MPI Tutorial

Dr. Andrew C. Pineda, HPCERC/AHPCC
Dr. Brian Smith, HPCERC/AHPCC
The University of New Mexico
November 17, 1997
Last Revised: September 18, 1998

MPI (M essage Passing | nterface)

MPI (Message Passing Interface) isalibrary of function calls (subroutine calls in Fortran) that allow the
coordination of a program running as multiple processes in a distributed memory environment. These
function calls can be added to a serial program in order to convert it to a paralle program, often with only a
few modifications. MPI programs may be compiled run in parallel on multiple nodes of amassively
parale computer such asan IBM SP2 or on a cluster (homogeneous or heterogeneous) of workstations
connected over anetwork. MPI was written with the goal of creating a widely used language- and platform-
independent standard for the writing of message-passing programs.

The chief advantage of MPI isthat it allows a more flexible division of work among processes than does a
data parallel programming language such as High Performance Fortran (HPF). This flexibility of MPI
allows the user to select or develop his or her own parallel programming paradigm or approach such as
master/dave, or single-program multiple data. The price of that advantage isthat the user becomes
responsible for setting up the communications among the processes and ensuring that each process has
enough work to do between communications calls. Converting a serial codeto a parallel MPI code
involves 4 basic steps:

« inserting the MPI include file and additiona declarations for auxiliary variables in the specification
sections of the parts of the program making MPI calls;

e adding thelibrary callsto initialize the MPI communications environment;

e doing the calculation and performing message passing calls; and

e adding thelibrary callsto terminate the MPI environment.

The MPI library can be called from Fortran 77, Fortran 90, C, and C++ programs athough function
bindings exist only for Fortran 77 and C.” That is, the programmer is calling a Fortran 77 or C library when
using Fortran 90 or C++. Thisleadsto some serious problems for Fortran 90, because the MPI library
lacks the bindings necessary for correctly passing objects (typically arrays) of more than onetypeto a
particular MPI function. Thisis an issue having to do with the strong type checking of argumentsto
function callsrequired by Fortran 90 (and provided viainterface blocks) that is not handled consistently by
Fortran 90 compilers. For example, the IBM xIf90 (mpxIf90) compiler basically allows the programmer to
Sidestep this problem with a compiler switch, but the NAG FO0 compiler does not. C++ provides an
explicit method for calling a C function from a C++ program viathe extern “C” declaration (which have
been inserted in the MPI header files viaan #ifdef), so thereisin principle no problem with using the C
MPI library in C++."

" In thistutorial, we document the syntax of MPI callsin Fortran. There are only two differences between
the C and Fortran syntax having to do with the spelling (case) of the MPI cal and with how error values are
returned. In C, the MPI callsare functions named MPI_Abcdef which return an integer valued error value.
In Fortran, the MPI functions are subroutines named MPI_ABCDEF which return the integer valued error
as an additional argument which appearslast in the argument list.

" For those of you not acquainted with the minor differences between C and C++, thereisadifferencein
the order in which C and C++ compilers push function arguments onto the program stack. In C, function
arguments are pushed onto the stack proceeding from Ieft to right through the argument list during a call.

In C++, they are pushed onto the stack in right to |eft order. In order to be able to call modules compiled in
C, C++ provides a mechanism for reversing this order viathe extern “C” declaration.

9/25/1998 1:39 PM 1

Our intent in thistutorid isto teach MPI by example, so we will examine several MPI programs that
illugtrate the use of the MPI subroutines. The entire MPI library consists of over one hundred MPI calls
and therefore we do not provide a complete description of the use of all MPI calls. However, agreat ded
of programming in MPI can be done with less than two dozen calls. Hence, we will focus our attention on
the most useful MPI calls and refer the reader to the MPI reference, “MPI: The Complete Reference’, for
the more advanced calls.

A Basic MPI Program

Asisfrequently done when studying anew programming language, we begin our study of MPI with a
parale version of the ubiquitous “Hello, World” program. This exampleillustrates the basic structure of
an MPI program without any communications between processes. It isshown in Figure 1.

progr am hel T ovor 1 d AN

Include declar ations of M Pl
functions and constants.

call MPI_INT(ierror) «4——— Beginparallel execution of code.

i nclude ' npif.h' <
i nt eger comm rank, nunproc, ierror

cal |l MPI _COW RANK(MPI _COW WORLD, r ank, i error)
L Find out which process we are from the set of processes defined
by the communicator MPI_COMM_WORLD which isMPI’s

shorthand for all the processors running your program. This
valueisstored in rank.

call MPI _COW Sl ZE(MPl _COWM WORLD, nunproc, i error)

r

Returns the number of processesin numpr oc.

print *,"Hello Wrld from Processor ", rank," of ", nunproc

* Thislineis printed by all processes.
i f(rank.eq.0) then
print *, "Hello again fromprocessor ", rank

endi AR

Thislineis printed only by the process of
rank equal to 0.

call MPI_FI NALI ZE(i error) < End parallél execution.

end program hel l oworl d

Figurel. A parallel version of Hello, World.

9/25/1998 1:39 PM 2

In the declaration section, the MPI include fileisinserted and additional MPI variables are declared. In
Fortran, theincluded fileis caled “mpif.h”. In Fortran 90, thisfileiscalled “mpif90.h”. In C and C++, the
includefiles are called “mpi.h” and “mpi++.h", respectively. In the executable section of the code,
communication between processes is started by the MPI_INIT function. Next the processes must obtain
information about their identity and the number of processes so that they can communicate and alocate
work. Processes determine their identity viathe MPI_COMM_RANK call. Thefirst argument to
MPI_COMM_RANK isthe MPI communicator MPI_COMM_WORLD. In MPI, communicators are used
to specify the processes constituting a communications group. The MPI_COMM_WORLD communicator
isprovided by MPI asaway to refer to all of the processes. MPI aso provides functions for creating your
own communicators for subgroups of the processes. This allows you to create a processor topol ogy that
maps onto the problem you aretrying to solve. In the example above, the identity of the processis returned
intherank variable. Thisrank isazero-based integer value. The number of processesin a
communications group is found using the MPI_COMM _SIZE call.

After theinitialization calls are complete, the processes al begin work on their own computations. In the
examplein Figure 1, each process executes the first print statement in which they print their rank and the
number of processes. They then test to seeif they are the process with rank equal to zero, and if so execute
the second print stlatement. Finally, with their work completed each process calls MPI_FINALIZE to close
down their communications with the other processes and then stops execution.

Exercie 1

Compile and run the “ Hello, World” example code above on 3 or more processors. The source code may
be found in the file hellompi.f. Directions for compiling and running the program under MPI have been

provided in “ Appendix A. Compiling and running a parallel program.” Doesit do what you expect? Did

anything unusual or surprising happen?

As you might have noticed, the above example, and indeed all of the examplesin thistutorial, follows the
single-program multiple-data paradigm. That is, one program is being written and compiled, but the
executable for it isloaded and run on all the processors being used. Each processor isrunning this program
asynchronously and therefore executes the statements in the same order but at different times. |F
statements such asif (rank==0) in hellompi.f are executed by each processor, but only the processor that
has rank (id) equal to O executes the body of the IF construct, in this case, the PRINT statement. Note that
all processors execute the MPI_COMM_RANK subroutine, but each receives a different value of rank.

An MPI Program with Point-to-Point Communications

Asanext step in building a useful program, we add MPI communications calls to handle communications
between processes. As al communications between processes are ultimately built out of communications
callsthat operate between pairs of processes, i.e., the point-to-point calls, we discuss them first. Point-to-
point communications calls consist of two basic operations, sends and receives, which each comein a
number of flavors depending upon the amount of control the user wants or needs to have over how the
communication operation is performed. The generic versions of these callsare MPI_SEND and
MPI_RECV, which respectively send and receive messages between pairs of processes. The calling syntax
for these two functionsis described in detail below in “Appendix B. Common MPI Library Calls’. Other
versions of these calls, such asMPI_ISEND, MPI_BSEND to name but afew, are described in the MPI
reference.

The most important consideration for the MPI programmer is whether an MPI communications call is
blocking or non-blocking. In ablocking call, a process that is communicating data must wait until the
message data has been safely stored away so that the sender can access and overwrite the send buffer.

Until then, a blocking call cannot return and as aresult the process making the blocking call cannot do any
more useful work. In MPI, the basic send and receive operations, MPI_SEND and MPI_RECV, are both
blocking calls. However, blocking calls may be implemented as buffered or unbuffered operations. Ina
buffered operation, the data being sent is copied to an intermediate buffer after which the sending processis
free to continue. The particular MPI implementation is free to implement the blocking send as a buffered or

9/25/1998 1:39 PM 3

an unbuffered operation. The consequence of thisisthat the blocking send may behave like a non-blocking
send operation depending upon the implementation. Variants of MPI_SEND exist to allow the user to
force buffered operation, etc.

The program in Figure 2 below illustrates the use of the basic MPI send and receive calls. Inthissimple
program, process 0 sends a message, consisting of a character string, to process 1, which then appends
information to it and sends it back to process 1. The MPI_SEND call takes as arguments a buffer
containing the data, an integer value for the sze of the buffer, and an integer value describing the type of
the data being sent. The MPI include file contains pre-defined values for the standard data typesin Fortran
and C. Inthisexample, acharacter string (array) is being sent, so the MPI typein Fortran is
MPI_CHARACTER. In "Appendix B. Common MPI Library Calls', theremaining pre-defined typesin
Fortran arelisted. The pre-defined types for C may be found in the MPI reference. Later in this tutorid,
we briefly discuss how one can send messages containing arbitrary types. In addition to these arguments,
MPI_SEND takes as arguments the rank of the destination process, a message tag to label the messages,
and the communicator for the process group involved. The matching receive call, MPI_RECV, takes
similar arguments.

pr ogr am swapnessage
include "nmpif.h'

i nteger comm rank, nunproc, ierror, root

i nteger status(MPl _STATUS Sl ZE)

character(80) message_sent, nmessage_received

I Setup default nessages.

nmessage_sent =' No nessage sent'

nessage_recei ved=' No nessage recei ved'

root =0

I Start up MPl environnent

call MPI _INT(ierror)

call MPI _COWM RANK(MPI _COW WORLD, rank, i error)
call MPI _COW SI ZE(MPI _COVM WORLD, nunproc, i error)

i f(nunmproc.gt.1) then
Swap nmessages only if we have nore than 1 processor. The root
process sends a nmessage to processor 1 and then waits for a

reply. Processor 1 waits for a nessage fromthe root process,

!
!
!
| adds to it, and then sends it back.

i f(rank.eqg.root) then

nessage_sent =" Hell o from processor 0’

9/25/1998 1:39 PM 4

MPI_SEND isthe standard blocking send oper ation. Depending upon whether the
implementer s of the particular MPI library you ar e using buffer the messagein a
global storage area, thiscall may or may not block until a matching receive has
been posted. Other flavors of send operations exist in MPI that allow you to force

buffering, etc.

A— AN Ay
M essages ar e tracked by source .
id/rank, destination id/rank, Destination Message Tag

message tag, and communicator. \ /

call MPI _SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &

: : I MPI _COWM WORLD, ierror)

Buffer containing The number '
the data of elementsin The type of the data being
the data buffer sent. In this case char acter.

Theroot process then stopsat MPI_RECV until processor 1 sendsits message
back.

cal | MPlI _RECV(nessage_received, 80, MPI_CHARACTER 1, 1, &

MPI _COW WORLD, status, ierror) : :
else if (rank.eq.1) then

Sender Id Message Tag

I Processor 1 waits until processor 0 sends its nessage

cal | MPlI _RECV(message_recei ved, 80, MPI _CHARACTER, 0, 1, &
MPI _COVM WORLD, status, ierror)

I It then constructs a reply.
nessage_sent="Proc 1 got this message: '//nessage_received
I And sends it....
call MPI _SEND(message_sent, 80, MPI _CHARACTER, 0, 1, &
MPI _COVM WORLD, i error)

endi f

print * "Processor ",rank," sent '", message_sent,"'"

print * "Processor ",rank," received '", nessage_received,"""
el se

print *,"Not enough processors to denb nessage passing"
endi f

call MPI _FI NALI ZE(ierror)

end program swapnessage

Figure 2. A simple exchange of messages.

9/25/1998 1:39 PM 5

Exercise 2

Compile and run the program swapmsg.f, which contains the programlisted in Figure 2 to run on two or
mor e processes. What messages are printed by the processes? Add a third process to the communication.

Exercise 3

With blocking calls, it is possible to arrange the calls in such a way that a pair of processes attempting to
communicate with each other will deadlock. Can you construct a simple exchange of messages between 2
processes, usng MPI_SEND and MPI_RECV calls, in which the processors are guaranteed to deadlock?
(Don't try to run thiscode...)

In thistutorial, we primarily discuss blocking communications for simplicity, however non-blocking calls
are occasionally needed to avoid situations in which processes can deadlock. The non-blocking cal most
frequently used to resolve such stuationsis MPI_IRECV which isthe non-blocking form of the MPI
receive call MPI_RECV. Additionaly, MPI_IRECV can be used to overlap time spent on computation
with time spent on communications, which can frequently result in dramatic improvements in processing
speed. The process calling MPI_IRECV basically tells the other processes that it is expecting a message
containing some data from another process, and then returns control of execution to the calling process.
The calling processis then free to do useful work, provided that it does not touch the buffer that will
contain thereceived message until thereceive operation has been completed. Thisisdone at alater time
with the blocking MPI_WAIT function or the non-blocking MPI_TEST function. MPI_TEST checksto
see if a message has arrived and either receives the message and sets alogical flag to true indicating that
the communication is complete, or setsthelogicd flag to false and returns. An MPI_IRECV immediately
followed by an MPI_WAIT isequivalent to an MPI_RECV call. Asillustrated below in Figure 3,
MPI_IRECV can be used in place of MPI_RECV.

i f(rank.eqg.root) then

nessage_sent ="' Hell o from processor 0’

Begin the receive oper ation by letting the world know we are expecting
a message from process 1. We then return immediately.

call MPI _I RECV(nessage_received, 80, MPI_CHARACTER 1, 1, &
MPI _COW WORLD, request, ierror)

Now send the message as before.

call MPI _SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
MPI _COVM WORLD, ierror)

Now wait for thereceive operation to complete.

call MPI_WAI T(request, status, ierror)

else if (rank.eqg.1) then

Figure 3. A replacement for therank.eq.root code in swapmsg.f that usesMPI_IRECV instead of
MPI_RECV.

9/25/1998 1:39 PM 6

Exercise 4

Fix your deadlocking code fromthe previous exercise using MPI_IRECV. Compile and run it to see that it
works.

MPI Programs with Collective Communications

MPI collective communications calls provide mechanisms for the passing of data from one processto all,
all processesto one, or from all processesto all processesin an efficient manner. These calls are used to
distribute arrays or other data across multiple processes for parallel computation. Callsfor all to all
communications are not discussed here for the sake of simplicity and brevity.

Callective function calls may (depending upon the MPI implementation) return control to their calling
process as soon as their participation in the collective communication is complete. At this point, the calling
process is free to access data in the communications buffer. The four most commonly used types of
collective calls are broadcast, scatter, gather, and reduction operations. In a broadcast operation, a block of
datais distributed from one process to all the processesin a communication group. In a scatter operation, a
block of datais broken up into pieces and the pieces are distributed to al the processesin the
communications group. A gather operation isthe inverse of the scatter operation; it collects the pieces of
data distributed across a group of processes and assembles them as a single block of dataon asingle
processor.

The next example program, listed in Figure 4, illugtrates the use of the MPI_BCAST, MPI_SCATTER, and
MPI_GATHER routines. The program computes alinear combination (sum) of two vectors of length 80
by distributing the pieces of the vectors across 8 processors in blocks of length 10 using the
MPI_SCATTER function. The coefficients multiplying each vector are distributed to all processes using
the MPI_BCAST function. Each processor then forms the vector sum on components of the vector from
the block assigned to it and returns the completed sum to the root process viathe MPI_GATHER function,
which reassembles the components of the vector in their proper order. In this case, the data was evenly
divisible among the processors. If this were not the case, we would use the more general functions
MPI_SCATTERV and MPI_GATHERYV to distribute the data. See “ Appendix B. Common MPI Library
Calls’ for details on these calls.

9/25/1998 1:39 PM 7

program vecsum

include "nmpif.h'
This program

nt eger, par aneter :: .dl mL = 80, din2 = 10 computes
nteger ierr, rank, size, root

nteger sec_start, nano_start
nteger sec_curr, nano_curr 7 = a)_{ + by

nteger sec_startup, nano_startup
nteger sec_conp, nhano_conp

nteger sec_cleanup, nano_cl eanup on 8 processes using
real, dinmension(dim) :: x, y, z MPI calls
real, dinmension(dinR) :: xpart, ypart, zpart
real, dinmension(2) :: coeff
interface

subrouti ne posix_tiner(job_sec, job_nanosec)
i nteger job_sec, job_nanosec
end subroutine
end interface

root =0

call MPI_INT(ierr)

call MPlI_COW RANK(MPI _COVM WORLD, rank, ierr)
call MPI_COW SI ZE(MPI _COVM WORLD, size, ierr)

print *, ' START process on processor ', rank

if(rank == root) then
call posix_tiner(sec_start, nano_start)
coeff = (/ 1.0, 2.0 /)

x = 2.0
y = 3.0
endi f

Do timing in the r oot
process only.

MPI_SCATTER distributes blocks of array x from theroot processtothearray
xpart belonging to each processin MPI_COMM_WORLD. Likewise, blocks of
thearray y aredistributed to the array ypart.

Array x and the number h
of elements of typereal to Array xpart and the

send to each process. Only number of elements of
meaningful to root. typereal toreceive.

N y o

call MPI_SCATTER(x, din2, MPI_REAL, xpart, dinm2, MPI _REAL, root, &
MPI _COVM WORLD, ierr)

9/25/1998 1:39 PM 8

Array y and the number of Array ypart and the
elementsof typereal to send to number of elements of
each process. Only meaningful typereal to receive.
toroot.

v\ /

call MPI_SCATTER(y, dinR, MPI_REAL, ypart, dinR, Ml _REAL, root, &
MPl _COVM WORLD, ierr)

The coefficients, aand b, are stored in an array of length 2, coeff, that is
broadcast to all processesvia MPI_BCAST from the processroot.

call MPI _BCAST(coeff, 2, MPI_REAL, root, MPI_COW WORLD, ierr)

if(rank == root) then
call posix_timer(sec_curr, nano_curr)
sec_startup = sec_curr - sec_start
nano_startup = nano_curr - nano_start
sec_start = sec_curr
nano_start = nano_curr

endi f

Now each processor computes the vector sum on its portion of the
vector. The blocks of the vector sum are stored in zpart.

doi =1, din
zpart(i) = coeff(1l)*xpart(i) + coeff(2)*ypart(i)
enddo
if(rank == root) then

call posix_timer(sec_curr, nano_curr)
sec_conp = sec_curr - sec_start

nano_conp = nano_curr - nano_start
sec_start = sec_curr
nano_start = nano_curr

endi f

9/25/1998 1:39 PM 9

Now we use MPI_GATHER to collect the blocks back to the root process. ‘

Thearray zpart to be gathered and For the root process, the array z containsthe
the number of elements each process collected blocksfrom all processes on output.
sendsto root. MPI_GATHER needsto know how much data

to collect from each process.

Y

call MPl_GATHER(zpart, dinR, MPI_REAL, z, dinR, Ml _REAL, root,
& MPI _COVM WORLD, ierr)

if(rank == root) then
call posix_tiner(sec_curr, nano_curr)
sec_cl eanup = sec_curr - sec_start
nano_cl eanup = nano_curr - nano_start

endi f
print *, 'Finish processor ', rank
if(rank == root) then
print * 'Vector sum elenents 10 and 60, are: ', z(10), z(60)
print * 'Startup execution times (sec, nano): ', &
& sec_startup, nano_startup
print *, 'Conputation execution tines (sec, nano): ', &
& sec_conp, nano_conp
print *, 'd eanup execution times (sec, nano): ', &
& sec_cl eanup, nano_cl eanup
endi f

call MPI_FINALI ZE(ierr)

end

Figure 4. An example performing a vector sum operation, Z = aX + by, usngMPI.

Exercie 5

Compile and run the above program, vecsummpi.f, for various sizes of the arrays aswell as single and
multiple processes. What is the observed speedup as a function of the number of processes? When does it
pay to run the programin parallel?

The next example program, Figure5, illustrates the use of the MPI_REDUCE call. In the example, the dot
product of two large vectorsis computed. Asin the previous example, the vectors are distributed
blockwise across 8 processors using MPI_SCATTER. Each processor then computes the dot product on the
piecethat it has. Finaly, the pieces of the dot product must be summed together to form the full dot
product on theroot process. Thiskind of operation is called areduction operation and is performed with
the MPI_REDUCE call. The predefined constant MPI_SUM tells MPI_REDUCE that the desired
reduction operation isto sum the values it has been given and return the sum to the process collecting the
results. Other types of reduction operations include taking the product, determining maximum or minimum
values, etc.

9/25/1998 1:39 PM 10

program vecprod

integer, parameter :: diml = 80, din2 = 10 This program computesthe
dot product of two vectors,

include "npif.h Z:y(w

integer ierr, rank, size, root using MPI calls.

real, dinmension(dim) :: x, y

real, dinmension(dinm) :: xpart, ypart

real z, zpart

integer sec_start, nano_start
integer sec_curr, nano_curr
integer sec_startup, nano_startup
i nteger sec_conp, nhano_conp

i nteger sec_cl eanup, nano_cl eanup

interface
subrouti ne posix_tiner(job_sec, job_nanosec)
i nteger job_sec, job_nanosec
end subroutine
end interface

root =0

call MPI_INT(ierr)

call MPI_COW RANK(MPI _COVM WORLD, rank, ierr)
call MPI_COW SI ZE(MPI _COVWM WORLD, size, ierr)

print *, ' START process on processor ', rank
Distribute the arrays x
if(rank ==root) then and y asin the previous
caIIlp83|x_t|ner(sec_start, nano_start) example
x = 1.

y =2.0
endi f /

call MPI_SCATTER(x, din2, MPI_REAL, xpart, dinm2, MPI _REAL, root, &
MPI _COW WORLD, ierr)

call MPI_SCATTER(y, din2, MPI_REAL, ypart, din2, MPI _REAL, root, &
MPI _COW WORLD, ierr)

if(rank == root) then
call posix_tiner(sec_curr, nano_curr)
sec_startup = sec_curr - sec_start
nano_startup = nano_curr - nano_start
sec_start = sec_curr
nano_start = nano_curr

endi f

zpart = 0.0 Each process then computesthe

doi =1, dine dot product of the pieces of the
zpart = zpart + xpart(i)*ypart(i) array towhich it has access.

enddo

if(rank == root) then

call posix_tiner(sec_curr, nano_curr)
sec_conp = sec_curr - sec_start

nano_conp = nano_curr - nano_start
sec_start = sec_curr
nano_start = nano_curr

endi f

9/25/1998 1:39 PM 11

Use MPI_REDUCE to sum the pieces of the dot product stored in zpart and store
theresult in the z variable belonging to the root process.

Dimension of zpart and z. Type of reduction operation to perform.

—

call MPI _REDUCE(zpart, z, 1, MPI_REAL, MPI_SUM root, &
MPI _COVM WORLD, ierr)

if(rank == root) then
call posix_tiner(sec_curr, nano_curr)

sec_cl eanup = sec_curr - sec_start

nano_cl eanup = nano_curr - nano_start Theresult of this

endi f operation isthat z
contains the sum of all the
print *, 'Finish processor ', rank zpart values.
if(rank == root) then
print * 'Vector product is: ', z
print * 'Startup execution tinmes (sec, nano): ', &
& sec_startup, nano_startup
print *, 'Conputation execution tines (sec, nano): ', &
& sec_conp, nano_conp
print * 'deanup execution tinmes (sec, nano): ', &
& sec_cl eanup, nano_cl eanup
endi f

call MPI_FINALI ZE(ierr)

end

Figure 5. An exampleillustrating the computation of a dot product of 2 vectorsusing M PI.

Exercise 6
Repeat Exercise 5 for this program, vecprodmpi.f.

Asour final example, in Figure 6, we illugtrate the use of MPI callsin forming the product of a matrix with
avector to form another vector. In this examplethe vector being multiplied is distributed across the
processors as blocks of rows, and the matrix is distributed across the processors as blocks of columns. This
allows each processor to compute a column vector using the column-oriented multiplication a gorithm.

The column vectors computed by each processor are then added together in an MPI_REDUCE operation to
form the final result vector.

9/25/1998 1:39 PM 12

program matvec2

Performmatrix vector product -- Y = AX
This is nethod two -- distribute A by block colums
and X in blocks (of rows) and the partial vector sumof Y is on

|
|
!
I each processor

nclude "npif.h'

nteger, paraneter :: diml = 80, dinR2 = 10, dinB8 = di m*dinR
nteger ierr, rank, size, root, i, j

nteger sec_start, nano_start

nteger sec_curr, nano_curr

nteger sec_startup, nano_startup

nteger sec_conp, nano_conp

nteger sec_cleanup, nano_cl eanup

real, dinension(dim,dinl) :: a
real, dinmension(dim,dinR) :: apart
real, dinmension(dim) :: x, y, ypart
real, dimension(dinR) :: xpart

interface
subroutine posix_tiner(job_sec, job_nanosec)
i nteger job_sec, job_nanosec
end subroutine
end interface

root =0

call MPI_INT(ierr)

call MPI_COW RANK(MPI _COVWM WORLD, rank, ierr)
call MPI_COW SI ZE(MPI _COVWM WORLD, size, ierr)

print *, ' START process on processor ', rank
if(rank == root) then
call posix_tiner(sec_start, nano_start)
doi =1, dim
x(i) =1.0 Digtri h |
doj =1, dint istribute t e80x80_arrayA by columns as
a(j,i) =i +j 80x10 blocksstored in APART.

enddo
enddo
endi f

call MPI_SCATTER(a, dinB, MPI_REAL, apart, dinmB8, Ml _REAL, root, &
& MPI _COVM WORLD, ierr)
call MPlI_SCATTER(x, din2, MPI_REAL, xpart, dinm2, Ml _REAL, root, &

& MPI _COVM WORLD, ierr)
if(rank == root) then \
nano_curr)

call posix_tiner(sec_curr,
sec_startup = sec_curr - sec_start

nano_startup = nano_curr - nano_start Distribute the 80 dimensional

sec_start = sec_curr array x in blocks of length 10.
nano_start = nano_curr
endi f

9/25/1998 1:39 PM 13

doj =1, dinl
enéggrt(J) = 0.0 Each processor computes part of the product
doi =1 dine using a column-oriented algorithm.
doj =1, dinm /
ypart(j) = ypart(j) + xpart(i)*apart(j,i)
enddo
enddo
if(rank == root t hen .
E:al | posix_ti mea(sec_cur r, nano_curr) Comput_etheflnal ya_lsavector sum
sec_conp = sec_curr - sec_start of the piecesypart using
nano_comp = nano_curr - nano_start MPI_REDUCE.
sec_start = sec_curr
nano_start = nano_curr
endi f

call MPl_REDUCE(ypart, y, dinml, MPI_REAL, MPI_SUM root, &
MPI _COMM WORLD, ierr)

if(rank == root) then
call posix_tiner(sec_curr, nano_curr)
sec_cl eanup = sec_curr - sec_start
nano_cl eanup = nano_curr - nano_start

endi f
print *, 'Finish processor ', rank
if(rank == root) then
print * 'Matrix vector product, elenents 10 and 60, are: ', &
& | y(10), y(60)
print *, 'Startup execution tinmes (sec, nano): ', &
& sec_startup, nano_startup
print *, 'Conputation execution tines (sec, nano): ', &
& sec_conp, nano_conp
print *, 'd eanup execution tinmes (sec, nano): ', &
& sec_cl eanup, nano_cl eanup
endi f

call MPl_FINALIZE(ierr)

end

Figure 6. Matrix vector multiplication example.

Exercise 7

Compile and run the above program, matvec2mpi.f. Turn the above program into a matrix-matrix
multiplication program

Exchanging messages of arbitrary types

In addition to the pre-defined types given above, MPI supports the construction of user-defined types.
These user-defined types play two roles in practice. Oneisto alow the passing between processes of data
structures (e.g. user-defined types in Fortran 90) containing an arbitrary combination of the pre-defined
types. Theother isto alow the user to reorganize datain an arbitrary way during the message passing
process so that it can be efficiently transmitted to and used by the receiving process. For example, a matrix
being sent from one process to another may be transposed on the fly (as might be required in order to
perform a 2-D FFT). Or the data to be transmitted isnot in contiguous memory, asis the case when a sub-
matrix of alarger matrix is being exchanged between processes.

9/25/1998 1:39 PM 14

The usage of the function to pass arbitrary structuresis very complicated, so the user isreferred to the MPI
reference, “MPI: The Complete Reference” for adiscussion of thistopic.

Asan illustration of the use of user-defined types, we present MPI code that transposes a matrix on the fly.
To do this, we create a new data type that describes the matrix layout in row-major order, send the matrix
with this data type, and then receive the matrix in normal, column-major order.

REAL a(100, 100), b(100, 100)
| NTEGER row, xpose, sizeofreal, nyrank, ierr
| NTEGER st at us(MPI _STATUS_SI ZE)

I transpose natrix a into b.

CALL MPI _COVM RANK(MPI _COVMM WORLD, nyrank, ierr)

The MPI_TYPE_EXTENT function is used to obtain MPI’sinternal value for the size of
thereal datatype. Thisisneeded by theMPI_TYPE_HVECTOR call.

CALL MPI _TYPE EXTENT(MPI _REAL, sizeofreal, ierr)

MPI_TYPE_VECTOR isused to create a data type, row, for the new row whichisa
vector with 100 real entriesand a stride of 100 in the original array.

CALL MPI _TYPE VECTOR(100, 1, 100, MPI_REAL, row, ierr)

MPI_TYPE_HVECTOR isused to create a data type describing the matrix in r ow-
major order. Thisisdone by interleaving copies of the row data type created
previoudy. The MPI_TYPE_HVECTOR call allows the user to specify alignment of
data in units of bytes. Thisis used to generate the new xpose data type from 100
copies of the row data type with each copy offset by sizeofr eal bytesfrom the

pr evious copy.

CALL MPI _TYPE HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

MPI_TYPE_COMMIT letsMPI know about the new data type.

CALL MPI _TYPE _COW T(xpose, ierr)

Now we transpose the matrix by sending it in row-major order and telling the receiving
processthat the dataisin normal, column-major order.

CALL MPI _SENDRECV(a, 1, xpose, nyrank, 0, b, 100*100, MPl _REAL, nyrank, O,
MPI _COW WORLD, status, ier)

Figure 7. Using MPI user-defined datatypesto transpose a matrix " on the fly".

9/25/1998 1:39 PM 15

MPI Programming Exercises
With the aid of your ingructor, select from the exercises below.

Molecular Dynamics

The MD exercises below ask you to convert the Euler and Verlet MD codes for the 1-D chain of atoms that
you worked on earlier in the semester to MPI. The basic approach you will useisto assign blocks of atoms
to processors. At each time-step, you will find that neighboring blocks of atoms will need to exchange
information about the positions of the atoms at the adjoining ends so that the forces on the particles at the
ends of the blocks can be computed. This problem is common to both the Euler and Verlet codes, so there
isno need to do both exercises. Smply pick the one of most interest to you.

Exercise 8

Rewrite the serial Euler code, euler1l h1.f, asan MPI code. Vary the number of atoms per processor and
the number of processors. How does the time to run your code scale with each?

Exercise 9
Rewrite the serial Verlet code, verletl hl.f, asan MPI code. Vary the number of atoms per processor and
the number of processors. How does the timeto run your code scale with each?

Gaussian Elimination.

Exercise 10

The Gaussian elimination code below is extracted from the Fortran 90 tutorial. Convert it to MPI by block
distributing the data by columns. Note that thisisnot the most efficient way to convert the code since with
each iteration fewer and fewer processors have anything to do. A better way, albeit more difficult to
implement, isto distribute the array in a cyclic fashion. Thishasthe virtue of keeping the processors busy
for alonger period of time, but eventually one has the same problem.

9/25/1998 1:39 PM 16

nodul e Gaussi anSol ver
inplicit none

!
!
I threshold will
!

The default value for the smallest pivot that will
usi ng the Gaussi anSol ver subroutines.

be accept ed
Pivots smaller than this

cause prenature term nation of the |inear equation
and return false as the return value of the function.

sol ver
real, paraneter DEFAULT_SMALLEST_PI VOT = 1. Oe-6
cont ai ns

system A x b. No partia
argunent is present, it is used
encountered in the conputation;
defined in this nobdule, is used
of the conputation is a |logica
the existence of a uni que sol ut

Use Gaussian elimnation to calculate the solution to the |inear
pi voting i s done.

If the threshold

as the snall est allowabl e pivot

ot herwi se, DEFAULT_SMALLEST_ PI VOT,
as the default threshold. The status
returned by the function indicating
on (.true.), or the nonexistence of

a unique solution or threshold passed (.false.).

Note that this is an inappropriate nethod for sone |inear systens.
In particular, the linear system Mx = b, where M= 10e-12 |, wll
cause this routine to fail due to the presence of small pivots.

!
!
!
!
!
!
!
I
!
!
!
I However, this systemis perfectly conditioned, with solution x

= b.

functi on gaussi anEli m nation(A b,
inplicit none

X, threshold)

| ogi cal gaussi anEl i m nation

real, dimension(:, :), intent(in) A ! Assune the shape of A
real, di mension(), intent(in) :: b I Assune the shape of b.
real, di mension(), intent(out) :: X I Assune the shape of x.

I The optional attribute specifies that the indicated argunent 40

I is not required to be present in a call to the function. The

I presence of optional argunents, such as threshold, may be checked
!

using the intrinsic logical function, present (see bel ow).
real, optional, intent(in) threshol d
integer i, j I Local index variables
integer N I Order of the linear system
real m I Miltiplier.
real smal | est Pi vot = DEFAULT_SMALLEST_PI VOT

| Pointers to the appropriate rows of the matrix during the el mnation

).
).

Copi es of the input arguments. These copies are nodified during
the conputation. The target attribute is used to indicate that
the specified variable may be the target of a pointer. Rows of
ACopy are targets of pivot Row and current Row, defined above

real ,
real ,

di mensi on(
di mensi on(

poi nt er
poi nt er

pi vot Row
current Row

r eal
real ,

di mension(size(A 1),
di mension(size(b))

size(A 2)),
bCopy

target ACopy

I Status of the conputation
!

The return value of the function.

| ogi cal successfu

9/25/1998 1:39 PM 17

I Change the snallestPivot if the threshold argunment was i ncl uded.
if (present(threshold)) snmallestPivot = abs(threshold)

Setup the order of the systemby using the intrinsic function size.
size returns the nunber of elenments in the specified dinension of
an array or the total nunber of elenents if the dinension is not

!
!
!
!
| specified. Also assune that a unique solution exists initially.
!

N =size(b)

ACopy = A
bCopy = b
successful = .true.

|

I Begin the Gaussian elimnation algorithm Note the use of array
I sections in the following | oops. These elinm nate the need for

I many do | oops that are common in Fortran 77 code. Pointers are
I al so used bel ow and enhance the readability of the elimnation

I process. Begin with the first row

|

i =1
I Reduce the systemto upper triangular.
do while ((successful) .and. (i < N))
!
I The follow ng statenent is called pointer assignment and uses
I the pointer assignment operator '=>'. This causes pivot Row
| to be an alias for the ith row of ACopy. Note that this does
I not cause any novenent of data.
I Assign the pivot row
!
pi vot Row => ACopy(i, :)
!
I Verify that the current pivot is not smaller than small estPivot.

successful = abs(pivotRow(i)) >= snallestPivot
if (successful) then

!
| Elimnate the entries in the pivot colum bel ow the pivot row
!
doj =i+1, N
I Assign the current row
current Row => ACopy(j, :)

I Calculate the multiplier.

m= currentRow(i) / pivotRow(i)

9/25/1998 1:39 PM 18

I Performthe elimnation step on current Row and ri ght
I hand si de, bCopy.

current Row = currentRow - m?* pivot Row
bCopy(j) = bCopy(j) - m* bCopy(i)
enddo

endi f
| Move to the next row

i =i +1
end do

I Check the last pivot.

pi vot Row => ACopy(N, :)

if (successful) successful = abs(pivotRow(N)) >= snall estPivot
if (successful) then
doi =N 2, -1! Backward substitution.

I Determine the ith unknown, x(i).
x(i) = bCopy(i) / ACopy(i, i)

I Substitute the now known val ue of x(i), reducing the order of
I the systemby 1.

bCopy = bCopy - x(i) * ACopy(:, i)
enddo
endi f
| Determine the value of x(1) as a special case.
if (successful) x(1) = bCopy(1) / ACopy(1, 1)
I Prepare the return value of the function.
gaussi anEl i mi nati on = successful
end functi on gaussi anEli m nati on

I Qutput Ain Matlab format, using nanme in the Matlab assi gnnent statenent.

subroutine printhMtrix(A name)
inplicit none

real, dimension(:, :) :: A! Assune the shape of A

char act er name I Nane for use in assignnent, ie, nane =
integer n, m i, j

n=size(A 1)

m=size(A 2)

wite(*, fm="(al,a5)", advance = "no") nane, ' = |

I Qutput the matrix, except for the last row, which needs no ;'
doi =1, n-1

I Qutput current row

doj =1, ml

wite(*, fm="(f10.6,a2)", advance = "no") A(i, j), ',
enddo

9/25/1998 1:39 PM 19

I Qutput last element in row and end current row
wite(*, fm="(f10.6,a1)") A(i, m), ';'
enddo
I Qutput the last row
doj =1, ml
wite(*, fm="(f10.6,a2)", advance = "no") A(i, j), ', '
enddo
I Qutput last elenent in row and end.
wite(*, fm="(f10.6,a1)") A(i, m), ']’
end subroutine printMtrix

I Qutput b in Matlab format, using nane in the Matlab assi gnnent statenent.
subroutine printVector(b, name)
inplicit none

real, dimension(:) :: b ! Assume the shape of b.
character nane ! Nane for use in assignnment, ie, name =
integer n, i
n=size(b)
wite(*, fm="(al,a5)", advance = "no") nane, ' =['
doi =1, n-1
wite(*, fmt = "(f10.6,a2)", advance = "no") b(i), ', '
enddo

wite(*, fnt = "(f10.6,a2)") b(n), ']’
end subroutine printVector
end nodul e Gaussi anSol ver

I A programto solve |inear systens using the Gaussi anSol ver nodul e.
pr ogram Sol veLi near System
I I'nclude the nodule for the various |linear solvers.
use CGaussi anSol ver
inplicit none
integer, paraneter :: N=51 Oder of the |inear system
real, paraneter :: TOO SMALL = 1.0e-7 ! Threshold for pivots.
I Declare the necessary arrays and vectors to solve the linear system

I AXx = h.

real, dimension(N, N) :: A! Coefficient nmatrix.

real, dimension(N) :: x, b ! Vector of unknowns, and right hand side.
real, dimension(N, N) :: LU! Matrix for LU factorization of A

| ogi cal successful ! Status of conputations.

I The intrinsic subroutine, randomnunmber, fills a real array or scalar,
I with uniformy distributed randomvariates in the interval [0,1).

call randomnunmber(A) ! Initialize the coefficient matrix.

call randomnunmber(b) ! Initialize the right-hand side.

I Qutput the matrix in Matlab format for ease of checking the solution.
call printMatrix(A "A)

call printVector(b, '"b")

I Use Gaussian elnmnation to calcuate the solution of the |linear system
I The call bel ow uses the default threshold specified in the

I Gaussi anSol ver nbdul e by omtting the optional argunent.

successful = gaussianElimnation(A b, x)
print *, ' !
print *, 'Gaussian Elimnation:'

Print *, emememem e '

if (successful) then

call printVector(x, 'x')
print *, '"Infinity Normof Difference ="', &
maxval (abs (matmul (A x) - b))
el se
print *, "No unique solution or threshold passed."'
endi f

end program Sol veLi near System

Figure 8. gauss.f90 — A Fortran 90 program for performing Gaussian Elimination.

9/25/1998 1:39 PM 20

Appendix A. Compiling and running a par allel program.

Parallel computing facilities at the AHPCC include a 128-node IBM SP2 (consisting of eight 16-node
compute towers and one communications tower) and workstation clusters. The first tower of the SP2
contains various servers that manage the SP2 and the four interactive nodes. The latter have the
imaginative names of fr1n05.arc.unm.edu (frame 1 node 5), fr1n06.arc.unm.edu, fr1n07.arc.unm.edu, and
fr1n08.arc.unm.edu. These are the nodes from which you will compile and submit your jobs. Each node
contains 64MB RAM and 1GB of hard disk space.

In thistutorial, we present ingtructions for compiling and running your code either on the SP2 or on a
cluster of workstations. Unlessthe SP2 is unavailable, we recommend running your code on the SP2
during daytime hours, so that you do not adversely affect the interactive use of the workstations.

Compiling and linking MPI code

The compilersfor MPI areinvoked via scripts that invoke the standard compilers with additional command
line information about the MPI libraries.

On the IBM SP2, the standard Fortran compiler for MPI programsis mpxIf , which invokes the xIf
compiler to compile f77 and 90 codes, respectively. The difference between these compilers and the serial
compilersis simply the choice of libraries. For C and C++ codes, the standard IBM compilers are mpcc
and mpCC, respectively. The calling syntax for these compilersis

IBM_MPI_Compiler_Script [standard compiler flags] program file(s) [object files]

On the LINUX or the AIX cluster, the Fortran compilers are mpif77 and mpif90 and the C/C++ compilers
arempicc and mpiCC. These are scripts which should be located in /usr/local/bin. On the LINUX cluster,
the only MPI library availableisthe MPICH library. On the AIX cluster, you can choose between MPICH
and IBM's own message passing library via command line arguments to the scripts. These libraries are
selected as command line optionsin the scripts.

The calling syntax for these scriptsis as follows:

MPI _Conpil er _Script [script options] -- [conpiler options]

where the script options control the selection of the library and architecture and the compiler options are
options for the underlying Fortran compiler. The script options are described below. The double dashes, --,
are used to separate the script options from the usual compiler options. Depending upon whether the

compiler script is mpif77 or mpif90, some optionsfor the underlying are automatically set.

To compile aFortran 77 program contained in asingle file for a cluster of workstations using the MPICH
library, the command is

mpi f 77 —i npich —c ch_p4 -- -0 prgm prgmf

where the— mpich and the —c ch_p4 are script flags that link in the MPICH libraries needed for
workstation clusters and specify the communications method to be used. ch_p4 specifies communications
over a TCP/IP connection. The corresponding command to compile a Fortran 90 code is

mpi 90 —i npich —c ch_p4 -- -0 prgm prgmf

Both commands invoke the same compiler, in this case xIf, but with options specific to either Fortran 77 or

Fortran 90. To compile an object file to be linked at alater time, we give the usua — flag in the compiler
options, e.g.

9/25/1998 1:39 PM 21

mpi f 77 —i nmpich —c ch_p4 -- -c prgmf

Programs can be compiled for the SP2 with either the MPICH library,
mpi f 77 —i nmpich —c ch_eui -- -o prgmprgmf

or with the IBM library,

mpi f77 —i ibm-- -0 prgmprgmf

where—i ibm is the script option that specifiesthe IBM MPI library.

Running a compiled MPI program on a cluster of workstations

MPICH

Programs compiled for acluster of workstations using MPICH can berun in one of two ways, either
automatically using the script mpirun or manually. The program should be run manually if you are running
on aheterogeneous cluster. The syntax for mpirunis:

nmpirun —n3 —a ARCH -- prgm

where the option —n3 specifies 3 processors and —a ARCH specifies the architecture (rs6000, sun, etc.) of
the executable and the name of the sub-directory of the current directory containing the executable

program.

To run an MPICH job manually, you will need to create alist of the machines where you want to run the
program and the locations of the executables on each. (Each machine must have an executable matching its
architecture.) Theformat of thelig isas follows:

| ocal 0

turing02 1 /hone/ user/programdirectory/Linux/program
grants 1 /hone/ user/programdirectory/rs6000/ program
gal I up 1 /hone/ user/programdirectory/rs6000/ program

Thefirg linein the filerefersto the copy of the program that isto be run locally. The second and
subsequent lines consist of the name of the workstation, a 1 denoting the number of processesto start, and
the full path to the executable to run on that workstation. (Note: To run more than one copy of the program
on asingle machine, enter the name of the machine on morethan 1 line. Entering a number greater than
1 for the number of processesto start does not work.) After storing thislist in the file filename.pg, you run
the program by typing the command

program [—p4pg fil ename. pg]

Note the argumentsin brackets are optiona if filename.pg=pr ogr am.pg.

IBM MPI

Programs using IBM's MPI implementation can also be run interactively, either on the interactive nodes of
the SP2 or on the AIX workstation cluster. Note however that both uses are generally discouraged, except
perhaps for debugging purposes, since these machines are heavily used. For compl eteness, we give the
necessary directions here.

9/25/1998 1:39 PM 22

Firgt, you will need to create alist of the nodes on which you intend to run your code and storethemin a
file. Then, you will need to create a script to initialize several environment variablesrelating to the parallel
operating environment (POE). This script should be sourced before you run your program. (In other shells,
you need to be sure to export the environment variables in the script.) Below is an example script. It
assumes you are using the C-shell or aderivative of it (csh or tcsh).

setenv MP_PRCCS 2

23: gﬂx %_EﬁS‘II_'HgS;I'phOSt st Specify Ethernet communications.
setenv MP_EUl DEVI CE en0O
setenv MP_I NFOLEVEL 2
setenv MP_RESD no
setenv MP_RVPOOL O
setenv MP_LABELI O yes
setenv MP_PGVMODEL spnd
setenv MP_PARTITION 1
setenv MP_RETRY 30
setenv MP_RETRYCOUNT 5

Here host.list isafile containing the list of the nodes on which the job will run. For details on the
meanings of the environment variables, consult the poe man page.

Running your program in a batch queue on the SP2

If you have compiled your program for the SP2, you can submit your job to a batch queue using the Maui
Scheduler, abatch job scheduling application created at the Maui High Performance Computing Center.
The Maui scheduler is based upon the IBM Loadleveler scheduling application. The Maui scheduler
provides the facility for submitting and processing batch jobs within a network of machines. It matches the
job requirements specified by users with the best available machine resources.

Before using the scheduler, you will need to make a few minor modifications to your .cshrc file. Open the
file with your favorite editor and comment out the lines that initialize any environment variables that start
with MP_. These are the same variables found in the script created in the previous section. (The comment
character isthe pound sign, #.) These environment variables are normally configured by the scripts you will
create for the scheduler and since your job will run your .cshrc file after the scheduler configures them,
your program environment could be put into a confused state.

The scheduler uses a contral filethat tellshow many processors you intend to use, where your input and
output files are, where your program is, and how much time it can use, anong other things. The control
fileis usually named with a.cmd extension, but thisisnot required. The control file used to run the
matvec2mpi program isincluded bel ow.

9/25/1998 1:39 PM 23

@initialdir = /hone/acpi neda/ npi

@input = /dev/null

@output = matvec2npi . out

@error = nmatvec2npi.err

@notify user = acpi neda@trc.unm edu Specifiesthe high performance
@notification = always ﬁ switch in user space mode.

@checkpoint = no

@restart = no

@requirements = (Adapter == "hps_user")))

@m n_processors = 8 Max_processorsisnot used any more, it

@ nax_processors = 8 < must be same asthe min_processor s value

@wall _clock limt = 02: 00: 00

@ envi ronment =

MP_EU LI B=us; MP_RESD=yes; MP_HOSTFI LE=NULL; M°_EUl DEVI CE=css0; MP_RMPOOL=0; MP_| NFO

LEVEL=2; MP_LABELI| G=no; MP_PULSE=0

@job_type = parallel '\

@cl ass=batch Also need totell system to usethe HP
@queue switch in user mode here.

[usr/ bi n/ poe mat vec2npi

Queue —definesajob to the scheduler. You
can have mor e than one job per command
file each separated by a queue statement.

Figure 9. matvec2mpi.cmd — a contral file for running matvec2mpi in the SP2 batch queue.

The lines starting with # @ are options used to set up the environment in which the program will run. The
remaining linesrun as a shell script on each processor. Most of the optionsin the contral file are fairly
obvious. For the purposes of this course, you will only need to modify afew lines. Theinput, output, and
error linestell the scheduler the names of the input, output and error files. Theinitialdir isthe directory
containing the executable; notify user isthe e-mail address to which error messages are sent. The
notification = always linetells the schedul er to always send e-mail to the user in response to various
events, such as errors and program termination. Once you have your command file and program debugged,
you will probably want to change always to never. min_processor s and max_processor s control the
number of processors that are allocated to your program. wall_clock limit setsatimelimit on thejob. The
requirements and environment linestell the scheduler to enable communications over the high-speed
switch on the SP2. The class line specifies the batch queue. Currently, we have only one queue called
batch. The queue linetells the scheduler to treat all the option lines above it as options for a single paralle
job. (That is, multiple jobs processing different inputs can be submitted from the samefile.) Finaly, the
line/usr/bin/poe matvec2mpi runs the program matvec2mpi in the parallel operating environment. For
more details on creating command files, the user isreferred to the relevant MHPCC web site,
http://www.mhpcc.edu/training/workshop/html/workshop.html. Serial programs can be run on the SP2 by
changing the number of processorsto 1 and thejob_typeto serial.

A word isin order about how the scheduler prioritizestasks. Basically, tasks for non-privileged users are
prioritized based upon the amount of system resources they consume and the amount of time they have
been waiting in the queue. The moreresources, i.e. number of nodes and amount of CPU time required,
you use the longer you can expect to wait for your job to run. Therefore, it isto your advantage to estimate
the timerequired by your job aswell asyou can. Most of the example codes provided in thistutoria will
run in a handful of seconds, so you should set wall_clock _limit to be no morethan afew minutes. The
queue also enforces limits on the number of jobs per user, the number of nodes per job, and total wall clock
time. Currently, thefollowing limitsarein effect: 2 jobs per user, 8 nodes per job, and 36 hours of wall
clock time per job.

Y ou submit your command file to the scheduler using the command, llsubmit, which has the syntax:

Ilsubmit cmdfile.cmd

9/25/1998 1:39 PM 24

the scheduler will then reply with:
submit: Thejob “fr1n05.332" has been submitted.
Thefirg part of the job name fr1n05 specifies the node from which you submitted the job.

As mentioned previoudy, the uncommented portion of the command fileisrun asashell script on the SP2.
Hence, you can use ordinary Unix commands to perform setup and cleanup operations. Typically, thisis
donefor disk I/O intensive programs. Such programs must access disk drives that are locally attached to
the SP2 in order to perform optimally. Ask your system adminigtrator if such spaceisavailable.

Y ou can check the status of your program with either the Loadleveler status program llg or with the Maui
status program showq. To usethelatter, you must ensure that the directory /home/loadl/maui/bin in your
command path. If it isnot present, your environment initialization scripts can be updated by running the
reset_environment command. Y ou can kill arunning program using the command llcancel or better yet
with the Maui scheduler command canceljob.

Appendix B. Common MPI Library Calls

In this section, we document the more commonly used MPI library calls. For amore complete listing the
reader isreferred to “MPI: The Complete Reference”. It can be downloaded from the CS471 class web
site. These callsfall into three groups: (1) commands used for initializing an MPI session, (2) commands
that actually do MPI communications, and (3) commands for terminating an MPI session. In Fortran, all
MPI callsare subroutine calls. In C, they are function calsthat return an integer error message. In C, the
names of the MPI functions are case sensitive. In Fortran, they are not.

Initializing communications

Therearethree MPI callsthat you will always usein initializing your MPI programs. They are
MPI_INIT which starts up communications and initializes data structures used for communication,
MPI_COMM_RANK which allows a process to determineits 1D within the group of processes running
under MPI, and MPI_COMM _SIZE which alows a process to determine how many MPI processes are
running the current program. In Fortran, these subroutines are called as follows:

MPI_INIT USAGE

CALL MPI_INIT (IERROR)

MPI_INIT takes a sngle argument IERROR (integer, output) which returnsthe value MPI_SUCCESS if
the call completed successfully and one of 19 other error codes in the event of afailure. MPI_INIT can
only be called once in a program.

MPI_COMM_RANK USAGE

CALL MPI_COMM_RANK (COMM, RANK, IERROR)

In MPI, processes are labeled with an integer rank from O through N-1 where N isthe number of processes.
MPI_COMM_RANK takes 3 integer arguments:

e Theargument COMM (integer, input) is the communicator, which isa handle to an internal MPI
structure that defines the set of processes that may communicate with each other. Itisalocal object
that represents a communication domain. A communication domain isaglobal structure that allows
processes in a group to communicate with each other or with processes in another group. Processes can
bel ong to more than one group and have a different rank in each group. Unless you are doing
something requiring specialized communications, use the predefined vdlue MPI_COMM_WORLD

9/25/1998 1:39 PM 25

here. Thistellsthe program to use all available processors in a single processor group without
additional management.

e Theargument RANK (integer, output) isanumber between 0 and N-1 that serves the label for a
process within the communi cations group.

¢ |ERROR (integer, output) is as defined above.

MPI_COMM_SIZE USAGE

CALL MPI_COMM_SIZE (COMM, SIZE, IERROR)

MPI_COMM _SIZE isused to find out how many processes are running the current program. This number
isreturned in theinteger SIZE. The arguments COMM and |IERROR are as described above.

Communications Calls

MPI communications calls generally fall into 2 classes: point-to-point and collective communications. In
addition there are calls for defining data types other than the sandard onesincluded in MPI.

Point-to-point Communications Calls

MPI_SEND USAGE

CALL MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

MPI_SEND is used to send a message between two processes. It performsa “blocking” send, which in this
case means that it does not return until the user can safely use the message buffer BUF again. It does not
necessarily mean that thereceiving process hasreceived the data yet. BUF (input) isan array of type
<type> containing the data to be sent. COUNT (integer, input) isthe number of elementsin BUF.

DATATY PE (integer, input) isan integer code that tellsMPI what is the type <type> of BUF. The allowed
pre-defined values of DATATY PE in Fortran are MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL,
MPI_CHARACTER, MPI_BYTE, and MPI_PACKED. Thereisanother set of pre-defined values for C
programs. MPI has functions for the construction of user-defined types built up from these types, see
below. DEST (integer, input) istherank of the destination process. The TAG (integer, input) actsasa
label to match corresponding SENDs and RECV's. Therange of valid tag valuesis from 0 to
MPI_TAG_UB. The MPI standard requires MPI_TAG_UB to be at least 32767. The other argumentsare
as defined previoudly. The details of how the MPI_SEND implements the blocking send operation are | eft
to the person implementing the particular MPI library. Other more specialized versions of send are
MPI_BSEND, MPI_ISEND, MPI_SSEND, and MPI_RSEND allow finer control over how the messages
aresent. Thereader isreferred to the MPI manual for details on these functions.

MPI_RECV USAGE

CALL MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

MPI_RECV isused to receive messages sent by MPI send calls. It isblocking call. It does not return until
amatching send has been posted. BUF (output) isan array of type <type> containing the received data
COUNT (integer, input) isthe number of elementsin BUF. DATATY PE (integer, input) isan integer code
describing <type>. See MPI_SEND for the codes. SOURCE (integer, input) istherank of the sending
process. TAG (integer, input) isthe label matching SENDs and RECVs. Detailed status information is
returned by the integer array STATUS (output) of sze MPI_STATUS SIZE. The other argumentsare asin
previously described calls.

9/25/1998 1:39 PM 26

MPI_IRECV USAGE

CALL MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

MPI_IRECV isthe non-blocking version of MPI_RECV. Itsarguments are identical with the MPI_RECV
call above except that one argument, the request handle REQUEST (integer, output), replaces the STATUS
argument. Therequest handle isused to query the status of the communication or to wait for its
completion. The receive operation is completed with an MPI_WAIT call.

MPI_WAIT USAGE

CALL MPI_WAIT(REQUEST, STATUS, IERROR)

MPI_WAIT isused to completean MPI_ISEND or MPI_IRECV operation. The handle REQUEST is
obtained from MPI_ISEND or MPI_IRECV. The STATUS argument isthe same asthat in MPI_RECV.

MPI_SENDRECV USAGE

CALL MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTY PE, DEST, SENDTAG,
RECVBUF,RECVCOUNT, RECVTY PE, SOURCE, RECVTAG, COMM, STATUS,
IERROR)

MPI_SENDRECYV isacombination of an MPI_SEND and an MPI_RECV operation. The send and receive
buffers must be digoint, and may have different lengths and datatypes. The combined operationis
frequently used as a means of avoiding potentia processor deadlocksin for example a shift operation
across a chain of processes.

The array SENDBUF (input) of type <type> containsthe data being sent. SENDCOUNT (integer, input) is
the number of elementsin SENDBUF. SENDTY PE (integer, input) describes the type of data being sent.
DEST (integer, input) containstherank of the destination process. SENDTAG (integer, input) isthetag
for the sending operation. The array RECVBUF (output) of type <type> contains the data being received.
RECVCOUNT (integer, input) isthe size of the RECVBUF buffer. RECVTY PE (integer, input) isthe type
of the data being received. SOURCE (integer, input) istherank of the source process. RECVTAG (integer,
input) isthetag for the receiving operation. The other arguments are as described previously.

Collective Communications Calls

MPI_BARRIER USAGE

CALL MPI_BARRIER (COMM, IERROR)

MPI_BARRIER is used to synchronize processes. All processes stop at this call until every process has
reached it. The arguments COMM and |ERROR are as described above.

MPI_BCAST USAGE

CALL MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

MPI_BCAST broadcasts values from the sending, ROOT (integer, input), process to all processes
(including itself) via BUFFER. The array BUFFER (input/output) is an array of type <type> containing the

9/25/1998 1:39 PM 27

datato be sent/received. COUNT (integer, input) isthe number of dementsin BUFFER. DATATYPE
(integer, input) isthe code describing <type>. The other arguments are as described previoudly.

MPI_GATHER USAGE

CALL MPI_GATHER (SENDBUF, SENDCOUNT, SENDTY PE, RECVBUF,
RECVCOUNT,RECVTY PE, ROOT, COMM, IERROR)

MPI_GATHER coallects an array that has been distributed across multiple processes back to the ROOT
process. Thearray SENDBUF (input) isan array containing the data from the sending process to be
collected back to ROOT (integer, input). SENDCOUNT (integer, input) isthe number of el ementsin
SENDBUF. SENDTY PE (integer, input) is the code describing <type> of the datain SENDBUF. The
array RECVBUF (output) isan array containing the data collected from all processes. It isignored for all
but the ROOT process. RECVCOUNT (integer, input) isthe number of elements received from any one
processor. (Note that thisvalue is not SENDCOUNT times the number of processors.) RECVTY PE
(integer, input) isthe integer code describing the <type> of the datain the RECVBUF array. The other
arguments are as described previoudly.

This call assumes that an equal amount of datais distributed across the processes. The more genera
MPI_GATHERYV call allows processes to send unequal amounts of datato ROOT. Seethe MPI reference
for details.

MPI_SCATTER USAGE

CALL MPI_SCATTER (SENDBUF, SENDCOUNT, SENDTY PE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

MPI_SCATTER distributes an array from one task to all other tasksin the group. The array SENDBUF
(input) isan array containing the data to be distributed among the processes. SENDCOUNT (integer,
input) isthe number of elements sent to each process. SENDTY PE (integer, input) is the code describing
the type of the datain the SENDBUF array. The RECVBUF (output) isan array containing the data
distributed to the receiving process. RECVCOUNT (integer, input) isthe number of elementsreceived by
each process. RECVTY PE (integer, input) isthe MPI code describing the type of the datain the
RECVBUF array. ROOT (integer, input) istherank of the process that will be sending the data. The other
arguments are as previously described.

Like MPI_GATHER, this call assumesthat the datais to be distributed in equa s ze pieces across
processes. Themore general MPI_SCATTERV call allows processes to distribute unequal amounts of data
among processes.

MPI_REDUCE USAGE

MPI_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

MPI_REDUCE performs areduction operation across processors on the data stored in SENDBUF, placing
the reduced resultsin RECVBUF. By areduction operation, we mean an operation such asasum,
multiplication, logical AND, etc. depending upon the datainvolved. The array SENDBUF (input) is an
array containing the data upon which the reduction operation, OP, isto be performed. Theresult is
forwarded to ROOT. Thearray RECVBUF (output) isan array containing the result of the reduction.
COUNT (integer, input) isthe number of elementsin SENDBUF and RECVBUF. DATATY PE (integer,
input) isthe MPI code describing the type of the datain SENDBUF and RECVBUF. OP (integer, input) is
the MPI code for the reduction operation to be performed. The common values for OP are MPI_MAX,
MPI_MIN, MPI_SUM, MPI_PROD, MPI_LAND (logical and), MPI_LOR (logical or), and MPI_LXOR

9/25/1998 1:39 PM 28

(logical exclusive or). ROQOT (integer, input) isthe rank of the process that will be receiving thedata. The
other arguments are as described previoudly.

Creating Derived Data Types

MPI_TYPE CONTIGUOUS USAGE

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

A COUNT (integer, input) number of copies of OLDTY PE (integer, input) are concatenated to form the
NEWTY PE (integer, output).

MPI_TYPE VECTOR USAGE

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

MPI_TYPE_VECTOR allows the construction of a new datatype NEWTY PE (integer, output) that
consists of COUNT (integer, input) blocks of OLDTY PE (integer, input) of length
BLOCKLENGTH(integer, input) that are spaced STRIDE (integer, input) units apart. The
BLOCKLENGTH and STRIDE are in units of the OLDTYPE. COUNT and BLOCKLENGTH must be
non-negative, while STRIDE can be of either sign.

MPI_TYPE HVECTOR USAGE

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

MPI_TYPE_HVECTOR isidentical to MPI_TYPE_VECTOR except that the STRIDE argument isin units
of bytesinstead of the size of the OLDTYPE. Typically used in conjunction with the function
MPI_TYPE_EXTENT.

MPI_TYPE EXTENT USAGE

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)

MPI_TYPE_EXTENT returnsthe sze EXTENT (integer, output) in bytes of a datatype DATATYPE
(integer, input). Thisinformation is used to compute stride information in bytes for MPI functions such as
MPI_TYPE_HVECTOR. Noteto C programmers: the C operator sizeof() should not be used in place of
MPI_TYPE_EXTENT.

9/25/1998 1:39 PM 29

