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1 Introduction 

 

Some data can be naturally organised as a hierarchy of classes. The classification of data in such a hi-

erarchy poses some unique challenges to data miners such the need for classification at different lev-

els, which may require the use of different characteristics of the data. One particular case of hierarchi-

cal classification is the classification of GPCR proteins by their function. G-Protein Coupled Recep-

tors (GPCRs) are important as they can transmit messages from a cell’s exterior to its interior, chang-

ing that cell’s behaviour. For this reason, GPCR proteins are a common target for therapeutic drugs 

and approximately 50% of all marketed drugs are targeted towards one of the receptors [1]. 

This paper contributes an improved method of hierarchical classification based on the well-used 

“top-down” approach. This is tested on a real-world GPCR dataset. A second contribution is the com-

parison of ten different classification algorithms in the hierarchical prediction of GPCR function with 

each algorithm being applied in the conventional top-down approach for hierarchical classification. 

The paper is organised as follows. Section 2 describes GPCR proteins, section 3 introduces hierarchi-

cal classification and the top-down approach to classifying data. Section 4 contains a description of the 

revised system including the proposed method. Section 5 contains experimental protocol and results. 

Finally section 6 contains some concluding remarks. 

2 Classification of GPCRs 

 

This study concerns the prediction of GPCR function where a GPCR is a particular type of protein. 

Proteins are large molecules comprised of a long chain of amino acids. The order with which these 

amino acids are chained together is known as the protein’s primary sequence. These long chains fold 

into complex structures allowing them to perform functions. GPCR proteins fold themselves such that 

some parts of the protein are found inside a cell, while other parts are external. GPCRs are bound by a 

variety of different molecules (ligands) found outside the cell. The binding activates the GPCR, which 

in turn binds a G-protein inside the cell, often changing the behaviour of that cell. More than one type 

of GPCR can interact with more than one kind of G-protein, creating a complex system involving a 

variety of mechanisms [2]. 

One of the main aims of bioinformatics is to determine the function of novel protein sequences by 

comparison with the sequences of genes/proteins whose function has already been established. Con-

ventional bioinformatics typically determines information about a protein function by aligning the pro-

tein’s primary sequence with other protein sequences or using certain “motifs” (short subsequences of 

amino acids that typically occur in a given family of proteins) for the same task. This conventional 

bioinformatics approach may not  be appropriate for GPCR function prediction because GPCRs with 

very different primary sequences may perform the same function. 

The most widely used taxonomy of classes for GPCRs, GPCRdb [3], divides the full set of GPCR 

proteins into six families, designated A-F with class A as the largest human GPCR family. The 



 

 

GPCRdb classification system is based on the ligand to which the receptor is bound rather than the 

primary sequence. Previous methods for GPCR classification have included machine learning tech-

niques such as Hidden Markov Models [4] and Support Vector Machines [5]. These previous attempts 

tend to be based on the primary sequence of the protein. We use an alternative protein data representa-

tion based on proteochemometrics, whereby 26 separate physicochemical properties of the protein are 

used to calculate five empirical “z-values” for all twenty amino acids [6]. These five values can pro-

vide a purely numerical description of the protein’s physiochemical properties and as such, contain 

more information than the primary sequence alone, potentially resulting in higher predictive accuracy. 

3 Hierarchical Classification 

 

First it is important to define the distinction between flat and hierarchical classification. The vast ma-

jority of the classifiers in the literature deal with a flat class structure where a single class is assigned 

to an example and there is no hierarchical relationship between classes. In hierarchical classification 

the classes are arranged in a hierarchical structure. An example may be assigned to one class at each of 

a number of levels of class specialisation. The most general level being immediately below the root of 

the tree and becoming more specialised as the tree’s branches are traversed. In this paper we deal only 

with structures where each class has exactly 1 parent (i.e. a class tree). A flat class structure will con-

tain, for example, classes A and B, which are both equally different from each other. While, in a hier-

archy, some classes are more alike than others. Given the class tree in Figure 1 (a), A.1 and A.2 are 

more alike than A.1 and B.1 as A.1 and A.2 share a common parent class.  

 

 
Figure 1: Example of a hierarchical dataset (a) and how that hierarchy may be 

reflected in a tree of classifiers (b) ready for a top-down approach to classifi-

cation. 

 

There are a range of strategies available for predicting hierarchical classes [7]. The simplest is to 

flatten the dataset to one single level so that no superclasses or subclasses are present, then use one of 

the plethora of standard classification algorithms to predict the class. However, this strategy does not 

take advantage of the information implicit in the class structure. At the other end of the range is the 

“big bang” approach. In this case a single (and typically complex) hierarchical classification algorithm 

is used, which implicitly takes into account the class hierarchy during training. In the test phase, each 

example may be assigned to one class at each level of the hierarchy by one single application of the 

learned model. Perhaps due to its complexity, implementations of such an approach are scarce, al-

though one example is [8]. 

A middle ground between these two strategies is the top-down approach where the hierarchical 

classification problem is converted into a number of flat classification problems that may be solved 

independently by running a flat classifier for each. 

The top-down approach works as follows. Given, for example, the class tree in Figure 1 (a), a tree 

of classifiers is built to reflect the structure of the classes, as shown in Figure 1 (b). Thus a tree of clas-

sifiers is generated such that the output of one classifier constitutes the input for another. The number 

of layers of classifiers will be equal to the number of levels represented by the class attribute. As 

shown above, the class tree has two levels and so two levels of classifiers are present. As practically 

any standard, well known classifier can be used at each node the process of building a hierarchal clas-

sifier is greatly simplified. No special classifier must be written to perform the classification (other 

than the scaffolding required to support a classifier tree). Rather, common well understood classifiers 

can be used and as such, informed choices can be made about which to use. 
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To train the classifiers in the hierarchy, all data in the training set is used to train the root classi-

fier. However this is not the case with subsequent classifiers. For example, as the “A class classifier” 

is only required to classify an instance as A.1 or A.2, only data of class A is used for training. Like-

wise the B class classifier is trained using only data of class B. When an unknown class test instance is 

presented to the classifier tree, the root level classifier will assign of the classes at the most general 

level to the instance. The instance will then be passed to one of the classifiers (A or B) in the next 

level and so on until the instance is assigned its most specific class by the classifier at a leaf node in 

the tree. This approach can, therefore, be appealing from the viewpoint of simplicity, however, it suf-

fers from one major inadequacy. That is, any test example misclassified at the top level of the hierar-

chy has no chance of being assigned to the correct class in any subsequent stages. While this flaw is 

inherent in the way the top-down approach works, there is no such constraint placed on a big bang al-

gorithm and as such there exists at least the potential for greater classification accuracy using this ap-

proach. 

4 Extending the Top-down Approach Using Classifier Selection 

 

The manner in which the top-down approach works takes advantage of the hypothesis that some char-

acteristics of the data may be important to discern between two classes at one node of the class tree 

while being irrelevant at another. For example, certain attribute values may be equal in classes A.1 and 

A.2 (making this attribute useless to discern between the two) but yield 100% accuracy when used to 

choose between B.1 and B.2. 

The top-down approach to classification exploits this as all classifiers are trained using only data 

instances of the class they are required to classify between. Despite this variation of the training data at 

each node in the class tree, in the standard top-down approach the same classification algorithm is 

used in each node of the class tree. Intuitively, this is unlikely to lead to a maximization of classifica-

tion accuracy. It is natural to hypothesise that different classifiers may be more suited to different 

nodes in the class tree. Each type of classifier has its own bias and we hypothesise it is possible to 

maximise the classification accuracy of the top-down approach by using different classification algo-

rithms in the classifier hierarchy. These classifiers are to be selected in a data-driven manner using the 

training set. We call this the selective top-down approach. While at the top level it may be true that 

large differences exist between classes and as such one classifier is particularly accurate, at lower lev-

els a classifier must use much more subtle difference in the data, and as such a different classifier with 

a bias that exploits this situation is desirable. 

The selective top-down approach proceeds as follows. A tree of classifiers is produced much as 

before, at each node the training data for that node is split into a sub-training and validation set with 

data instances being assigned randomly. A number of different classifiers are then trained using this 

sub-training data and tested using the validation set. The classifier which yields the highest classifica-

tion accuracy in the validation set is selected as the classifier for this node in the class tree. The sub-

training and validation sets are then merged to produce the original training set again, and the selected 

classifier is then re-trained. While appealing at first glance, a cross validation approach is not used 

when selecting the classifier at each node. In preliminary testing, a 5-fold cross validation technique 

was found to increase the training time greatly, while the improvement in classification accuracy was 

not found to have increased with statistical significance compared to a single evaluation of the valida-

tion set; and so the latter approach was used. Note that this selective approach effectively produces a 

hybrid hierarchical classification system, since different nodes in the class tree each use potentially 

different types of classifiers. At the time of writing no reference could be found where such a hybrid 

classifier tree had been used before. The following section details the test of this new selective top-

down approach and compares it against the standard top-down technique. 

5 Protocol and Results 

 

Protein sequences for the GPCR dataset were identified using the Entrez search and retrieval system 

[9]. The program searches protein databases such as SwissProt, PIR, PRF, PDB as well as translations 



 

 

from annotated coding regions in DNA databases such as GenBank and RefSeq. Text-based searching 

was used to identify all sequences at the third level of the class tree and higher levels inferred from this 

classification. The dataset was built from human protein sequences with the exception of Class D pro-

teins, which are found only in fungi. All proteins shorter than 280 amino acids in length were removed 

in order to eliminate incomplete protein sequences (mean length of protein was 473 amino acids) and 

all identical sequences within the dataset were removed to avoid redundancy. Any class containing 

fewer than 10 examples was discarded, which left 8408 examples in total with 89 classes at the most 

specific (third) level, 38 classes at the second level and 5 classes (GPCR families A-E) at the top level. 

As such this represents one of the largest GPCR datasets ever constructed. Most of the literature of 

GPCR class prediction focuses on predicting the first and/or second class levels only [10]. 

The next challenge was to create predictor attributes from the protein’s primary sequence. Recall 

from Section 2, 5 z-values can be used to represent an amino acid and the primary sequence of a pro-

tein consists of a list of amino acids. It is therefore straightforward to substitute each set of z-values 

for each amino acid in the sequence. However, as the GPCR sequences will vary in length it is essen-

tial to normalise these values such that each protein has the same number of predictor attributes. There 

exist a small number of methods to do this such as the complex “Auto Cross Covariance” [11], al-

though in preliminary tests this method proved inferior in terms of accuracy to the simpler method of 

computing the mean of each of the 5 z-values (z1…z5). Thus 5 predictor attributes are used to de-

scribe each protein in the data set, where each attribute has been derived from the mean of its corre-

sponding value over all amino acids in the protein. A tree of classifiers is produced, with each classi-

fier selected in a greedy fashion, as described in Section 4. The following classifiers were used, where 

most are described in [12]: 

 

1. Naïve Bayes 

2. Bayesian network 

3. SMO (a support vector machine [13]) 

4. 3 nearest neighbours (using Euclidean distance) 

5. PART (a decision list [14]) 

6. J48 (an implementation of C4.5) 

7. Naïve Bayes tree (a decision tree with a naïve Bayes classifier at each node) 

8. Multi-layer neural network with back propagation 

9. AIRS2 (a classifier based on the Artificial Immune System paradigm [15, 16]) 

10. Conjunctive rule learner 

 

This list of classifiers was carefully chosen to include a wide range of paradigms. All code was 

written using the WEKA data mining package [12] and the default parameters used for each algorithm. 

All experiments were carried out using a 10-fold cross validation approach. Whilst data instances 

were randomly assigned to folds, care was taken to ensure that at least one instance of each class was 

present in each fold. This certainly could not be otherwise guaranteed as a small number of classes 

only contained 10 examples. At each node in the class tree, each classifier from the list above was 

trained using 80% of the training data ( sub-training set) available to that node, and evaluated using the 

remaining 20% (validation set). Examples were again assigned randomly to these sets. Each entire 10-

fold cross validation test was repeated 30 times. There are occasions in this dataset where an internal 

(non-leaf) node in the class tree contains just 1 child node, i.e. the subset of instances at the internal 

node contain only 1 class as a child. Without taking this into account the results can be unfairly biased 

as a classifier will always be able to predict the correct class at that internal node. Any case where only 

1 child class is present is ignored, effectively contracting that branch. 

The selective top-down classifier was constructed according to the protocol above. In addition, 10 

different top-down classifiers were constructed, each algorithm using one of the classifiers available to 

the selective classifier. The results are shown in Table 1. For each classifier, the predictive accuracy on 

the test set at each level of the hierarchy is shown. As discussed in Section 3, any example misclassi-

fied at one level has no possibility of being correctly classified at deeper levels and therefore misclas-

sifications can be seen to accrue as the level number increases. A value denoting the  significance of 

the difference between the accuracy of the selective approach and each particular algorithm was com-



 

 

puted using the corrected resampled t-test as detailed in [12]. This test attempts to eliminate the issues 

encountered when a standard t-test is used over multiple runs of a cross-validation procedure. Due to 

space constraints the figures are not reported, instead a shaded cell indicates that the corresponding 

accuracy value of the selective top-down classifier is significantly greater than the shaded value. The 

significance threshold was set at 1% and a 2-tailed test was used.  

 
Naïve 

Bayes Bayes Net SMO 

3 Nearest 

Neighbours PART J48 NB Tree 

Neural 

Network AIRS2 

Conjunctive 

Rules Selective 

73.33 77.40 66.44 90.75 89.49 90.37 89.53 66.44 81.66 71.91 90.59 

47.74 53.40 38.88 71.59 73.52 73.45 72.34 31.89 57.81 45.51 73.77 

23.12 29.83 15.55 55.71 57.90 57.41 55.27 4.15 42.61 9.37 58.08 

 

Table 1: Comparison of predictive accuracy (%) of classifiers at different levels. 

 

 

Generally the selective approach performs with greater predictive accuracy than a standard top-

down classifier with a single type of classifier. In the case of the top level of the 3 nearest neighbours 

(3NN) classifier a slightly higher accuracy is recorded, but the increase is not statistically significant.  

In addition to the accuracy, a classifier tree can be constructed showing, for every position in the 

tree where a classifier was chosen, the frequency with which a particular classifier was selected in this 

position. This can provide an explanation for the similar accuracies obtained by the selective approach 

and the 3NN classifier at the first level. This analysis reveals that 3NN is selected 76% of the time at 

that node and as there is only one classifier selected as the root, it is expected that the mean accuracy 

of the top level of the selective top-down classifier should not differ significantly from the 3NN classi-

fier. 

The results for J48 were unexpected as J48 is never the most frequently-chosen classifier at any 

node in the selective classifier tree. However, the results showed that on this dataset J48 does perform 

well at all levels on the tree. It is worth noting however, that from a user’s point of view, to discover 

this, the user would have to gather results from each of the 10 algorithms separately. By using the se-

lective approach only one algorithm has to be run, and the accuracy of the selective algorithm should 

always be equal to or greater than the standard approach even when the best classifier is used. 

The classifier tree also offers some evidence that selecting different classifiers at different class 

nodes tends to work better than using the same classifier at each node. It was found that, while the 

3NN is predominantly chosen at the top level, at the second level, PART is the most frequently chosen 

algorithm at 2 of the 3 nodes. While at the third level PART is the most frequently chosen classifier 

for 3 nodes out of 7, with Naïve Bayes and 3NN both being the most frequent classifier 2 times out of 

7. It is possible that 3NN is most suited to the large differences in proteins at the top class level while 

other algorithms are either more able to exploit the more subtle differences between data items at the 

second and third class level, or they exhibit better learning when few training items are available. 

6 Conclusions and Future Research 

 

Motivated by a real-world problem, that of predicting the hierarchical functions of GPCR proteins, the 

top-down approach to hierarchical classification was re-visited. It was hypothesised that biases in clas-

sifiers could be exploited to increase classification accuracy by using different classifiers at different 

nodes in the classifier tree with the specific classifier at each node being chosen in a data driven man-

ner. The results of tests on real-world GPCR data showed that there was an improvement in accuracy 

for this selective hierarchical classifier over all comparison algorithms apart from one. 

This paper details a way in which it is possible to increase the accuracy of a top-down classifier 

but this methodology still contains the problem that any misclassification at one level cannot be recti-

fied at lower levels. While a big bang algorithm for GPCR classification is likely to be complex, it 

could be written in such a way so that this problem is not encountered. With the results in this paper as 

a baseline, a big bang style algorithm for GPCR classification is a research direction we might pursue 

in the future. 
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