parameters:

MP : MDB-spline multi-patch

Example:

Create an MDB-spline multi-patch consisting of two B-spline patches with different de-
grees (3 and 4) but with the same smoothness C2:

>> P1 = B patch(3, [0, 1, 3], 2);

>> P2 = B patch(4, [3, 4, 6], 2);

>> MP = MDB patch([P1, P2])

MP =

P: [1x2 struct]

mu: [0 5 12]

>> MP.P(1)

ans =

p: 3

n: 5

U: [0 0 0 0 1 3 3 3 3]

>> MP.P(2)

ans =

p: 4

n: 7

U: [3 3 3 3 3 4 4 6 6 6 6 6]



12 · Hendrik Speleers

2.2.2 MDB patch poly

This function prepares the data-structure for an MDB-spline multi-patch, starting from a
sequence of polynomial segments and smoothness relations. The MDB-spline multi-patch
is a structure array containing a vector of B-spline patches P and the corresponding cu-
mulative dimension mu. Consecutive polynomial segments of the same degree are merged
into a single B-spline patch (unless specified otherwise).

Syntax:

[MP, rr] = MDB patch poly(pp, xx, kk, mg)

Input parameters:

pp : vector of polynomial degrees

xx : vector of break points

kk : smoothness vector (optional)

mg : same degree merged if true (optional)

Output parameters:

MP : MDB-spline multi-patch

rr : MDB-spline smoothness vector (optional)

Discussion:

The parameter pp is a vector consisting of non-negative integer values, and the parameter
xx is a vector consisting of a strictly increasing sequence of real values (indicating the
different segments), such that length(pp) equals length(xx)-1. The parameter kk can
be a scalar or a vector whose elements are non-negative integers. If kk is a scalar, then kk

should be less than min(pp), and smoothness kk is imposed at the break point xx(i+1)

for i = 1:length(xx)-2. On the other hand, if kk is a vector, then kk(i) should be less
than min(pp(i),pp(i+1)), and smoothness kk(i) is imposed at the break point xx(i+1)
for i = 1:length(xx)-2. Hence, length(kk) should be equal to 1 or length(xx)-2.
When no smoothness is specified, kk = 0 is assumed. The parameter mg takes a boolean
value. If mg is true, then consecutive polynomial segments of the same degree are merged
into a single B-spline patch; otherwise, they are not merged. When no value is specified,
mg = true is assumed. The resulting vector rr represents the corresponding smoothness
between the B-spline patches, so length(rr) equals length(MP.P)-1.

Example:

Create an MDB-spline multi-patch consisting of four polynomial segments with different
degrees (3 and 4) that are connected with smoothness C2:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2)

MP =

P: [1x2 struct]

mu: [0 5 12]

rr =

2



User Manual for the MDS-Spline Toolbox in MATLAB · 13

>> MP.P(1)

ans =

p: 3

n: 5

U: [0 0 0 0 1 3 3 3 3]

>> MP.P(2)

ans =

p: 4

n: 7

U: [3 3 3 3 3 4 4 6 6 6 6 6]

2.2.3 MDB extraction

This function computes the multi-degree spline extraction matrix representing a set of
MDB-splines in terms of the B-splines related to a given sequence of B-spline patches.

Syntax:

H = MDB extraction(MP, rr)

Input parameters:

MP : MDB-spline multi-patch

rr : MDB-spline smoothness vector (optional)

Output parameters:

H : extraction matrix

Discussion:

The parameter rr can be a scalar or a vector whose elements are integers. If rr is a
scalar, smoothness rr is imposed between all consecutive B-spline patches. On the other
hand, if rr is a vector, smoothness rr(i) is imposed between B-spline patches MP.P(i)

and MP.P(i+1) for i = 1:length(MP.P)-1. Hence, length(rr) should be equal to 1 or
length(MP.P)-1. A negative value indicates no active smoothness imposition. When no
smoothness is specified, rr = 0 is assumed. The resulting matrix H is encoded in sparse
format; each row in H corresponds to an MDB-spline and each column to a B-spline in
one of the B-spline patches, so size(H,2) equals MP.mu(end).

Example:

Create an MDB-spline multi-patch with related smoothness vector, and then compute
the multi-degree spline extraction matrix:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> Hfull = full(H)



14 · Hendrik Speleers

Hfull =

Columns 1 through 7

1.0000 0 0 0 0 0 0

0 1.0000 0 0 0 0 0

0 0 1.0000 0.1864 0.0508 0.0508 0

0 0 0 0.8136 0.4158 0.4158 0.2667

0 0 0 0 0.5333 0.5333 0.7333

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Columns 8 through 12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1.0000 0 0 0 0

0 1.0000 0 0 0

0 0 1.0000 0 0

0 0 0 1.0000 0

0 0 0 0 1.0000

2.2.4 MDB extraction periodic

This function computes the periodic multi-degree spline extraction matrix representing
a set of periodic MDB-splines in terms of the B-splines related to a given sequence of
B-spline patches.

Syntax:

H = MDB extraction periodic(MP, rr, rp)

Input parameters:

MP : MDB-spline multi-patch

rr : MDB-spline smoothness vector (optional)

rp : periodicity smoothness (optional)

Output parameters:

H : extraction matrix

Discussion:

The parameter rr can be a scalar or a vector whose elements are integers. If rr is a
scalar, smoothness rr is imposed between all consecutive B-spline patches. On the other
hand, if rr is a vector, smoothness rr(i) is imposed between B-spline patches MP.P(i)

and MP.P(i+1) for i = 1:length(MP.P)-1. Hence, length(rr) should be equal to 1



User Manual for the MDS-Spline Toolbox in MATLAB · 15

or length(MP.P)-1. A negative value indicates no active smoothness imposition. When
no smoothness is specified, rr = 0 is assumed. The parameter rp should be an integer
scalar less than half the dimension (floored) of the related non-periodic MDB-spline space.
When no periodicity smoothness is specified, rp = -1 is assumed. The resulting matrix H

is encoded in sparse format; each row in H corresponds to a periodic MDB-spline and each
column to a B-spline in one of the B-spline patches, so size(H,2) equals MP.mu(end).

Example:

Create an MDB-spline multi-patch with related smoothness vector and specify periodicity
smoothness; then, compute the periodic multi-degree spline extraction matrix:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> Hper = MDB extraction periodic(MP, rr, 2);

>> Hfull = full(Hper)

Hfull =

Columns 1 through 7

0.1667 0 0 0 0 0 0

0.6398 0.6774 0 0 0 0 0

0.1935 0.3226 1.0000 0.1864 0.0508 0.0508 0

0 0 0 0.8136 0.4158 0.4158 0.2667

0 0 0 0 0.5333 0.5333 0.7333

0 0 0 0 0 0 0

Columns 8 through 12

0 0 1.0000 0.4167 0.1667

0 0 0 0.5833 0.6398

0 0 0 0 0.1935

0 0 0 0 0

1.0000 0 0 0 0

0 1.0000 0 0 0

2.2.5 MDB nullspace

This auxiliary function computes the left null-space of a column of the matrix L used in
MDB extraction and MDB extraction periodic.

Syntax:

Hbar = MDB nullspace(ll)

Input parameters:

ll : a column of L

Output parameters:

Hbar : null-space matrix of ll

Discussion:

This function has no stand-alone usage.



16 · Hendrik Speleers

2.2.6 MDB extraction local

This function returns the local extraction matrix corresponding to a single B-spline patch.

Syntax:

Hl = MDB extraction local(MP, H, ip)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

ip : index of patch

Output parameters:

Hl : local extraction matrix

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. The parameter ip takes an integer value between 1 and
length(MP.P). The resulting matrix Hl is encoded in sparse format; each row in Hl

corresponds to an MDB-spline and each column to a B-spline in the selected B-spline
patch, so size(Hl) equals [size(H,1), MP.P(ip).n].

Example:

Create an MDB-spline multi-patch with related smoothness vector, and show the Bézier
extraction matrix corresponding to the first patch:

>> [MP, rr] = MDB patch poly([3, 4, 4], [1, 3, 4, 6], 2, false);

>> H = MDB extraction(MP, rr);

>> Hl = MDB extraction local(MP, H, 1);

>> B = full(Hl(any(Hl, 2), :))

B =

1.0000 0 0 0

0 1.0000 0.2558 0.0698

0 0 0.7442 0.3969

0 0 0 0.5333

2.2.7 MDB domain

This function computes the end points of the domain specified by a given MDB-spline
multi-patch.

Syntax:

[a, b] = MDB domain(MP)

Input parameters:

MP : MDB-spline multi-patch



User Manual for the MDS-Spline Toolbox in MATLAB · 17

Output parameters:

a : left end point

b : right end point

Example:

Create an MDB-spline multi-patch and show the end points of its domain:

>> MP = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> [a, b] = MDB domain(MP)

a =

0

b =

6

2.2.8 MDB greville

This function computes the Greville points of a given MDB-spline multi-patch with
smoothness, i.e., the coefficients of the MDB-spline form of the identity function.

Syntax:

gg = MDB greville(MP, H)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

Output parameters:

gg : vector of Greville points

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector gg corresponds to an MDB-
spline, so length(gg) equals size(H,1).

Example:

Create an MDB-spline multi-patch with related smoothness vector, and show its Greville
points:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> gg = MDB greville(MP, H)

gg =

Columns 1 through 7

0 0.3333 1.3333 2.5625 3.5000 4.2500 5.0000

Columns 8 through 9

5.5000 6.0000



18 · Hendrik Speleers

2.2.9 MDB evaluation all

This function evaluates all (periodic) MDB-splines of an MDB-spline multi-patch with
smoothness at a given set of points, and stores the corresponding values in a matrix.

Syntax:

M = MDB evaluation all(MP, H, xx)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

xx : vector of evaluation points

Output parameters:

M : evaluation matrix

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. Each row in the resulting matrix M corresponds to an
MDB-spline and each column to an evaluation point, so size(M) equals [size(H,1),

length(xx)].

Example:

Create an MDB-spline multi-patch with related smoothness vector, and evaluate all the
corresponding MDB-splines at the break points of the multi-patch:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> M = MDB evaluation all(MP, H, [0, 1, 3, 4, 6])

M =

1.0000 0 0 0 0

0 0.4444 0 0 0

0 0.4652 0.0508 0 0

0 0.0904 0.4158 0 0

0 0 0.5333 0.4444 0

0 0 0 0.4444 0

0 0 0 0.1111 0

0 0 0 0 0

0 0 0 0 1.0000

Now, do the same with periodic MDB-splines:

>> Hper = MDB extraction periodic(MP, rr, 2);

>> Mper = MDB evaluation all(MP, Hper, [0, 1, 3, 4, 6])



User Manual for the MDS-Spline Toolbox in MATLAB · 19

Mper =

0.1667 0 0 0.1111 0.1667

0.6398 0.3011 0 0 0.6398

0.1935 0.6085 0.0508 0 0.1935

0 0.0904 0.4158 0 0

0 0 0.5333 0.4444 0

0 0 0 0.4444 0

2.2.10 MDB evaluation spline

This function evaluates a spline in (periodic) MDB-spline form at a given set of points,
and stores the corresponding values in a vector.

Syntax:

ss = MDB evaluation spline(MP, H, cc, xx)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of spline evaluation values

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector cc corresponds to an MDB-
spline. Hence, length(cc) should be equal to size(H,1). Each element of the resulting
vector ss corresponds to an evaluation point, so length(ss) equals length(xx).

Example:

Create an MDB-spline multi-patch with related smoothness vector and a vector of co-
efficients, and then evaluate the corresponding spline in MDB-spline form at the break
points of the multi-patch:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> cc = [1, 2, 3, 4, 2, 2, 4, 3, 2];

>> ss = MDB evaluation spline(MP, H, cc, [0, 1, 3, 4, 6])

ss =

1.0000 2.6460 2.8825 2.2222 2.0000

Now, do the same with periodic MDB-splines:

>> Hper = MDB extraction periodic(MP, rr, 2);



20 · Hendrik Speleers

>> ccper = [1, 2, 3, 4, 3, 2];

>> ssper = MDB evaluation spline(MP, Hper, ccper, [0, 1, 3, 4, 6])

ssper =

2.0269 2.7893 3.4158 2.3333 2.0269

2.2.11 MDB differentiation all

This function evaluates the r-th order derivative of all (periodic) MDB-splines of an MDB-
spline multi-patch with smoothness at a given set of points, and stores the corresponding
values in a matrix.

Syntax:

M = MDB differentiation all(MP, H, r, xx)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

r : order of derivative

xx : vector of evaluation points

Output parameters:

M : differentiation matrix

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. The parameter r is a non-negative integer. Each row in
the resulting matrix M corresponds to an MDB-spline and each column to an evaluation
point, so size(M) equals [size(H,1), length(xx)].

Example:

Create an MDB-spline multi-patch with related smoothness vector, and evaluate the first
derivative of all the corresponding MDB-splines at the break points of the multi-patch:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> M = MDB differentiation all(MP, H, 1, [0, 1, 3, 4, 6])

M =

-3.0000 0 0 0 0

3.0000 -0.6667 0 0 0

0 0.3955 -0.2034 0 0

0 0.2712 -0.5966 0 0

0 0 0.8000 -0.8889 0

0 0 0 0.4444 0

0 0 0 0.4444 0

0 0 0 0 -2.0000

0 0 0 0 2.0000



User Manual for the MDS-Spline Toolbox in MATLAB · 21

2.2.12 MDB differentiation spline

This function evaluates the r-th order derivative of a spline in (periodic) MDB-spline
form at a given set of points, and stores the corresponding values in a vector.

Syntax:

ss = MDB differentiation spline(MP, H, r, cc, xx)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

r : order of derivative

cc : vector of coefficients

xx : vector of evaluation points

Output parameters:

ss : vector of r-th order derivative spline values

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. The parameter r is a non-negative integer. Each element
of the vector cc corresponds to an MDB-spline. Hence, length(cc) should be equal to
size(H,1). Each element of the resulting vector ss corresponds to an evaluation point,
so length(ss) equals length(xx).

Example:

Create an MDB-spline multi-patch with related smoothness vector and a vector of coef-
ficients, and then evaluate the first derivative of the corresponding spline in MDB-spline
form at the break points of the multi-patch:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> cc = [1, 2, 3, 4, 2, 2, 4, 3, 2];

>> ss = MDB differentiation spline(MP, H, 1, cc, [0, 1, 3, 4, 6])

ss =

3.0000 0.9379 -1.3966 0.8889 -2.0000

2.2.13 MDB visualization all

This function visualizes all (periodic) MDB-splines of an MDB-spline multi-patch with
smoothness.

Syntax:

MDB visualization all(MP, H, n, specs)



22 · Hendrik Speleers

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. The parameter n is a positive integer. When no value
is specified, n = 100 is assumed. The parameter specs allows for any number of in-
put arguments, which are passed on to the function plot. We refer the reader to the
documentation of plot for all the plotting options.

Example:

Create an MDB-spline multi-patch with related smoothness vector, and plot all the cor-
responding MDB-splines:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> MDB visualization all(MP, H, 100, ’LineWidth’, 2);

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Now, do the same with periodic MDB-splines:

>> Hper = MDB extraction periodic(MP, rr, 2);

>> MDB visualization all(MP, Hper, 100, ’LineWidth’, 2);

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 



User Manual for the MDS-Spline Toolbox in MATLAB · 23

2.2.14 MDB visualization spline

This function visualizes a spline in (periodic) MDB-spline form.

Syntax:

MDB visualization spline(MP, H, cc, n, specs)

Input parameters:

MP : MDB-spline multi-patch

H : extraction matrix

cc : vector of coefficients

n : number of evaluation points (optional)

specs : pass any number of plot specifications (optional)

Discussion:

The extraction matrix H should be deduced from the MDB-spline multi-patch MP and
incorporates the smoothness. Each element of the vector cc corresponds to an MDB-
spline. Hence, length(cc) should be equal to size(H,1). The parameter n is a positive
integer. When no value is specified, n = 100 is assumed. The parameter specs allows
for any number of input arguments, which are passed on to the function plot. We refer
the reader to the documentation of plot for all the plotting options.

Example:

Create an MDB-spline multi-patch with related smoothness vector and a vector of coef-
ficients, and then plot the corresponding spline in MDB-spline form:

>> [MP, rr] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> H = MDB extraction(MP, rr);

>> cc = [1, 2, 3, 4, 2, 2, 4, 3, 2];

>> MDB visualization spline(MP, H, cc, 100, ’LineWidth’, 2);

0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

 

2.2.15 MDB conversion

This function converts a spline in (periodic) MDB-spline form into another (periodic)
MDB-spline form. The conversion is exact when the source and destination MDB-spline
multi-patches with smoothness imply nested spaces.



24 · Hendrik Speleers

Syntax:

ccd = MDB conversion(MPd, Hd, MPs, Hs, ccs)

Input parameters:

MPd : destination MDB-spline multi-patch

Hd : destination extraction matrix

MPs : source MDB-spline multi-patch

Hs : source extraction matrix

ccs : source coefficient vector

Output parameters:

ccd : destination coefficient vector

Discussion:

The MDB-spline multi-patches MPs and MPd must share the same number of B-spline
patches, and preferably MPd contains also the same break points as MPs for the best
conversion results. The extraction matrix Hs should be deduced from MPs and incorporates
the smoothness. Similarly, the extraction matrix Hd should be deduced from MPd and
incorporates the smoothness. Each element of the vector ccs corresponds to an MDB-
spline related to Hs. Hence, length(ccs) should be equal to size(Hs,1). Similarly, each
element of the resulting vector ccd corresponds to an MDB-spline related to Hd.

Example:

Create an MDB-spline multi-patch of multi-degree (3, 4) with related smoothness vec-
tor and a vector of coefficients; then, raise the multi-degree to (5, 7) and compute the
coefficients of the new MDB-spline form:

>> [MPs, rrs] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 2);

>> Hs = MDB extraction(MPs, rrs);

>> ccs = [1, 2, 3, 4, 2, 2, 4, 3, 2];

>> [MPd, rrd] = MDB patch poly([5, 5, 7, 7], [0, 1, 3, 4, 6], 2);

>> Hd = MDB extraction(MPd, rrd);

>> ccd = MDB conversion(MPd, Hd, MPs, Hs, ccs)

ccd =

Columns 1 through 7

1.0000 1.6000 2.0000 2.2646 2.8460 3.3714 3.5577

Columns 8 through 14

3.4016 2.4308 2.2081 2.0673 2.0317 2.2222 2.9841

Columns 15 through 19

3.3778 3.4476 3.1429 2.5714 2.0000



User Manual for the MDS-Spline Toolbox in MATLAB · 25

Now, keep the same multi-degree of the original spline but lower its smoothness, and
compute the coefficients of the new MDB-spline form:

>> [MPe, rre] = MDB patch poly([3, 3, 4, 4], [0, 1, 3, 4, 6], 1);

>> He = MDB extraction(MPe, rre);

>> cce = MDB conversion(MPe, He, MPs, Hs, ccs)

cce =

Columns 1 through 7

1.0000 2.0000 2.3333 3.2712 3.8136 2.5333 2.0000

Columns 8 through 12

2.0000 2.6667 4.0000 3.0000 2.0000

Finally, find an approximation of the original spline using a lower multi-degree (2, 3):

>> [MPf, rrf] = MDB patch poly([2, 2, 2, 3, 3], [0, 1, 2, 3, 4, 6], 1);

>> Hf = MDB extraction(MPf, rrf);

>> ccf = MDB conversion(MPf, Hf, MPs, Hs, ccs)

ccf =

Columns 1 through 7

1.0000 2.3034 3.1291 3.5633 2.3867 1.8105 3.1871

Columns 8 through 9

3.7606 2.0000

Lowering the degree does not preserve the exact shape of the original spline, but it forms
a reasonable approximation. Make a visual comparison between the original spline (blue)
and the lower-degree spline (red):

>> MDB visualization spline(MPs, Hs, ccs, 50, ’LineWidth’, 2, ...

>> ’Marker’, ’o’, ’MarkerSize’, 10, ’Color’, ’blue’);

>> hold on;

>> MDB visualization spline(MPf, Hf, ccf, 50, ’LineWidth’, 2, ...

>> ’Marker’, ’*’, ’MarkerSize’, 10, ’Color’, ’red’);

>> hold off;

0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

 


	Introduction
	Matlab Functions
	B-splines
	B_patch
	B_domain
	B_greville
	B_evaluation_all
	B_evaluation_spline
	B_diffend_all
	B_differentiation_all
	B_differentiation_spline
	B_visualization_all
	B_visualization_spline
	B_conversion

	MDB-splines
	MDB_patch
	MDB_patch_poly
	MDB_extraction
	MDB_extraction_periodic
	MDB_nullspace
	MDB_extraction_local
	MDB_domain
	MDB_greville
	MDB_evaluation_all
	MDB_evaluation_spline
	MDB_differentiation_all
	MDB_differentiation_spline
	MDB_visualization_all
	MDB_visualization_spline
	MDB_conversion



