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Abstract— The concept of degeneracy in biology, including the
immune system, is well accepted and has been demonstrated to
be present at many different levels. We explore this concept from
a computational point of view and demonstrate how we can use
computational models of degeneracy to aid the development of
more biologically plausible Artificial Immune Systems (AIS). The
outcome of these models has lead us to perform an analysis of the
receptor dynamics in the model and we discuss the computational
implications of a “degenerate” repertoire. Through the use of
the Unified Modelling language (UML) we have abstracted a
high level immune inspire algorithm that will be used as part of
a larger project to develop an immune inspired bioinformatics
system.

I. INTRODUCTION

In previous work [1], we have discussed various challenges
to the area of Artificial Immune Systems. One area is the
further exploitation of the underlying biology, as we argued
that AIS have failed to capture the richness and complexity
that is inherent in the natural immune system. Indeed, this
view is echoed in [2] who propose a methodology to attempt
to address this issue. In other work, we have begun to examine
alternative views of immunology, away from the mainstream
immunology [3], [4]. In [3] we explore an alternative view of
the immune system as presented by Cohen [5] and how this
might be exploited in the context of AIS. Taking that work
further in [4], we produced a simple model of the lymph node
where T cells interact with antigen presenting cells, the key
aspect of this model is that the receptors are degenerate i.e.
there is no concept of specific receptors in the model. The
ongoing work in [4] has provided motivation for the further
examination of the notion of degeneracy in the context of AIS,
this time with a focus on B cell receptors.

The work in this paper outlines the first stages in developing
an immune-inspired classification algorithm for the hierarchi-
cal classification of G-Protein coupled receptors (GPCRs) –
this work is part of a larger research project whose goal
is to develop a state of the art GPCR classification system
[15]. Following [2], we first need to develop a model of the
biological system in question. We have done this through the
use of agent based modelling techniques, which have allowed
us to investigate the computational aspects and implications
of a degenerate set of B cell receptors (as opposed to a non-
degenerate set), in the context of the clonal selection process

of the immune response. The next stage is to develop a high-
level algorithm that is derived from the model. Independently,
recent work by Bersini [6] has highlighted the benefits of
adopting object orientated methodologies in the use of mod-
elling biological systems. In our work, we have made use of
the Unified Modelling language (UML), not only to represent
our agent model, but also to aid the development of a high-
level algorithm that we have derived from the model. It should
be noted that the model we have developed and the high-level
algorithm that we have derived is only the first step towards the
development of an actual algorithm for GPCR classification.
It is not our intention to implement this high-level algorithm,
as at present it does not incorporate the notion of adaptation.
The work presented here is the first stage in the development
of a more sophisticated system. We report our current progress
and discuss what we consider to be interesting lessons that we
can learn even from a simple model, and how these can help
us in the design of immune inspired algorithms.

The paper is organised as follows. In section II we outline
the methodology of [2], this is followed by section III where
we discuss the notion of degeneracy in biological systems,
with a focus on the immune system. In section IV we present
the actual model of degeneracy and the computational results
that we have obtained. We then follow in section V with a high
level UML diagram of a potential immune inspired algorithm.
We conclude with discussions on future work and directions.

II. MODELLING THROUGH A CONCEPTUAL FRAMEWORK

Work in [2] proposes a conceptual framework that allows for
the development of more biologically grounded AIS, through
the adoption of an interdisciplinary approach. Metaphors em-
ployed within AIS have typically been simple, but somewhat
effective. However, as proposed in [2], through greater in-
teraction between computer scientists, engineers, biologists
and mathematicians, better insights into the workings of the
immune system, and the applicability (or otherwise) of the
AIS paradigm will be gained. These interactions should be
rooted in a sound methodology in order to fully exploit the
synergy. The authors argue that rather than going straight
from observing the biology and then to the development
of an algorithm, a more principled approach is required to
adequately capture the required properties of the biological



system in the engineered counterpart. The methodology is one
of abstraction. The first step is to create a mathematical model
of the biosystem: a relatively detailed model of the system.
In some cases, this model may already have been developed,
and indeed with our other work in [4] this is the case. These
mathematical models are then used to derive a more abstract
computational model: the model can be executed and analysed
for properties that are desired in the engineered system we
wish to construct. Then a high level algorithm is derived
from the model, abstract from any application area. This is
then instantiated in the application area, being tailored to the
specific requirement of that application area. The result is well-
grounded bio-inspired algorithm, that is understood better on a
theoretical level (addressing one of the challenges posed in [1])
and capture the relevant biological properties for the required
application. We have adopted this process in our project, and
here report our initial findings.

III. DEGENERACY

In the context of biology, degeneracy has been defined by
Edelman and Gally [7] as:

“the ability of elements that are structurally different
to perform the same function or yield the same
output”

It is ubiquitous property present at all levels of biological
organisation (such as the genetic, cellular, system and popula-
tion levels) being conserved and favoured by natural selection.
Examples of degeneracy given in [7] include:

• Genetic code – different base sequences can encode the
same polypeptide

• Protein folding – different polypeptides can fold to be-
come structurally and functionally equivalent

• Inter-cellular signalling – parallel and converging sig-
nalling pathways of molecules such as hormones are
degenerate

• Connectivity in neural networks – connections and dy-
namics are degenerate

• Body movements – different patterns of muscle contrac-
tions can produce equivalent movements

• Inter-animal communication – the same message can be
transmitted in different ways, e.g. vocally or via body
language

In [8], Tononi et al. use information theory to develop
measures of degeneracy and complexity in artificial neural
networks, showing that an increase in degeneracy leads to an
increase in complexity. This has led Edelman and Gally [7] to
postulate that in biological systems, degeneracy is invariably
accompanied with complexity.

Within immunology, antigen receptor degeneracy is a term
that has been used for many decades yet has escaped rigorous
definition [9]. A recent and widely held definition that we have
adopted for our work is given by Cohen [10], who states that
antigen receptor degeneracy is the:

“capacity of any single antigen receptor to bind and
respond to (recognize) many different ligands”

Based on this definition, two problems for immune recognition
arise: a single antigen epitope can activate different lympho-
cyte clones (poly-clonality), and a single lymphocyte clone can
recognise different antigen epitopes (poly-recognition). Poly-
clonality can generally be overcome via clonal competition
with those lymphocyte clones having the greatest receptor
affinity for an antigen epitope proliferating over other activated
clones. Poly-recognition, however, causes problems for the
traditional clonal selection theory view due to its reliance on
the strict specificity of lymphocyte clones [10].

Contrary to the traditional clonal selection theory view,
Cohen [10] believes that immune specificity can arise through
response patterns of degenerate immune receptors to a par-
ticular target. As an example of the power of patterns of
degenerate receptors, Cohen [10] discusses the example of
colour vision in the human eye. The eye contains millions
of colour receptors (cones), each belonging to one of only
three types: red, green and blue. Each of these types is highly
degenerate, responding in different degrees to a broad range
of overlapping light wavelengths. Based on just these three
receptor types, the brain can perceive thousands of different
specific colours. Colour specificity, therefore, is not encoded
in each receptor, but is achieved via the integration of receptor
outputs by neuronal firings in the brain. Likewise, Cohen [10]
envisages a similar recognition scenario in the immune system.

A. Degeneracy in Practice

In order to understand the concept of degeneracy, consider
the following simple example. Using small blocks of letters
“ac”, “me”, “ma”, “ca” we can construct words such as
“acme”, “came” and “mace”. However, if we add a further
block of letters “ne”, this increased the number of words that
can be constructed to “cane”, “acne”, “mane”. Therefore, six
words can be built using five small blocks of letters. Taking
this example as a basis, from a computational point of view
we can consider using small sized detectors or receptors in
a recognition system. This has the potential to recognise a
large number of patterns (i.e. achieve a high coverage of the
data space), but with a low overhead in terms of number
of detectors (i.e. the items covering the data space). This is
potentially important, as by having multiple, smaller receptors
we are able to reduce the complexity of cell receptors, when
compared to the traditional modelling of one-receptor-to-one-
antigen detection. This means that rather than having a single
“large” detector and requiring that detector to be activated
for pattern recognition to occur (a typical approach in clonal
selection based AIS), we can make use of a combination of
smaller, simpler receptors, that together become activated to
recognise a pattern.

To further illustrate the idea, figures 1 and 2 depict a
functional view of artificial B cell receptors binding to antigen.
Consider, in figure 1, the antigen to be the top set of bars
with a diagonal pattern, and the bottom set of bars with a
crosshatch pattern, as the artificial B cell receptor. In a typical
implementation of a clonal selection based AIS, one would
usually represent each of those sets of bars as a numeric
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Fig. 2. Simple Example of Degeneracy

sequence and calculate a distance measure (affinity) between
the two.

However, figure 2 shows an artificial B cell receptor which
is smaller, and can bind to two different areas of two different
antigens: it is the combined recognition of the two receptors
that would be the trigger for antigen recognition.

IV. COMPUTATIONAL MODELS

In order to investigate the idea of degeneracy, and following
the conceptual framework approach, we need to develop a
computational model to facilitate the investigation. For the
purposes of this paper, we have developed two models, one
that contains receptors that are degenerate, and one where they
are not. Both models were implemented in Netlogo (version
3.0.2) which provides a cellular Automata (CA) platform
capable of supporting agent based simulations. Given the large
number of clonal selection based AIS, we have decided to
explore the degeneracy concept in the context of the clonal
selection process. We have therefore constructed a simple
model of clonal selection, where we focus on the interaction
of B cell receptors with antigen. For simplicity at this stage,
we have ignored the role of T cells in the response and
have examined that independently [4]. We expect to combine
this work at a later stage. We will now outline the model
developed. Code is available for this model from the project
website [15].

A. Model Description

Both B cells and antigens are modelled as agents endowed
with a specific set of rules which govern how each agent
behaves. Agents are able to move in the CA grid space in
random directions one patch (a particular location in the CA) at
a time. In both models, B cell agents have a life span governed
by Equation 1 and a death threshold of 100 (user defined),
whilst antigen agents are permanent agents until binding with

a B cell which will cause the antigen to be removed from
the agent space. As B cell agents have a life span, they must
also have a birth rate: this is controlled by Equation 2 and
two parameters, birthrate and variation. Birthrate sets how
many new cells are introduced on average into the simulation
at each step, which alters the dynamics of the population,
and variation sets the amount of perturbation the population
should undergo. The signatures (identifying value) for the B
cell receptors and antigen epitopes are randomly generated.
In both models, the antigen epitope has a length of six items
and each item can take one of 6 values. Usually this would
allow us to create 66 = 46656 different patterns for the antigen
epitope, however, in this case, we impose a restriction on how
patterns are generated, which will therefore reduce the total
number of patterns available. This restriction is a consequence
of the degenerate receptor model, which uses more than one
detector to recognise an antigen. If we were to use all possible
combinations for generating the antigen epitope signature then
some signatures could be ambiguously recognised by the
degenerate receptors. In this context, ambiguous means that
there are certain receptor combinations that can match more
than one antigen. This is a potential problem because we can
not determine which antigen was recognised. Nevertheless, in
the models presented here, we restricted certain patterns in
order to be able to create a fair comparison between the models
(thus the ambiguity problem does not arise here). Through
mathematical analysis, we determined that there were 1296
patterns which are deemed ambiguous. This is the number of
patterns where the first two bits are the same as the last two
bits of the epitope signature. Therefore, for both models we
were able to generate 45360 antigen signatures. For the clonal
selection model without degeneracy, the B cell receptors were
generated obeying the same restrictions as with the antigen
epitope signature allowing for one receptor to be created for
each antigen signature.

Life = random(death)− (death/2)/10 (1)

Newcells = birthrate− random(variation) (2)

variation = birthrate ∗ 0.5 (3)

For the clonal selection model with degenerate receptors
we used the smaller receptor approach to test degeneracy, as
illustrated in figure 2(a). The receptors for this model were of
size four, and each bit could take one random value out of
six. For recognition to occur successfully full coverage of the
antigen is necessary, where coverage means matching all the
bits in the receptor. This is enforced, allowing us to calculate
the worst case scenario within the model. As we are using
receptors of size four and recognising a size six signature,
the receptors overlap in two places. This overlap reduces
the number of potential ambiguous patterns that the use of
multiple detectors causes. The number of B cell receptors
that can be potentially generate is reduced to 1296 compared



to the 45360 potential receptors used in the clonal selection
approach.

In our implementation, the CA grid size is 63 by 63 patches
and we begin the simulation with 450 B cells. From the time
the simulation begins cells can move in the grid, age, die and
new cells can be introduced. The simulation is allowed to run
for 120 iterations in order for the population to stabilise, as
there is a typical increase in cell population before it stabilises
to an average of 445 B cells. Once the B cell population has
stabilised, we introduce the antigen that is to be recognised:
in our experiments, this is typically at iteration 120. The
population usually stabilises around iteration 100 but we allow
a 20 iteration buffer before the antigen is introduced. For these
experiments, we introduced 85 instances of the same antigen,
i.e. 85 antigen agents with the same epitope (the number of
antigen is not important at this stage). Antigen agents are
allowed to perform a random walk through the grid. When a B
cell encounters an antigen (defined as an antigen being within
1 patch of a B cell), a binding check takes place. In the clonal
selection model without degeneracy, B cells check if their
receptor signature matches perfectly to the antigen epitope
signature. If this is the case, then recognition is achieved
and the time taken is recorded. The requirement for perfect
matching is imposed on the model to allow us to calculate
worst case scenarios to cover 100% of the data space (full
coverage). Of course, perfect matching is not a requirement
in actual biology, and is not a standard requirement in our
model or algorithm, but as discussed it has been enforced for
worst case scenario analysis. With the clonal selection model
with degenerate receptors, the B cells check if their receptor
signature matches perfectly either the first four or the last
bits of the antigen epitope. If this is the case, then we notify
a global tracking mechanism that records that the receptor
has bound with a certain antigen and therefore, that part of
the antigen’s epitope has been covered. Once this tracker has
received notification that all parts have been covered then
recognition is achieved and the time taken is recorded. This
tracker is required as typically in non-degenerative clonal
selection models, a simplistic rule is of the type “If a cell
is activated over threshold x then recognition is successful”,
whilst in the degenerate model the rule is “If cell type A and
cell type B become activated over threshold x then recognition
is successful”. The tracker allows for the model (and also
corresponding algorithm) to keep track of the activated cells.
It is possible to dismiss the tracker if we impose the restriction
that successful recognition will only occur if all the necessary
cells are activated at the same time.

Based on these agent models, we then made use of UML to
construct a state chart model of the life of a B-cell. These are
shown in Figure 3 where you can see the life of a B cell in
the non-degenerate model (figure 3(a)) and degenerate model
(figure 3(b)). This state chart model is useful for a number
of purposes. First, it allows us to gain an overall insight into
the life of a B cell and the stages that are required for it
to go through to achieve recognition. This is useful from
a computational perspective for when we come to abstract

into a high-level algorithm later. Also, by modelling in such
a way, any omissions from the agent model can easily be
identified and fixed. Finally, it gives a simple representation
by which it is possible to communicate between different
disciplines: notably computer science and biology. State charts
are relatively simple and provide a common language which
is required in an interdisciplinary project such as ours.

B. Results from the Model

For a baseline experiment, we make use of the clonal
selection without degenerate receptors. This allows us to assess
the difference the inclusion degeneracy makes in the second
model. The main aim of these experiments is to investigate the
potential pattern recognition capabilities of the two models
i.e. their ability to identify an antigenic pattern from a set
of randomly generated patterns. However, further work is
directed at identifying classes of antigenic patterns. To allow
us to establish meaningful results, due to the random nature
of the models, each experiment was performed 1000 times.
The parameters were fixed for both experiments (as detailed
above) and the restriction is imposed (as previously discussed)
that B cell binding with antigen has to be a perfect match as to
provide 100% certainty in the recognition. The average size of
the population, B cell life span and introduction of new cells
was the same for both experiments (as defined above)

Figure 4(a) represents the cumulative frequency graph of the
time taken, or how many time steps the B cell population took,
to recognise an antigen in a repertoire of 45360 antigens using
the clonal selection model without degeneracy. The Diamond
point on the graph establishes the mean of the dataset. Figure
4(a) is particularly useful as it demonstrates the sparseness of
the data but it also provides information about the frequency of
the data at any point in time. The X-axis provides the range
for the data and, through the gradient of the graph we can
see how dense (steep gradient) or sparse (gentle gradient) the
data is at any point in time. The antigen was only released
into the system at time step 120, thus allowing the B cell
population to stabilise. Each experiment was complete when
the appropriate B cell bound to the target antigen. Similarly to
figure 4(a), figure 4(b) represents the cumulative frequency of
how many time steps the B cell population took to recognise
a particular antigen in a repertoire of 45360 antigens using the
clonal selection model with degeneracy. Again, the diamond
point establishes the mean. As before, the antigen was only
released onto the system at time step 120 as to allow the B
cell population to stabilise. Opposed to the previous set of
experiments where we only required one B cell to bind to
the antigen, this set of experiments requires a set of B cells
(2 for this particular case) to bind to the target antigen for
recognition to occur and the trial time to be recorded.

Both graphs share very similar properties, as they both
have similar curve shapes and the mean is approximately
at the same relative distance from the median, respectively
13% and 10% of the population. These similarities emphasise
the fact that we have not changed the overall behaviour or
functionality of models. Although, the striking difference is
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X axis number of iterations, Y axis number of trials

Fig. 4. Results from two clonal selection models



on the X-axis scale between the two graphs where the clonal
selection model without degeneracy, figure 4(a), is over one
order of magnitude greater than the clonal selection model
with degeneracy, figure 4(b). Despite both sets of experiments
using the same random search approach, the discrepancy can
be explained by how each model performs recognition. Due
to the imposed restriction for 100% recognition accuracy,
the baseline clonal selection model uses one B cell for each
antigen in the repertoire, whilst the degenerate receptor model
uses two B cells for each antigen in the repertoire. The
difference between the B cells in the two models, is that
for the typical clonal selection model the receptor in the B
cell is the same size as the antigen signature, whilst with
the degenerate model the B cell receptors are smaller than
the antigen signature and overlap with each other to provide
an accurate recognition. For these experiments we employed
antigens with a signature length of 6, e.g. ‘012345’. In the
clonal selection model without degeneracy we require a B cell
with the receptor ‘012345’ for a perfect match. However, in
the clonal selection model with degeneracy we require a B
cell with the receptor ‘0123’ and a further B cell with the
receptor ‘2345’, providing a two place overlap on the antigen
signature. One side-effect of the constraint mentioned above
was that a number of patterns had to be removed from the
degenerate receptor model. Nevertheless, the total number of
potential antigen signatures that could be generated was the
same for both experiments.

C. Computational Lessons

Typical approaches within the AIS community to the devel-
opment of clonal selection based algorithms have met with
certain levels of success [11]–[14]. However, through the
modelling of a simple clonal selection process, free of any
application bias, we have been able to observe the potential
computational effects of incorporating new, or modifying
existing, properties of a simple clonal selection model. We
argue this is of major importance in the development of further
immune inspired algorithms. Within the work presented in
this paper, the key feature that we have investigated has been
the binding and cloning mechanisms which lead to antigen
recognition. Through the incorporation of degeneracy into our
model at the B cell receptor level, we were able to affect the
interaction between B cells and antigens. What this means is
from a more traditional view of clonal selection this relation
has been a direct one to one mapping between B cell and
antigen, whilst the model that incorporates degeneracy this
relation becomes a many to one relation. One of the potential
benefits of this type of relation is that B cell receptors can
possibly extract meaning from the antigen epitope signature
and potentially allow for them to be categorised to the type of
receptors to which they are able to bind. A further benefit that
has already been made clear is the reduction of time taken to
recognise an antigen signature when dealing with limited sized
populations. Nevertheless, at this stage, there is one significant
drawback which involves ambiguity in signature patterns.
This ambiguity prevents the model with degenerate receptors

accurately recognising certain patterns, i.e. if the detectors
A and B are used to recognise an antigen epitope signature
pattern, have we recognised the pattern AB or the pattern BA?
However, in our model it is possible to restrict the patterns
that can be used for the antigen epitope signatures, although
in algorithmic implementations it would not be feasible to do
so. This is one area of future research that is on-going.

V. FROM NATURAL TO ARTIFICIAL

In line with the conceptual framework, our next step is to
move from a computational model to an algorithm. In order to
do this, we have again made use of UML. Based on the agent
models we developed, and the subsequent development of the
state chart UML diagram, we were able to abstract a high-
level algorithm capturing the computational properties of the
model i.e. recognition of antigen with and without degeneracy.
Figure 5 outline a high-level clonal selection algorithm without
degeneracy (figure 5(a)) and one employing degeneracy (figure
5(b)).

There is a noticeable difference between the two algorithms.
As with the clonal selection model with degeneracy, the
“degenerate” algorithm is required to make use of a tracker,
which keeps track of which receptors have been activated (the
reason for this is discussed earlier). Therefore, first a check
is made to see if a B cell receptor can actually bind to a site
(step 2 in figure 5(b)). If this evaluates to be true, then the
algorithm proceeds to evaluate the affinity (step 3). Otherwise,
the receptor will attempt to bind across all sites on the antigen
and if no bind is successful then the next antigen is considered
for binding i.e. you jump to step 6 in the algorithm. This is not
the case for the clonal selection algorithm without degeneracy.

VI. CONCLUSION

We have presented the first stages in the development of
an immune inspired algorithm, through the use of a con-
ceptual framework [2]. Through the combination of agent
based modelling and UML, we have begun to investigate the
computational properties of an inherently degenerate recog-
nition system. From our initial studies, we have identified
that it is possible to recognise patterns using such degenerate
receptors, and when compared to a non-degenerate system,
recognition appears quicker. We have begun the first stages
in developing an immune inspired algorithm based on these
properties. However, the algorithm presented here is by no
means complete, and will not be implemented, as many more
investigations with the model are required before an algorithm
that is capable of being applied to our GPCR data can be
developed. Rather, than present a working algorithm, the aim
of this paper was to present the process by which it is possible
to develop immune inspired systems, taking into account, in
a more reasoned way, computational properties of biological
systems.
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