
9/25/1998 1:39 PM 1

MPI Tutorial
Dr. Andrew C. Pineda, HPCERC/AHPCC

Dr. Brian Smith, HPCERC/AHPCC
The University of New Mexico

November 17, 1997
Last Revised: September 18, 1998

MPI (Message Passing Interface)

MPI (Message Passing Interface) is a library of function calls (subroutine calls in Fortran) that allow the
coordination of a program running as multiple processes in a distributed memory environment. These
function calls can be added to a serial program in order to convert it to a parallel program, often with only a
few modifications. MPI programs may be compiled run in parallel on multiple nodes of a massively
parallel computer such as an IBM SP2 or on a cluster (homogeneous or heterogeneous) of workstations
connected over a network. MPI was written with the goal of creating a widely used language- and platform-
independent standard for the writing of message-passing programs.

The chief advantage of MPI is that it allows a more flexible division of work among processes than does a
data parallel programming language such as High Performance Fortran (HPF). This flexibility of MPI
allows the user to select or develop his or her own parallel programming paradigm or approach such as
master/slave, or single-program multiple data. The price of that advantage is that the user becomes
responsible for setting up the communications among the processes and ensuring that each process has
enough work to do between communications calls. Converting a serial code to a parallel MPI code
involves 4 basic steps:

• inserting the MPI include file and additional declarations for auxiliary variables in the specification
sections of the parts of the program making MPI calls;

• adding the library calls to initialize the MPI communications environment;
• doing the calculation and performing message passing calls; and
• adding the library calls to terminate the MPI environment.

The MPI library can be called from Fortran 77, Fortran 90, C, and C++ programs although function
bindings exist only for Fortran 77 and C.* That is, the programmer is calling a Fortran 77 or C library when
using Fortran 90 or C++. This leads to some serious problems for Fortran 90, because the MPI library
lacks the bindings necessary for correctly passing objects (typically arrays) of more than one type to a
particular MPI function. This is an issue having to do with the strong type checking of arguments to
function calls required by Fortran 90 (and provided via interface blocks) that is not handled consistently by
Fortran 90 compilers. For example, the IBM xlf90 (mpxlf90) compiler basically allows the programmer to
sidestep this problem with a compiler switch, but the NAG F90 compiler does not. C++ provides an
explicit method for calling a C function from a C++ program via the extern “C” declaration (which have
been inserted in the MPI header files via an #ifdef), so there is in principle no problem with using the C
MPI library in C++.†

* In this tutorial, we document the syntax of MPI calls in Fortran. There are only two differences between
the C and Fortran syntax having to do with the spelling (case) of the MPI call and with how error values are
returned. In C, the MPI calls are functions named MPI_Abcdef which return an integer valued error value.
In Fortran, the MPI functions are subroutines named MPI_ABCDEF which return the integer valued error
as an additional argument which appears last in the argument list.
† For those of you not acquainted with the minor differences between C and C++, there is a difference in
the order in which C and C++ compilers push function arguments onto the program stack. In C, function
arguments are pushed onto the stack proceeding from left to right through the argument list during a call.
In C++, they are pushed onto the stack in right to left order. In order to be able to call modules compiled in
C, C++ provides a mechanism for reversing this order via the extern “C” declaration.

9/25/1998 1:39 PM 2

Our intent in this tutorial is to teach MPI by example, so we will examine several MPI programs that
illustrate the use of the MPI subroutines. The entire MPI library consists of over one hundred MPI calls
and therefore we do not provide a complete description of the use of all MPI calls. However, a great deal
of programming in MPI can be done with less than two dozen calls. Hence, we will focus our attention on
the most useful MPI calls and refer the reader to the MPI reference, “MPI: The Complete Reference”, for
the more advanced calls.

A Basic MPI Program

As is frequently done when studying a new programming language, we begin our study of MPI with a
parallel version of the ubiquitous “Hello, World” program. This example illustrates the basic structure of
an MPI program without any communications between processes. It is shown in Figure 1.

 program helloworld

 include 'mpif.h'
 integer comm, rank, numproc, ierror

 call MPI_INIT(ierror)

 call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierror)

 call MPI_COMM_SIZE(MPI_COMM_WORLD,numproc,ierror)

 print *,"Hello World from Processor ",rank," of ",numproc

 if(rank.eq.0) then
 print *,"Hello again from processor ", rank
 endif

 call MPI_FINALIZE(ierror)

 end program helloworld

Figure 1. A parallel version of Hello, World.

Include declarations of MPI
functions and constants.

Begin parallel execution of code.

Find out which process we are from the set of processes defined
by the communicator MPI_COMM_WORLD which is MPI’s
shorthand for all the processors running your program. This
value is stored in rank.

Returns the number of processes in numproc.

This line is printed by all processes.

This line is printed only by the process of
rank equal to 0.

End parallel execution.

9/25/1998 1:39 PM 3

In the declaration section, the MPI include file is inserted and additional MPI variables are declared. In
Fortran, the included file is called “mpif.h”. In Fortran 90, this file is called “mpif90.h”. In C and C++, the
include files are called “mpi.h” and “mpi++.h”, respectively. In the executable section of the code,
communication between processes is started by the MPI_INIT function. Next the processes must obtain
information about their identity and the number of processes so that they can communicate and allocate
work. Processes determine their identity via the MPI_COMM_RANK call. The first argument to
MPI_COMM_RANK is the MPI communicator MPI_COMM_WORLD. In MPI, communicators are used
to specify the processes constituting a communications group. The MPI_COMM_WORLD communicator
is provided by MPI as a way to refer to all of the processes. MPI also provides functions for creating your
own communicators for subgroups of the processes. This allows you to create a processor topology that
maps onto the problem you are trying to solve. In the example above, the identity of the process is returned
in the rank variable. This rank is a zero-based integer value. The number of processes in a
communications group is found using the MPI_COMM_SIZE call.

After the initialization calls are complete, the processes all begin work on their own computations. In the
example in Figure 1, each process executes the first print statement in which they print their rank and the
number of processes. They then test to see if they are the process with rank equal to zero, and if so execute
the second print statement. Finally, with their work completed each process calls MPI_FINALIZE to close
down their communications with the other processes and then stops execution.

Exercise 1

Compile and run the “Hello, World” example code above on 3 or more processors. The source code may
be found in the file hellompi.f. Directions for compiling and running the program under MPI have been
provided in “Appendix A. Compiling and running a parallel program.” Does it do what you expect? Did
anything unusual or surprising happen?

As you might have noticed, the above example, and indeed all of the examples in this tutorial, follows the
single-program multiple-data paradigm. That is, one program is being written and compiled, but the
executable for it is loaded and run on all the processors being used. Each processor is running this program
asynchronously and therefore executes the statements in the same order but at different times. IF
statements such as if (rank==0) in hellompi.f are executed by each processor, but only the processor that
has rank (id) equal to 0 executes the body of the IF construct, in this case, the PRINT statement. Note that
all processors execute the MPI_COMM_RANK subroutine, but each receives a different value of rank.

An MPI Program with Point-to-Point Communications

As a next step in building a useful program, we add MPI communications calls to handle communications
between processes. As all communications between processes are ultimately built out of communications
calls that operate between pairs of processes, i.e., the point-to-point calls, we discuss them first. Point-to-
point communications calls consist of two basic operations, sends and receives, which each come in a
number of flavors depending upon the amount of control the user wants or needs to have over how the
communication operation is performed. The generic versions of these calls are MPI_SEND and
MPI_RECV, which respectively send and receive messages between pairs of processes. The calling syntax
for these two functions is described in detail below in “Appendix B. Common MPI Library Calls”. Other
versions of these calls, such as MPI_ISEND, MPI_BSEND to name but a few, are described in the MPI
reference.

The most important consideration for the MPI programmer is whether an MPI communications call is
blocking or non-blocking. In a blocking call, a process that is communicating data must wait until the
message data has been safely stored away so that the sender can access and overwrite the send buffer.
Until then, a blocking call cannot return and as a result the process making the blocking call cannot do any
more useful work. In MPI, the basic send and receive operations, MPI_SEND and MPI_RECV, are both
blocking calls. However, blocking calls may be implemented as buffered or unbuffered operations. In a
buffered operation, the data being sent is copied to an intermediate buffer after which the sending process is
free to continue. The particular MPI implementation is free to implement the blocking send as a buffered or

9/25/1998 1:39 PM 4

an unbuffered operation. The consequence of this is that the blocking send may behave like a non-blocking
send operation depending upon the implementation. Variants of MPI_SEND exist to allow the user to
force buffered operation, etc.

The program in Figure 2 below illustrates the use of the basic MPI send and receive calls. In this simple
program, process 0 sends a message, consisting of a character string, to process 1, which then appends
information to it and sends it back to process 1. The MPI_SEND call takes as arguments a buffer
containing the data, an integer value for the size of the buffer, and an integer value describing the type of
the data being sent. The MPI include file contains pre-defined values for the standard data types in Fortran
and C. In this example, a character string (array) is being sent, so the MPI type in Fortran is
MPI_CHARACTER. In "Appendix B. Common MPI Library Calls", the remaining pre-defined types in
Fortran are listed. The pre-defined types for C may be found in the MPI reference. Later in this tutorial,
we briefly discuss how one can send messages containing arbitrary types. In addition to these arguments,
MPI_SEND takes as arguments the rank of the destination process, a message tag to label the messages,
and the communicator for the process group involved. The matching receive call, MPI_RECV, takes
similar arguments.

 program swapmessage
 include 'mpif.h'
 integer comm, rank, numproc, ierror, root
 integer status(MPI_STATUS_SIZE)
 character(80) message_sent, message_received
 ! Setup default messages.
 message_sent='No message sent'
 message_received='No message received'
 root=0
 ! Start up MPI environment
 call MPI_INIT(ierror)
 call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierror)
 call MPI_COMM_SIZE(MPI_COMM_WORLD,numproc,ierror)

 if(numproc.gt.1) then

 ! Swap messages only if we have more than 1 processor. The root
 ! process sends a message to processor 1 and then waits for a
 ! reply. Processor 1 waits for a message from the root process,
 ! adds to it, and then sends it back.

 if(rank.eq.root) then

 message_sent='Hello from processor 0'

9/25/1998 1:39 PM 5

 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, ierror)

 call MPI_RECV(message_received, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, status, ierror)

 else if (rank.eq.1) then

 ! Processor 1 waits until processor 0 sends its message

 call MPI_RECV(message_received, 80, MPI_CHARACTER, 0, 1, &
 MPI_COMM_WORLD, status, ierror)

 ! It then constructs a reply.
 message_sent='Proc 1 got this message: '//message_received
 ! And sends it....
 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 0, 1, &
 MPI_COMM_WORLD,ierror)
 endif
 print *,"Processor ",rank," sent '",message_sent,"'"
 print *,"Processor ",rank," received '",message_received,"'"
 else
 print *,"Not enough processors to demo message passing"
 endif
 call MPI_FINALIZE(ierror)

 end program swapmessage

Figure 2. A simple exchange of messages.

The root process then stops at MPI_RECV until processor 1 sends its message
back.

MPI_SEND is the standard blocking send operation. Depending upon whether the
implementers of the particular MPI library you are using buffer the message in a
global storage area, this call may or may not block until a matching receive has
been posted. Other flavors of send operations exist in MPI that allow you to force
buffering, etc.

Destination Message Tag
Messages are tracked by source
id/rank, destination id/rank,
message tag, and communicator.

Sender Id Message Tag

Buffer containing
the data

The number
of elements in
the data buffer

The type of the data being
sent. In this case character.

9/25/1998 1:39 PM 6

Exercise 2

Compile and run the program swapmsg.f, which contains the program listed in Figure 2 to run on two or
more processes. What messages are printed by the processes? Add a third process to the communication.

Exercise 3

With blocking calls, it is possible to arrange the calls in such a way that a pair of processes attempting to
communicate with each other will deadlock. Can you construct a simple exchange of messages between 2
processes, using MPI_SEND and MPI_RECV calls, in which the processors are guaranteed to deadlock?
(Don’t try to run this code…)

In this tutorial, we primarily discuss blocking communications for simplicity, however non-blocking calls
are occasionally needed to avoid situations in which processes can deadlock. The non-blocking call most
frequently used to resolve such situations is MPI_IRECV which is the non-blocking form of the MPI
receive call MPI_RECV. Additionally, MPI_IRECV can be used to overlap time spent on computation
with time spent on communications, which can frequently result in dramatic improvements in processing
speed. The process calling MPI_IRECV basically tells the other processes that it is expecting a message
containing some data from another process, and then returns control of execution to the calling process.
The calling process is then free to do useful work, provided that it does not touch the buffer that will
contain the received message until the receive operation has been completed. This is done at a later time
with the blocking MPI_WAIT function or the non-blocking MPI_TEST function. MPI_TEST checks to
see if a message has arrived and either receives the message and sets a logical flag to true indicating that
the communication is complete, or sets the logical flag to false and returns. An MPI_IRECV immediately
followed by an MPI_WAIT is equivalent to an MPI_RECV call. As illustrated below in Figure 3,
MPI_IRECV can be used in place of MPI_RECV.

 if(rank.eq.root) then

 message_sent='Hello from processor 0'

 call MPI_IRECV(message_received, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, request, ierror)

 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, ierror)

 call MPI_WAIT(request, status, ierror)

 else if (rank.eq.1) then

Figure 3. A replacement for the rank.eq.root code in swapmsg.f that uses MPI_IRECV instead of
MPI_RECV.

Begin the receive operation by letting the world know we are expecting
a message from process 1. We then return immediately.

Now send the message as before.

Now wait for the receive operation to complete.

9/25/1998 1:39 PM 7

Exercise 4

Fix your deadlocking code from the previous exercise using MPI_IRECV. Compile and run it to see that it
works.

MPI Programs with Collective Communications

MPI collective communications calls provide mechanisms for the passing of data from one process to all,
all processes to one, or from all processes to all processes in an efficient manner. These calls are used to
distribute arrays or other data across multiple processes for parallel computation. Calls for all to all
communications are not discussed here for the sake of simplicity and brevity.

Collective function calls may (depending upon the MPI implementation) return control to their calling
process as soon as their participation in the collective communication is complete. At this point, the calling
process is free to access data in the communications buffer. The four most commonly used types of
collective calls are broadcast, scatter, gather, and reduction operations. In a broadcast operation, a block of
data is distributed from one process to all the processes in a communication group. In a scatter operation, a
block of data is broken up into pieces and the pieces are distributed to all the processes in the
communications group. A gather operation is the inverse of the scatter operation; it collects the pieces of
data distributed across a group of processes and assembles them as a single block of data on a single
processor.

The next example program, listed in Figure 4, illustrates the use of the MPI_BCAST, MPI_SCATTER, and
MPI_GATHER routines. The program computes a linear combination (sum) of two vectors of length 80
by distributing the pieces of the vectors across 8 processors in blocks of length 10 using the
MPI_SCATTER function. The coefficients multiplying each vector are distributed to all processes using
the MPI_BCAST function. Each processor then forms the vector sum on components of the vector from
the block assigned to it and returns the completed sum to the root process via the MPI_GATHER function,
which reassembles the components of the vector in their proper order. In this case, the data was evenly
divisible among the processors. If this were not the case, we would use the more general functions
MPI_SCATTERV and MPI_GATHERV to distribute the data. See “Appendix B. Common MPI Library
Calls” for details on these calls.

9/25/1998 1:39 PM 8

 program vecsum

 include 'mpif.h'

 integer, parameter :: dim1 = 80, dim2 = 10
 integer ierr, rank, size, root
 integer sec_start, nano_start
 integer sec_curr, nano_curr
 integer sec_startup, nano_startup
 integer sec_comp, nano_comp
 integer sec_cleanup, nano_cleanup

 real, dimension(dim1) :: x, y, z
 real, dimension(dim2) :: xpart, ypart, zpart
 real, dimension(2) :: coeff

 interface
 subroutine posix_timer(job_sec, job_nanosec)
 integer job_sec, job_nanosec
 end subroutine
 end interface

 root = 0
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 print *, 'START process on processor ', rank

 if(rank == root) then
 call posix_timer(sec_start, nano_start)
 coeff = (/ 1.0, 2.0 /)
 x = 2.0
 y = 3.0
 endif

 call MPI_SCATTER(x, dim2, MPI_REAL, xpart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

MPI_SCATTER distributes blocks of array x from the root process to the array
xpart belonging to each process in MPI_COMM_WORLD. Likewise, blocks of
the array y are distributed to the array ypart.

This program
computes

ybxaz
��� +=

on 8 processes using
MPI calls.

Array x and the number
of elements of type real to
send to each process. Only
meaningful to root.

Array xpart and the
number of elements of
type real to receive.

Do timing in the root
process only.

9/25/1998 1:39 PM 9

 call MPI_SCATTER(y, dim2, MPI_REAL, ypart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

 call MPI_BCAST(coeff, 2, MPI_REAL, root, MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_startup = sec_curr - sec_start
 nano_startup = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

 do i = 1, dim2
 zpart(i) = coeff(1)*xpart(i) + coeff(2)*ypart(i)
 enddo

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_comp = sec_curr - sec_start
 nano_comp = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

Array y and the number of
elements of type real to send to
each process. Only meaningful
to root.

Array ypart and the
number of elements of
type real to receive.

The coefficients, a and b, are stored in an array of length 2, coeff, that is
broadcast to all processes via MPI_BCAST from the process root.

Now each processor computes the vector sum on its portion of the
vector. The blocks of the vector sum are stored in zpart.

9/25/1998 1:39 PM 10

 call MPI_GATHER(zpart, dim2, MPI_REAL, z, dim2, MPI_REAL, root,
 & MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_cleanup = sec_curr - sec_start
 nano_cleanup = nano_curr - nano_start
 endif

 print *, 'Finish processor ', rank

 if(rank == root) then
 print *, 'Vector sum, elements 10 and 60, are: ', z(10), z(60)
 print *, 'Startup execution times (sec, nano): ', &
 & sec_startup, nano_startup
 print *, 'Computation execution times (sec, nano): ', &
 & sec_comp, nano_comp
 print *, 'Cleanup execution times (sec, nano): ', &
 & sec_cleanup, nano_cleanup
 endif

 call MPI_FINALIZE(ierr)

 end

Figure 4. An example performing a vector sum operation, ybxaz
��� += , using MPI.

Exercise 5

Compile and run the above program, vecsummpi.f, for various sizes of the arrays as well as single and
multiple processes. What is the observed speedup as a function of the number of processes? When does it
pay to run the program in parallel?

The next example program, Figure 5, illustrates the use of the MPI_REDUCE call. In the example, the dot
product of two large vectors is computed. As in the previous example, the vectors are distributed
blockwise across 8 processors using MPI_SCATTER. Each processor then computes the dot product on the
piece that it has. Finally, the pieces of the dot product must be summed together to form the full dot
product on the root process. This kind of operation is called a reduction operation and is performed with
the MPI_REDUCE call. The predefined constant MPI_SUM tells MPI_REDUCE that the desired
reduction operation is to sum the values it has been given and return the sum to the process collecting the
results. Other types of reduction operations include taking the product, determining maximum or minimum
values, etc.

Now we use MPI_GATHER to collect the blocks back to the root process.

The array zpart to be gathered and
the number of elements each process
sends to root.

For the root process, the array z contains the
collected blocks from all processes on output.
MPI_GATHER needs to know how much data
to collect from each process.

9/25/1998 1:39 PM 11

 program vecprod

 integer, parameter :: dim1 = 80, dim2 = 10

 include 'mpif.h'

 integer ierr, rank, size, root

 real, dimension(dim1) :: x, y
 real, dimension(dim2) :: xpart, ypart
 real z, zpart
 integer sec_start, nano_start
 integer sec_curr, nano_curr
 integer sec_startup, nano_startup
 integer sec_comp, nano_comp
 integer sec_cleanup, nano_cleanup

 interface
 subroutine posix_timer(job_sec, job_nanosec)
 integer job_sec, job_nanosec
 end subroutine
 end interface

 root = 0
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 print *, 'START process on processor ', rank

 if(rank == root) then
 call posix_timer(sec_start, nano_start)
 x = 1.0
 y = 2.0
 endif

 call MPI_SCATTER(x, dim2, MPI_REAL, xpart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)
 call MPI_SCATTER(y, dim2, MPI_REAL, ypart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_startup = sec_curr - sec_start
 nano_startup = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

 zpart = 0.0
 do i = 1, dim2
 zpart = zpart + xpart(i)*ypart(i)
 enddo

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_comp = sec_curr - sec_start
 nano_comp = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

This program computes the
dot product of two vectors,

yxz
�� ⋅=

using MPI calls.

Distribute the arrays x
and y as in the previous
example.

Each process then computes the
dot product of the pieces of the
array to which it has access.

9/25/1998 1:39 PM 12

 call MPI_REDUCE(zpart, z, 1, MPI_REAL, MPI_SUM, root, &
 MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_cleanup = sec_curr - sec_start
 nano_cleanup = nano_curr - nano_start
 endif

 print *, 'Finish processor ', rank

 if(rank == root) then
 print *, 'Vector product is: ', z
 print *, 'Startup execution times (sec, nano): ',&
 & sec_startup, nano_startup
 print *, 'Computation execution times (sec, nano): ',&
 & sec_comp, nano_comp
 print *, 'Cleanup execution times (sec, nano): ',&
 & sec_cleanup, nano_cleanup

 endif

 call MPI_FINALIZE(ierr)

 end

Figure 5. An example illustrating the computation of a dot product of 2 vectors using MPI.

Exercise 6

Repeat Exercise 5 for this program, vecprodmpi.f.

As our final example, in Figure 6, we illustrate the use of MPI calls in forming the product of a matrix with
a vector to form another vector. In this example the vector being multiplied is distributed across the
processors as blocks of rows, and the matrix is distributed across the processors as blocks of columns. This
allows each processor to compute a column vector using the column-oriented multiplication algorithm.
The column vectors computed by each processor are then added together in an MPI_REDUCE operation to
form the final result vector.

Use MPI_REDUCE to sum the pieces of the dot product stored in zpart and store
the result in the z variable belonging to the root process.

Dimension of zpart and z. Type of reduction operation to perform.

The result of this
operation is that z
contains the sum of all the
zpart values.

9/25/1998 1:39 PM 13

 program matvec2

 ! Perform matrix vector product -- Y = AX
 ! This is method two -- distribute A by block columns
 ! and X in blocks (of rows) and the partial vector sum of Y is on
 ! each processor.

 include 'mpif.h'

 integer, parameter :: dim1 = 80, dim2 = 10, dim3 = dim1*dim2
 integer ierr, rank, size, root, i, j
 integer sec_start, nano_start
 integer sec_curr, nano_curr
 integer sec_startup, nano_startup
 integer sec_comp, nano_comp
 integer sec_cleanup, nano_cleanup

 real, dimension(dim1,dim1) :: a
 real, dimension(dim1,dim2) :: apart
 real, dimension(dim1) :: x, y, ypart
 real, dimension(dim2) :: xpart

 interface
 subroutine posix_timer(job_sec, job_nanosec)
 integer job_sec, job_nanosec
 end subroutine
 end interface

 root = 0
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 print *, 'START process on processor ', rank

 if(rank == root) then
 call posix_timer(sec_start, nano_start)
 do i = 1, dim1
 x(i) = 1.0
 do j = 1, dim1
 a(j,i) = i + j
 enddo
 enddo
 endif

 call MPI_SCATTER(a, dim3, MPI_REAL, apart, dim3, MPI_REAL, root,&
 & MPI_COMM_WORLD, ierr)
 call MPI_SCATTER(x, dim2, MPI_REAL, xpart, dim2, MPI_REAL, root,&
 & MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_startup = sec_curr - sec_start
 nano_startup = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

Distribute the 80x80 array A by columns as
80x10 blocks stored in APART.

Distribute the 80 dimensional
array x in blocks of length 10.

9/25/1998 1:39 PM 14

 do j = 1, dim1
 ypart(j) = 0.0
 enddo
 do i = 1, dim2
 do j = 1, dim1
 ypart(j) = ypart(j) + xpart(i)*apart(j,i)
 enddo
 enddo

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_comp = sec_curr - sec_start
 nano_comp = nano_curr - nano_start
 sec_start = sec_curr
 nano_start = nano_curr
 endif

 call MPI_REDUCE(ypart, y, dim1, MPI_REAL, MPI_SUM, root, &
 MPI_COMM_WORLD, ierr)

 if(rank == root) then
 call posix_timer(sec_curr, nano_curr)
 sec_cleanup = sec_curr - sec_start
 nano_cleanup = nano_curr - nano_start
 endif

 print *, 'Finish processor ', rank

 if(rank == root) then
 print *, 'Matrix vector product, elements 10 and 60, are: ',&
 & y(10), y(60)
 print *, 'Startup execution times (sec, nano): ',&
 & sec_startup, nano_startup
 print *, 'Computation execution times (sec, nano): ',&
 & sec_comp, nano_comp
 print *, 'Cleanup execution times (sec, nano): ',&
 & sec_cleanup, nano_cleanup
 endif

 call MPI_FINALIZE(ierr)

 end

Figure 6. Matrix vector multiplication example.

Exercise 7

Compile and run the above program, matvec2mpi.f. Turn the above program into a matrix-matrix
multiplication program.

Exchanging messages of arbitrary types

In addition to the pre-defined types given above, MPI supports the construction of user-defined types.
These user-defined types play two roles in practice. One is to allow the passing between processes of data
structures (e.g. user-defined types in Fortran 90) containing an arbitrary combination of the pre-defined
types. The other is to allow the user to reorganize data in an arbitrary way during the message passing
process so that it can be efficiently transmitted to and used by the receiving process. For example, a matrix
being sent from one process to another may be transposed on the fly (as might be required in order to
perform a 2-D FFT). Or the data to be transmitted is not in contiguous memory, as is the case when a sub-
matrix of a larger matrix is being exchanged between processes.

Each processor computes part of the product
using a column-oriented algorithm.

Compute the final y as a vector sum
of the pieces ypart using
MPI_REDUCE.

9/25/1998 1:39 PM 15

The usage of the function to pass arbitrary structures is very complicated, so the user is referred to the MPI
reference, “MPI: The Complete Reference” for a discussion of this topic.

As an illustration of the use of user-defined types, we present MPI code that transposes a matrix on the fly.
To do this, we create a new data type that describes the matrix layout in row-major order, send the matrix
with this data type, and then receive the matrix in normal, column-major order.

REAL a(100,100), b(100,100)
INTEGER row, xpose, sizeofreal, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)
.
.
.
! transpose matrix a into b.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

CALL MPI_TYPE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT(xpose, ierr)

CALL MPI_SENDRECV(a, 1, xpose, myrank, 0, b, 100*100,MPI_REAL,myrank,0,
 MPI_COMM_WORLD, status, ier)
.
.
.

Figure 7 . Using MPI user-defined datatypes to transpose a matrix "on the fly".

MPI_TYPE_VECTOR is used to create a data type, row, for the new row which is a
vector with 100 real entries and a stride of 100 in the original array.

The MPI_TYPE_EXTENT function is used to obtain MPI’s internal value for the size of
the real data type. This is needed by the MPI_TYPE_HVECTOR call.

MPI_TYPE_HVECTOR is used to create a data type describing the matrix in row-
major order. This is done by interleaving copies of the row data type created
previously. The MPI_TYPE_HVECTOR call allows the user to specify alignment of
data in units of bytes. This is used to generate the new xpose data type from 100
copies of the row data type with each copy offset by sizeofreal bytes from the
previous copy.

MPI_TYPE_COMMIT lets MPI know about the new data type.

Now we transpose the matrix by sending it in row-major order and telling the receiving
process that the data is in normal, column-major order.

9/25/1998 1:39 PM 16

MPI Programming Exercises
With the aid of your instructor, select from the exercises below.

Molecular Dynamics
The MD exercises below ask you to convert the Euler and Verlet MD codes for the 1-D chain of atoms that
you worked on earlier in the semester to MPI. The basic approach you will use is to assign blocks of atoms
to processors. At each time-step, you will find that neighboring blocks of atoms will need to exchange
information about the positions of the atoms at the adjoining ends so that the forces on the particles at the
ends of the blocks can be computed. This problem is common to both the Euler and Verlet codes, so there
is no need to do both exercises. Simply pick the one of most interest to you.

Exercise 8

Rewrite the serial Euler code, euler1_h1.f, as an MPI code. Vary the number of atoms per processor and
the number of processors. How does the time to run your code scale with each?

Exercise 9

Rewrite the serial Verlet code, verlet1_h1.f, as an MPI code. Vary the number of atoms per processor and
the number of processors. How does the time to run your code scale with each?

Gaussian Elimination.

Exercise 10

The Gaussian elimination code below is extracted from the Fortran 90 tutorial. Convert it to MPI by block
distributing the data by columns. Note that this is not the most efficient way to convert the code since with
each iteration fewer and fewer processors have anything to do. A better way, albeit more difficult to
implement, is to distribute the array in a cyclic fashion. This has the virtue of keeping the processors busy
for a longer period of time, but eventually one has the same problem.

9/25/1998 1:39 PM 17

module GaussianSolver
 implicit none

 ! The default value for the smallest pivot that will be accepted
 ! using the GaussianSolver subroutines. Pivots smaller than this
 ! threshold will cause premature termination of the linear equation
 ! solver and return false as the return value of the function.

 real, parameter :: DEFAULT_SMALLEST_PIVOT = 1.0e-6

contains

 ! Use Gaussian elimination to calculate the solution to the linear
 ! system, A x = b. No partial pivoting is done. If the threshold
 ! argument is present, it is used as the smallest allowable pivot
 ! encountered in the computation; otherwise, DEFAULT_SMALLEST_PIVOT,
 ! defined in this module, is used as the default threshold. The status
 ! of the computation is a logical returned by the function indicating
 ! the existence of a unique solution (.true.), or the nonexistence of
 ! a unique solution or threshold passed (.false.).
 ! Note that this is an inappropriate method for some linear systems.
 ! In particular, the linear system, M x = b, where M = 10e-12 I, will
 ! cause this routine to fail due to the presence of small pivots.
 ! However, this system is perfectly conditioned, with solution x = b.

 function gaussianElimination(A, b, x, threshold)
 implicit none
 logical gaussianElimination
 real, dimension(:, :), intent(in) :: A ! Assume the shape of A.
 real, dimension(:), intent(in) :: b ! Assume the shape of b.
 real, dimension(:), intent(out) :: x ! Assume the shape of x.

 ! The optional attribute specifies that the indicated argument 40
 ! is not required to be present in a call to the function. The
 ! presence of optional arguments, such as threshold, may be checked
 ! using the intrinsic logical function, present (see below).

 real, optional, intent(in) :: threshold
 integer i, j ! Local index variables.
 integer N ! Order of the linear system.
 real m ! Multiplier.
 real :: smallestPivot = DEFAULT_SMALLEST_PIVOT

 ! Pointers to the appropriate rows of the matrix during the elmination.

 real, dimension(:), pointer :: pivotRow
 real, dimension(:), pointer :: currentRow

 ! Copies of the input arguments. These copies are modified during
 ! the computation. The target attribute is used to indicate that
 ! the specified variable may be the target of a pointer. Rows of
 ! ACopy are targets of pivotRow and currentRow, defined above.

 real, dimension(size(A, 1), size(A, 2)), target :: ACopy
 real, dimension(size(b)) :: bCopy

 !
 ! Status of the computation. The return value of the function.
 !

 logical successful

9/25/1998 1:39 PM 18

 !
 ! Change the smallestPivot if the threshold argument was included.
 !

 if (present(threshold)) smallestPivot = abs(threshold)

 !
 ! Setup the order of the system by using the intrinsic function size.
 ! size returns the number of elements in the specified dimension of
 ! an array or the total number of elements if the dimension is not
 ! specified. Also assume that a unique solution exists initially.
 !

 N = size(b)
 ACopy = A
 bCopy = b
 successful = .true.

 !
 ! Begin the Gaussian elimination algorithm. Note the use of array
 ! sections in the following loops. These eliminate the need for
 ! many do loops that are common in Fortran 77 code. Pointers are
 ! also used below and enhance the readability of the elimination
 ! process. Begin with the first row.
 !

 i = 1

 ! Reduce the system to upper triangular.

 do while ((successful) .and. (i < N))

 !
 ! The following statement is called pointer assignment and uses
 ! the pointer assignment operator '=>'. This causes pivotRow
 ! to be an alias for the ith row of ACopy. Note that this does
 ! not cause any movement of data.
 ! Assign the pivot row.
 !

 pivotRow => ACopy(i, :)

 !
 ! Verify that the current pivot is not smaller than smallestPivot.
 !

 successful = abs(pivotRow(i)) >= smallestPivot
 if (successful) then

 !
 ! Eliminate the entries in the pivot column below the pivot row.
 !

 do j = i+1, N

 ! Assign the current row.

 currentRow => ACopy(j, :)

 ! Calculate the multiplier.

 m = currentRow(i) / pivotRow(i)

9/25/1998 1:39 PM 19

 ! Perform the elimination step on currentRow and right
 ! hand side, bCopy.

 currentRow = currentRow - m * pivotRow
 bCopy(j) = bCopy(j) - m * bCopy(i)

 enddo
 endif

 ! Move to the next row.

 i = i + 1
 end do

 ! Check the last pivot.

 pivotRow => ACopy(N, :)
 if (successful) successful = abs(pivotRow(N)) >= smallestPivot
 if (successful) then
 do i = N, 2, -1 ! Backward substitution.

 ! Determine the ith unknown, x(i).

 x(i) = bCopy(i) / ACopy(i, i)

 ! Substitute the now known value of x(i), reducing the order of
 ! the system by 1.

 bCopy = bCopy - x(i) * ACopy(:, i)
 enddo
 endif

 ! Determine the value of x(1) as a special case.

 if (successful) x(1) = bCopy(1) / ACopy(1, 1)

 ! Prepare the return value of the function.

 gaussianElimination = successful

 end function gaussianElimination

 ! Output A in Matlab format, using name in the Matlab assignment statement.

 subroutine printMatrix(A, name)
 implicit none
 real, dimension(:, :) :: A ! Assume the shape of A.
 character name ! Name for use in assignment, ie, name =
......
 integer n, m, i, j
 n = size(A, 1)
 m = size(A, 2)
 write(*, fmt="(a1,a5)", advance = "no") name, ' = ['

 ! Output the matrix, except for the last row, which needs no `;'.

 do i = 1, n-1

 ! Output current row.

 do j = 1, m-1
 write(*, fmt="(f10.6,a2)", advance = "no") A(i, j), ', '
 enddo

9/25/1998 1:39 PM 20

 ! Output last element in row and end current row.
 write(*, fmt="(f10.6,a1)") A(i, m), ';'
 enddo
 ! Output the last row.
 do j = 1, m-1
 write(*, fmt="(f10.6,a2)", advance = "no") A(i, j), ', '
 enddo
 ! Output last element in row and end.
 write(*, fmt="(f10.6,a1)") A(i, m), ']'
 end subroutine printMatrix

 ! Output b in Matlab format, using name in the Matlab assignment statement.
 subroutine printVector(b, name)
 implicit none
 real, dimension(:) :: b ! Assume the shape of b.
 character name ! Name for use in assignment, ie, name =
 integer n, i
 n = size(b)
 write(*, fmt="(a1,a5)", advance = "no") name, ' = ['
 do i = 1, n-1
 write(*, fmt = "(f10.6,a2)", advance = "no") b(i), ', '
 enddo
 write(*, fmt = "(f10.6,a2)") b(n), ']'
 end subroutine printVector
end module GaussianSolver

! A program to solve linear systems using the GaussianSolver module.
program SolveLinearSystem
 ! Include the module for the various linear solvers.
 use GaussianSolver
 implicit none
 integer, parameter :: N = 5 ! Order of the linear system.
 real, parameter :: TOO_SMALL = 1.0e-7 ! Threshold for pivots.
 ! Declare the necessary arrays and vectors to solve the linear system
 ! A x = b.
 real, dimension(N, N) :: A ! Coefficient matrix.
 real, dimension(N) :: x, b ! Vector of unknowns, and right hand side.
 real, dimension(N, N) :: LU ! Matrix for LU factorization of A.
 logical successful ! Status of computations.
 ! The intrinsic subroutine, random_number, fills a real array or scalar,
 ! with uniformly distributed random variates in the interval [0,1).
 call random_number(A) ! Initialize the coefficient matrix.
 call random_number(b) ! Initialize the right-hand side.
 ! Output the matrix in Matlab format for ease of checking the solution.
 call printMatrix(A, 'A')
 call printVector(b, 'b')
 ! Use Gaussian elmination to calcuate the solution of the linear system.
 ! The call below uses the default threshold specified in the
 ! GaussianSolver module by omitting the optional argument.
 successful = gaussianElimination(A, b, x)
 print *, '===================================='
 print *, 'Gaussian Elimination:'
 print *, '------------------------------------'
 if (successful) then
 call printVector(x, 'x')
 print *, 'Infinity Norm of Difference = ', &
 maxval(abs (matmul(A, x) - b))
 else
 print *, 'No unique solution or threshold passed.'
 endif
end program SolveLinearSystem

Figure 8. gauss.f90 – A Fortran 90 program for performing Gaussian Elimination.

9/25/1998 1:39 PM 21

Appendix A. Compiling and running a parallel program.

Parallel computing facilities at the AHPCC include a 128-node IBM SP2 (consisting of eight 16-node
compute towers and one communications tower) and workstation clusters. The first tower of the SP2
contains various servers that manage the SP2 and the four interactive nodes. The latter have the
imaginative names of fr1n05.arc.unm.edu (frame 1 node 5), fr1n06.arc.unm.edu, fr1n07.arc.unm.edu, and
fr1n08.arc.unm.edu. These are the nodes from which you will compile and submit your jobs. Each node
contains 64MB RAM and 1GB of hard disk space.

 In this tutorial, we present instructions for compiling and running your code either on the SP2 or on a
cluster of workstations. Unless the SP2 is unavailable, we recommend running your code on the SP2
during daytime hours, so that you do not adversely affect the interactive use of the workstations.

Compiling and linking MPI code

The compilers for MPI are invoked via scripts that invoke the standard compilers with additional command
line information about the MPI libraries.

On the IBM SP2, the standard Fortran compiler for MPI programs is mpxlf , which invokes the xlf
compiler to compile f77 and f90 codes, respectively. The difference between these compilers and the serial
compilers is simply the choice of libraries. For C and C++ codes, the standard IBM compilers are mpcc
and mpCC, respectively. The calling syntax for these compilers is

IBM_MPI_Compiler_Script [standard compiler flags] program file(s) [object files]

On the LINUX or the AIX cluster, the Fortran compilers are mpif77 and mpif90 and the C/C++ compilers
are mpicc and mpiCC. These are scripts which should be located in /usr/local/bin. On the LINUX cluster,
the only MPI library available is the MPICH library. On the AIX cluster, you can choose between MPICH
and IBM's own message passing library via command line arguments to the scripts. These libraries are
selected as command line options in the scripts.

The calling syntax for these scripts is as follows:

MPI_Compiler_Script [script options] -- [compiler options]

where the script options control the selection of the library and architecture and the compiler options are
options for the underlying Fortran compiler. The script options are described below. The double dashes, --,
are used to separate the script options from the usual compiler options. Depending upon whether the
compiler script is mpif77 or mpif90, some options for the underlying are automatically set.

To compile a Fortran 77 program contained in a single file for a cluster of workstations using the MPICH
library, the command is

mpif77 –i mpich –c ch_p4 -- -o prgm prgm.f

where the –i mpich and the –c ch_p4 are script flags that link in the MPICH libraries needed for
workstation clusters and specify the communications method to be used. ch_p4 specifies communications
over a TCP/IP connection. The corresponding command to compile a Fortran 90 code is

mpif90 –i mpich –c ch_p4 -- -o prgm prgm.f

Both commands invoke the same compiler, in this case xlf, but with options specific to either Fortran 77 or
Fortran 90. To compile an object file to be linked at a later time, we give the usual –c flag in the compiler
options, e.g.

9/25/1998 1:39 PM 22

mpif77 –i mpich –c ch_p4 -- -c prgm.f

Programs can be compiled for the SP2 with either the MPICH library,

mpif77 –i mpich –c ch_eui -- -o prgm prgm.f

or with the IBM library,

mpif77 –i ibm -- -o prgm prgm.f

where –i ibm is the script option that specifies the IBM MPI library.

Running a compiled MPI program on a cluster of workstations

MPICH

Programs compiled for a cluster of workstations using MPICH can be run in one of two ways, either
automatically using the script mpirun or manually. The program should be run manually if you are running
on a heterogeneous cluster. The syntax for mpirun is:

mpirun –n3 –a ARCH -- prgm

where the option –n3 specifies 3 processors and –a ARCH specifies the architecture (rs6000, sun, etc.) of
the executable and the name of the sub-directory of the current directory containing the executable
program.

To run an MPICH job manually, you will need to create a list of the machines where you want to run the
program and the locations of the executables on each. (Each machine must have an executable matching its
architecture.) The format of the list is as follows:

local 0
turing02 1 /home/user/program_directory/Linux/program
grants 1 /home/user/program_directory/rs6000/program
gallup 1 /home/user/program_directory/rs6000/program

The first line in the file refers to the copy of the program that is to be run locally. The second and
subsequent lines consist of the name of the workstation, a 1 denoting the number of processes to start, and
the full path to the executable to run on that workstation. (Note: To run more than one copy of the program
on a single machine, enter the name of the machine on more than 1 line. Entering a number greater than
1 for the number of processes to start does not work.) After storing this list in the file filename.pg, you run
the program by typing the command

program [–p4pg filename.pg]

Note the arguments in brackets are optional if filename.pg=program.pg.

IBM MPI

Programs using IBM's MPI implementation can also be run interactively, either on the interactive nodes of
the SP2 or on the AIX workstation cluster. Note however that both uses are generally discouraged, except
perhaps for debugging purposes, since these machines are heavily used. For completeness, we give the
necessary directions here.

9/25/1998 1:39 PM 23

First, you will need to create a list of the nodes on which you intend to run your code and store them in a
file. Then, you will need to create a script to initialize several environment variables relating to the parallel
operating environment (POE). This script should be sourced before you run your program. (In other shells,
you need to be sure to export the environment variables in the script.) Below is an example script. It
assumes you are using the C-shell or a derivative of it (csh or tcsh).

setenv MP_PROCS 2
setenv MP_HOSTLIST host.list
setenv MP_EUILIB ip
setenv MP_EUIDEVICE en0
setenv MP_INFOLEVEL 2
setenv MP_RESD no
setenv MP_RMPOOL 0
setenv MP_LABELIO yes
setenv MP_PGMMODEL spmd
setenv MP_PARTITION 1
setenv MP_RETRY 30
setenv MP_RETRYCOUNT 5

Here host.list is a file containing the list of the nodes on which the job will run. For details on the
meanings of the environment variables, consult the poe man page.

Running your program in a batch queue on the SP2

If you have compiled your program for the SP2, you can submit your job to a batch queue using the Maui
Scheduler, a batch job scheduling application created at the Maui High Performance Computing Center.
The Maui scheduler is based upon the IBM Loadleveler scheduling application. The Maui scheduler
provides the facility for submitting and processing batch jobs within a network of machines. It matches the
job requirements specified by users with the best available machine resources.

Before using the scheduler, you will need to make a few minor modifications to your .cshrc file. Open the
file with your favorite editor and comment out the lines that initialize any environment variables that start
with MP_. These are the same variables found in the script created in the previous section. (The comment
character is the pound sign, #.) These environment variables are normally configured by the scripts you will
create for the scheduler and since your job will run your .cshrc file after the scheduler configures them,
your program environment could be put into a confused state.

The scheduler uses a control file that tells how many processors you intend to use, where your input and
output files are, where your program is, and how much time it can use, among other things. The control
file is usually named with a .cmd extension, but this is not required. The control file used to run the
matvec2mpi program is included below.

Specify Ethernet communications.

9/25/1998 1:39 PM 24

@ initialdir = /home/acpineda/mpi
@ input = /dev/null
@ output = matvec2mpi.out
@ error = matvec2mpi.err
@ notify_user = acpineda@arc.unm.edu
@ notification = always
@ checkpoint = no
@ restart = no
@ requirements = (Adapter == "hps_user")
@ min_processors = 8
@ max_processors = 8
@ wall_clock_limit = 02:00:00
@ environment =
MP_EUILIB=us;MP_RESD=yes;MP_HOSTFILE=NULL;MP_EUIDEVICE=css0;MP_RMPOOL=0;MP_INFO
LEVEL=2;MP_LABELIO=no;MP_PULSE=0
@ job_type = parallel
@ class=batch
@ queue
/usr/bin/poe matvec2mpi

Figure 9. matvec2mpi.cmd – a control file for running matvec2mpi in the SP2 batch queue.

The lines starting with # @ are options used to set up the environment in which the program will run. The
remaining lines run as a shell script on each processor. Most of the options in the control file are fairly
obvious. For the purposes of this course, you will only need to modify a few lines. The input, output, and
error lines tell the scheduler the names of the input, output and error files. The initialdir is the directory
containing the executable; notify_user is the e-mail address to which error messages are sent. The
notification = always line tells the scheduler to always send e-mail to the user in response to various
events, such as errors and program termination. Once you have your command file and program debugged,
you will probably want to change always to never. min_processors and max_processors control the
number of processors that are allocated to your program. wall_clock_limit sets a time limit on the job. The
requirements and environment lines tell the scheduler to enable communications over the high-speed
switch on the SP2. The class line specifies the batch queue. Currently, we have only one queue called
batch. The queue line tells the scheduler to treat all the option lines above it as options for a single parallel
job. (That is, multiple jobs processing different inputs can be submitted from the same file.) Finally, the
line /usr/bin/poe matvec2mpi runs the program matvec2mpi in the parallel operating environment. For
more details on creating command files, the user is referred to the relevant MHPCC web site,
http://www.mhpcc.edu/training/workshop/html/workshop.html. Serial programs can be run on the SP2 by
changing the number of processors to 1 and the job_type to serial.

A word is in order about how the scheduler prioritizes tasks. Basically, tasks for non-privileged users are
prioritized based upon the amount of system resources they consume and the amount of time they have
been waiting in the queue. The more resources, i.e. number of nodes and amount of CPU time required,
you use the longer you can expect to wait for your job to run. Therefore, it is to your advantage to estimate
the time required by your job as well as you can. Most of the example codes provided in this tutorial will
run in a handful of seconds, so you should set wall_clock_limit to be no more than a few minutes. The
queue also enforces limits on the number of jobs per user, the number of nodes per job, and total wall clock
time. Currently, the following limits are in effect: 2 jobs per user, 8 nodes per job, and 36 hours of wall
clock time per job.

You submit your command file to the scheduler using the command, llsubmit, which has the syntax:

llsubmit cmdfile.cmd

Max_processors is not used any more, it
must be same as the min_processors value

Specifies the high performance
switch in user space mode.

Also need to tell system to use the HP
switch in user mode here.

Queue – defines a job to the scheduler. You
can have more than one job per command
file each separated by a queue statement.

9/25/1998 1:39 PM 25

the scheduler will then reply with:

submit: The job “fr1n05.332” has been submitted.

The first part of the job name fr1n05 specifies the node from which you submitted the job.

As mentioned previously, the uncommented portion of the command file is run as a shell script on the SP2.
Hence, you can use ordinary Unix commands to perform setup and cleanup operations. Typically, this is
done for disk I/O intensive programs. Such programs must access disk drives that are locally attached to
the SP2 in order to perform optimally. Ask your system administrator if such space is available.

You can check the status of your program with either the Loadleveler status program llq or with the Maui
status program showq. To use the latter, you must ensure that the directory /home/loadl/maui/bin in your
command path. If it is not present, your environment initialization scripts can be updated by running the
reset_environment command. You can kill a running program using the command llcancel or better yet
with the Maui scheduler command canceljob.

Appendix B. Common MPI Library Calls

In this section, we document the more commonly used MPI library calls. For a more complete listing the
reader is referred to “MPI: The Complete Reference”. It can be downloaded from the CS471 class web
site. These calls fall into three groups: (1) commands used for initializing an MPI session, (2) commands
that actually do MPI communications, and (3) commands for terminating an MPI session. In Fortran, all
MPI calls are subroutine calls. In C, they are function calls that return an integer error message. In C, the
names of the MPI functions are case sensitive. In Fortran, they are not.

Initializing communications
There are three MPI calls that you will always use in initializing your MPI programs. They are

MPI_INIT which starts up communications and initializes data structures used for communication,
MPI_COMM_RANK which allows a process to determine its ID within the group of processes running
under MPI, and MPI_COMM_SIZE which allows a process to determine how many MPI processes are
running the current program. In Fortran, these subroutines are called as follows:

MPI_INIT USAGE

CALL MPI_INIT (IERROR)

MPI_INIT takes a single argument IERROR (integer, output) which returns the value MPI_SUCCESS if
the call completed successfully and one of 19 other error codes in the event of a failure. MPI_INIT can
only be called once in a program.

MPI_COMM_RANK USAGE

CALL MPI_COMM_RANK (COMM, RANK, IERROR)

In MPI, processes are labeled with an integer rank from 0 through N-1 where N is the number of processes.
MPI_COMM_RANK takes 3 integer arguments:

• The argument COMM (integer, input) is the communicator, which is a handle to an internal MPI
structure that defines the set of processes that may communicate with each other. It is a local object
that represents a communication domain. A communication domain is a global structure that allows
processes in a group to communicate with each other or with processes in another group. Processes can
belong to more than one group and have a different rank in each group. Unless you are doing
something requiring specialized communications, use the predefined value MPI_COMM_WORLD

9/25/1998 1:39 PM 26

here. This tells the program to use all available processors in a single processor group without
additional management.

• The argument RANK (integer, output) is a number between 0 and N-1 that serves the label for a
process within the communications group.

• IERROR (integer, output) is as defined above.

MPI_COMM_SIZE USAGE

CALL MPI_COMM_SIZE (COMM, SIZE, IERROR)

MPI_COMM_SIZE is used to find out how many processes are running the current program. This number
is returned in the integer SIZE. The arguments COMM and IERROR are as described above.

Communications Calls

MPI communications calls generally fall into 2 classes: point-to-point and collective communications. In
addition there are calls for defining data types other than the standard ones included in MPI.

Point-to-point Communications Calls

MPI_SEND USAGE

CALL MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

MPI_SEND is used to send a message between two processes. It performs a “blocking” send, which in this
case means that it does not return until the user can safely use the message buffer BUF again. It does not
necessarily mean that the receiving process has received the data yet. BUF (input) is an array of type
<type> containing the data to be sent. COUNT (integer, input) is the number of elements in BUF.
DATATYPE (integer, input) is an integer code that tells MPI what is the type <type> of BUF. The allowed
pre-defined values of DATATYPE in Fortran are MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL,
MPI_CHARACTER, MPI_BYTE, and MPI_PACKED. There is another set of pre-defined values for C
programs. MPI has functions for the construction of user-defined types built up from these types, see
below. DEST (integer, input) is the rank of the destination process. The TAG (integer, input) acts as a
label to match corresponding SENDs and RECVs. The range of valid tag values is from 0 to
MPI_TAG_UB. The MPI standard requires MPI_TAG_UB to be at least 32767. The other arguments are
as defined previously. The details of how the MPI_SEND implements the blocking send operation are left
to the person implementing the particular MPI library. Other more specialized versions of send are
MPI_BSEND, MPI_ISEND, MPI_SSEND, and MPI_RSEND allow finer control over how the messages
are sent. The reader is referred to the MPI manual for details on these functions.

MPI_RECV USAGE

CALL MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

MPI_RECV is used to receive messages sent by MPI send calls. It is blocking call. It does not return until
a matching send has been posted. BUF (output) is an array of type <type> containing the received data.
COUNT (integer, input) is the number of elements in BUF. DATATYPE (integer, input) is an integer code
describing <type>. See MPI_SEND for the codes. SOURCE (integer, input) is the rank of the sending
process. TAG (integer, input) is the label matching SENDs and RECVs. Detailed status information is
returned by the integer array STATUS (output) of size MPI_STATUS_SIZE. The other arguments are as in
previously described calls.

9/25/1998 1:39 PM 27

MPI_IRECV USAGE

CALL MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

MPI_IRECV is the non-blocking version of MPI_RECV. Its arguments are identical with the MPI_RECV
call above except that one argument, the request handle REQUEST (integer, output), replaces the STATUS
argument. The request handle is used to query the status of the communication or to wait for its
completion. The receive operation is completed with an MPI_WAIT call.

MPI_WAIT USAGE

CALL MPI_WAIT(REQUEST, STATUS, IERROR)

MPI_WAIT is used to complete an MPI_ISEND or MPI_IRECV operation. The handle REQUEST is
obtained from MPI_ISEND or MPI_IRECV. The STATUS argument is the same as that in MPI_RECV.

MPI_SENDRECV USAGE

CALL MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG,
RECVBUF,RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS,
IERROR)

MPI_SENDRECV is a combination of an MPI_SEND and an MPI_RECV operation. The send and receive
buffers must be disjoint, and may have different lengths and data types. The combined operation is
frequently used as a means of avoiding potential processor deadlocks in for example a shift operation
across a chain of processes.

The array SENDBUF (input) of type <type> contains the data being sent. SENDCOUNT (integer, input) is
the number of elements in SENDBUF. SENDTYPE (integer, input) describes the type of data being sent.
DEST (integer, input) contains the rank of the destination process. SENDTAG (integer, input) is the tag
for the sending operation. The array RECVBUF (output) of type <type> contains the data being received.
RECVCOUNT (integer, input) is the size of the RECVBUF buffer. RECVTYPE (integer, input) is the type
of the data being received. SOURCE (integer, input) is the rank of the source process. RECVTAG (integer,
input) is the tag for the receiving operation. The other arguments are as described previously.

Collective Communications Calls

MPI_BARRIER USAGE

CALL MPI_BARRIER (COMM, IERROR)

MPI_BARRIER is used to synchronize processes. All processes stop at this call until every process has
reached it. The arguments COMM and IERROR are as described above.

MPI_BCAST USAGE

CALL MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

MPI_BCAST broadcasts values from the sending, ROOT(integer, input), process to all processes
(including itself) via BUFFER. The array BUFFER (input/output) is an array of type <type> containing the

9/25/1998 1:39 PM 28

data to be sent/received. COUNT(integer, input) is the number of elements in BUFFER. DATATYPE
(integer, input) is the code describing <type>. The other arguments are as described previously.

MPI_GATHER USAGE

CALL MPI_GATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,
RECVCOUNT,RECVTYPE, ROOT, COMM, IERROR)

MPI_GATHER collects an array that has been distributed across multiple processes back to the ROOT
process. The array SENDBUF (input) is an array containing the data from the sending process to be
collected back to ROOT(integer, input). SENDCOUNT (integer, input) is the number of elements in
SENDBUF. SENDTYPE (integer, input) is the code describing <type> of the data in SENDBUF. The
array RECVBUF (output) is an array containing the data collected from all processes. It is ignored for all
but the ROOT process. RECVCOUNT (integer, input) is the number of elements received from any one
processor. (Note that this value is not SENDCOUNT times the number of processors.) RECVTYPE
(integer, input) is the integer code describing the <type> of the data in the RECVBUF array. The other
arguments are as described previously.

This call assumes that an equal amount of data is distributed across the processes. The more general
MPI_GATHERV call allows processes to send unequal amounts of data to ROOT. See the MPI reference
for details.

MPI_SCATTER USAGE

CALL MPI_SCATTER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

MPI_SCATTER distributes an array from one task to all other tasks in the group. The array SENDBUF
(input) is an array containing the data to be distributed among the processes. SENDCOUNT (integer,
input) is the number of elements sent to each process. SENDTYPE (integer, input) is the code describing
the type of the data in the SENDBUF array. The RECVBUF (output) is an array containing the data
distributed to the receiving process. RECVCOUNT (integer, input) is the number of elements received by
each process. RECVTYPE (integer, input) is the MPI code describing the type of the data in the
RECVBUF array. ROOT (integer, input) is the rank of the process that will be sending the data. The other
arguments are as previously described.

Like MPI_GATHER, this call assumes that the data is to be distributed in equal size pieces across
processes. The more general MPI_SCATTERV call allows processes to distribute unequal amounts of data
among processes.

MPI_REDUCE USAGE

MPI_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

MPI_REDUCE performs a reduction operation across processors on the data stored in SENDBUF, placing
the reduced results in RECVBUF. By a reduction operation, we mean an operation such as a sum,
multiplication, logical AND, etc. depending upon the data involved. The array SENDBUF (input) is an
array containing the data upon which the reduction operation, OP, is to be performed. The result is
forwarded to ROOT. The array RECVBUF (output) is an array containing the result of the reduction.
COUNT (integer, input) is the number of elements in SENDBUF and RECVBUF. DATATYPE (integer,
input) is the MPI code describing the type of the data in SENDBUF and RECVBUF. OP (integer, input) is
the MPI code for the reduction operation to be performed. The common values for OP are MPI_MAX,
MPI_MIN, MPI_SUM, MPI_PROD, MPI_LAND (logical and), MPI_LOR (logical or), and MPI_LXOR

9/25/1998 1:39 PM 29

(logical exclusive or). ROOT (integer, input) is the rank of the process that will be receiving the data. The
other arguments are as described previously.

Creating Derived Data Types

MPI_TYPE_CONTIGUOUS USAGE

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

A COUNT (integer, input) number of copies of OLDTYPE (integer, input) are concatenated to form the
NEWTYPE (integer, output).

MPI_TYPE_VECTOR USAGE

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

MPI_TYPE_VECTOR allows the construction of a new data type NEWTYPE (integer, output) that
consists of COUNT (integer, input) blocks of OLDTYPE (integer, input) of length
BLOCKLENGTH(integer, input) that are spaced STRIDE (integer, input) units apart. The
BLOCKLENGTH and STRIDE are in units of the OLDTYPE. COUNT and BLOCKLENGTH must be
non-negative, while STRIDE can be of either sign.

MPI_TYPE_HVECTOR USAGE

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

MPI_TYPE_HVECTOR is identical to MPI_TYPE_VECTOR except that the STRIDE argument is in units
of bytes instead of the size of the OLDTYPE. Typically used in conjunction with the function
MPI_TYPE_EXTENT.

MPI_TYPE_EXTENT USAGE

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

MPI_TYPE_EXTENT returns the size EXTENT(integer, output) in bytes of a data type DATATYPE
(integer, input). This information is used to compute stride information in bytes for MPI functions such as
MPI_TYPE_HVECTOR. Note to C programmers: the C operator sizeof() should not be used in place of
MPI_TYPE_EXTENT.

