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The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The .C and .Fortran interfaces, and the R.h and S.h APIs, are
unaffected;
Code compiled against Rinternals.h may need minor
alterations.

Work started in May 2007, shadowing R-2.5.1; current work shadows
R-2.8.1.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr
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Why Do This?

The medium-term objective is to introduce provenance-tracking
facilities into CXXR: so that for any R data object, it is possible to
determine exactly which original data files it was produced from, and
exactly which sequence of operations was used to produce it. (Similar
to the old S AUDIT facility, but usable directly within R.) Chris Silles
made a presentation on this at useR! 2009.

Also:

By improving the internal documentation, and
Tightening up the internal encapsulation boundaries within the
interpreter,

we hope that CXXR will make it easier for other researchers to produce
experimental versions of the interpreter, and to enhance its facilities.
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CXXR Layers
Core

CXXR

core

Written as far as possible in
idiomatic C++, making free
use of the C++ standard
library (including some TR1
classes).
Contained in the C++
namespace CXXR.
Interfaces thoroughly
documented using doxygen.
As far as possible
self-contained: avoids calls
into the outer layers.

http://www.doxygen.org


CXXR Layers
Packages

CXXR

core

Very few changes have proved
necessary, e.g. only 9 .c files
under src/library
changed, with 46 changes in
all. (This will shortly reduce to
about 26 changes in 5 files.)
But only the standard
packages have been tested.



CXXR Layers
Transition layer

CXXR
core

Tr
ansition Layer

Packages
CR files from src/main adapted
as necessary to work with the
core.
With a few exceptions, C files
have been redesignated as C++
(but CR idioms largely retained).
Generally uses C linkage
conventions, i.e. function names
are not mangled to include
information about argument types
(as is the C++ default).
Some special constructs used to
facilitate upgrading to new
releases of CR.



Example File from the Transition Layer
CR’s eval.c vs CXXR’s eval.cpp



uncxxr.pl

CXXR makes many systematic changes to files in the transition layer.
For example:

CR files are apt to use C++ reserved words (e.g. this, new,
class) as identifiers. These have to be changed.
C++ requires explicit conversions in places where C doesn’t,
e.g. int to enumeration, or void* to other pointer types.
CXXR everywhere replaces C-style casts by C++ casts (e.g.
static_cast, const_cast, reinterpret_cast).

Increasingly these (and other) changes are carried out in such a way
that they can easily be reversed by a Perl script uncxxr.pl. This
considerably eases the task of upgrading CXXR for a new release of
CR.
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Transition Layer
Updating to a new CR release

Previous

CR

release

New CR

release
CXXR

backtransformed

by uncxxr.pl

CXXR code

(editor

window)

kdiff3



Functionality Now in CXXR Core

Memory allocation and garbage collection.
SEXPREC union replaced by an extensible class hierarchy.
Object duplication (now handled essentially by C++ copy
constructors).
Environments (i.e. variable→object mappings), with hooks to
support provenance tracking.
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The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy. (See
particularly the documentation of class GCNode for guidelines.)



The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy. (See
particularly the documentation of class GCNode for guidelines.)



The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy. (See
particularly the documentation of class GCNode for guidelines.)



The RObject Class Hierarchy
Vector classes



The RObject Class Hierarchy
Other classes

RObject

WeakRef
(WEAKREFSXP)

Environment
(ENVSXP)

Promise
(PROMSXP)

ConsCell

ExternalPointer
(EXTPTRSXP)

Symbol
(SYMSXP) FunctionBase

ByteCode
(BCODESXP)

DottedArgs
(DOTSXP)

Expression
(LANGSXP)

PairList
(LISTSXP)

Closure
(CLOSXP)

BuiltInFunction
(BUILTINSXP,
SPECIALSXP)
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Other classes

RObject

WeakRef
(WEAKREFSXP)

Environment
(ENVSXP)

Promise
(PROMSXP)

ConsCell

ExternalPointer
(EXTPTRSXP)

Symbol
(SYMSXP) FunctionBase

ByteCode
(BCODESXP)

DottedArgs
(DOTSXP)

Expression
(LANGSXP)

PairList
(LISTSXP)

Closure
(CLOSXP)

BuiltInFunction
(BUILTINSXP,
SPECIALSXP)

Inheritance here reflects common
implementation rather than an
'is a' relationship.  (Undesirable.)
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Memory Allocation

Memory allocation in CXXR is managed by the class MemoryBank.

MemoryBank

CellPoolCellPoolCellPoolCellPool

::operator new
(C++'s malloc)

Each CellPool comprises
preallocated cells of a fixed
size (e.g. 8 bytes, 16 bytes)
carved out of 'superblocks'

> 128 bytes

≤ 128 bytes

BACKEND

allocate()
deallocate()
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CLIENTS
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(compatible with C++

standard library)
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CellPoolCellPoolCellPoolCellPool

::operator new
(C++'s malloc)

Each CellPool comprises
preallocated cells of a fixed
size (e.g. 8 bytes, 16 bytes)
carved out of 'superblocks'

> 128 bytes

≤ 128 bytes

BACKEND

allocate()
deallocate()

PRINCIPAL
CLIENTS

CXXR::Allocator
(compatible with C++

standard library)

GCNode::operator new
(may initiate garbage collection)

bytesAllocated()



Garbage Collection Approaches

trunk Generational mark-sweep (much as in
CR).

branches/refcount+gen Reference counting backed up by
generational mark-sweep. (An
intermediate refactorisation step.)

branches/gclab Reference counting backed up by
non-generational mark-sweep.
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intermediate refactorisation step.)
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Shortly to move to trunk: subsequent
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otherwise stated.



Garbage Collection: Principal Classes

GCNode Base class for all objects subject to automatic garbage
collection.
A GCNode object incorporates a 1-byte saturating
reference count: if the reference count ever gets to 255, it
sticks there.

GCEdge<T> A templated ‘smart pointer’ type, which GCNode objects
use to refer to other GCNodes. Automatically adjusts the
reference count of the node referred to. (In approaches
using generational mark-sweep, it encapsulates the write
barrier.)

GCManager Controls the threshold(s) at which mark-sweep garbage
collection will take place. (In approaches using
generational mark-sweep, it also controls how many
generations are collected.)

GCRoot<T> and GCStackRoot<T> Smart pointer types used to
provide long- and short-term protection against garbage
collection.
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Protection Using GCStackRoot

Short-term protection of GCNode objects from garbage collection is best
achieved using GCStackRoot (though PROTECT(), UNPROTECT() etc. are
still available).

Here’s an (artificial) example that inserts a new link into a list following a
specified location:
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Duplicating RObjects

In CXXR, each RObject class defines whether and how objects of
that class can be duplicated.

Class RObject defines a method clone(), which by default
returns a null pointer, indicating that the object is not clonable.
Many classes in the RObject hierarchy define a copy constructor,
which encapsulates the behaviour of CR’s Rf_duplicate with
respect to that class.
Such classes usually also reimplement clone(), so that
foo->clone() returns a pointer to a copy of foo made with the
copy constructor.



Duplicating RObjects

In CXXR, each RObject class defines whether and how objects of
that class can be duplicated.

Class RObject defines a method clone(), which by default
returns a null pointer, indicating that the object is not clonable.
Many classes in the RObject hierarchy define a copy constructor,
which encapsulates the behaviour of CR’s Rf_duplicate with
respect to that class.
Such classes usually also reimplement clone(), so that
foo->clone() returns a pointer to a copy of foo made with the
copy constructor.



Duplicating RObjects

In CXXR, each RObject class defines whether and how objects of
that class can be duplicated.

Class RObject defines a method clone(), which by default
returns a null pointer, indicating that the object is not clonable.
Many classes in the RObject hierarchy define a copy constructor,
which encapsulates the behaviour of CR’s Rf_duplicate with
respect to that class.
Such classes usually also reimplement clone(), so that
foo->clone() returns a pointer to a copy of foo made with the
copy constructor.



RObject::Handle<T>

RObject::Handle<T> is yet another smart pointer template, which
inherits from GCEdge<T>. Each RObject::Handle<T>
encapsulates a pointer—possibly null—to a T object (where T is a type
inheriting from RObject).

When a handle is copied it tries to copy the object it points to, by
invoking clone().

If clone() succeeds (i.e. returns a non-null pointer), then the
copied handle points to the copied RObject.
If clone() returns a null pointer, then the copied handle points to
the original RObject.

Use of RObject::Handle greatly simplifies the implementation of
copy constructors in the RObject hierarchy: in some cases the default
copy constructor supplied by the compiler does all that is required.
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Layout of a PairList (LISTSXP) Object
(Schematic, for 32-bit architecture)
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Environments
General

In CXXR, all environments are are implemented in the same way,
including the base environment and the base namespace.
Each Environment object comprises a pointer to its enclosing
environment (null in the case of the empty environment) and a
pointer to a Frame object.
The base environment and the base namespace point to the
same Frame (but have different enclosing environments).
Frame is an abstract class defining a mapping from Symbols
(strictly, symbol addresses) to Frame::Binding objects, which
in turn point to RObjects. (Frame inherits directly from GCNode,
not from RObject.)
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Environments
Plus points

Various forms of lazy loading can be encapsulated in classes
inheriting from Frame.
Likewise special Frame classes can provide functionality similar to
the RObjectTables package, e.g. a frame that looks symbols up
in a database.
Hooks are provided to monitor when a Frame’s bindings are
created, read or modified. These are used in provenance tracking.



Environments
Plus points

Various forms of lazy loading can be encapsulated in classes
inheriting from Frame.
Likewise special Frame classes can provide functionality similar to
the RObjectTables package, e.g. a frame that looks symbols up
in a database.
Hooks are provided to monitor when a Frame’s bindings are
created, read or modified. These are used in provenance tracking.



Environments
Plus points

Various forms of lazy loading can be encapsulated in classes
inheriting from Frame.
Likewise special Frame classes can provide functionality similar to
the RObjectTables package, e.g. a frame that looks symbols up
in a database.
Hooks are provided to monitor when a Frame’s bindings are
created, read or modified. These are used in provenance tracking.



Environments
Current limitations

There is currently no analogue to CR’s ‘global cache’.
All Frames are currently implemented using class StdFrame,
which uses the library class std::tr1::unordered_map (i.e. a
hash table) to provide the symbol→binding mapping. For local
environments, this probably imposes an excessive
construction/destruction overhead.
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Benchmarks

The following tests were carried out on a 2.8 GHz Pentium 4 with 1 MB
L2 cache, comparing R-2.8.1 with CXXR revision 599, using
comparable optimisation options.

Benchmark CR CXXR trunk CXXR gclab
(secs) (secs) (secs)

bench.R 111 113 112
(Jan de Leeuw)
kaltime10.R 95 144 113
stats-Ex.R 30 61 69



A Benchmark Program: kaltime10.R

(Inspired by a Kalman filter time update.)

ka l t ime <− function ( d , n ) {
ph i <− matrix ( 0 .9 / d , nrow=d , ncol=d )
p <− matrix (0 , nrow=d , ncol=d )
q <− diag ( d )
for ( i i n 1 : n ) p <− ph i %∗% p %∗% phi + q
p

}

ka l t ime (10 , 5000000)



Timing Comparison

kaltime10.R, 10×10 matrices, 5 000 000 iterations. Based on flat
profile data from Intel VTune.

CR CXXR.trunk CXXR.gclab
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the categories below.

PROT Initiating and ending protection from
garbage collection.

LIBC libc-2.9.so

ATT Attributes.

MM Memory allocation, garbage collection,
C++ destructors.

ENV Environments, inc. symbol look-up.

COM Common, i.e. functions little changed
between CR and CXXR.

RBLAS libRblas.so: Basic linear
algebra system.



Cache Performance
according to cachegrind

kaltime10_100k.R, 10×10 matrices, 100 000 iterations.

CR CXXR (trunk) CXXR (gclab)
D1 misses 12 864 395 (0.4%) 36 063 852 (1.1%) 21 130 898 (0.6%)
L2d misses 6 655 104 (0.2%) 14 193 172 (0.4%) 373 466 (0.0%)
I1 misses 25 843 389 (0.4%) 31 854 095 (0.5%) 73 659 529 (1.2%)
L2i misses 63 323 (0.0%) 97 394 (0.0%) 55 400 (0.0%)
Brch mispred. 37 427 870 (5.4%) 41 119 592 (5.8%) 47 800 867 (6.3%)
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Next Stages

Upgrade to shadow R 2.9.1
Factor out evaluation code (Rf_eval()) into the class hierarchy,
and in the process reduce internal use of PairList objects in
favour of lighter-weight data structures.
Factor out serialization/deserialization code into the class
hierarchy, and possibly switch to an XML serialization format.
Refactorise R contexts (RCNTXT) and error handling in the spirit of
C++ exception handling.
Reintroduce a global cache for symbol lookup.





Header Files in src/include/CXXR

The interface to the core of CXXR
is defined in header files in
src/include/CXXR.

These are of two types:
*.hpp For use by C++ source files

only.

*.h For use by C and C++
source files. These
headers typically have the
structure shown on the
right.

# i f d e f __cplusplus

Class definitions, etc.

extern "C" {
#endif /∗ __cplusplus ∗ /

C-callable function definitions

# i f d e f __cplusplus
} / / ex tern "C"
#endif



A C-Callable Function
C++ sees inlining; C doesn’t

In RealVector.h:

# i fndef __cplusplus
double∗ REAL(SEXP x ) ;

#else
i n l i n e double∗ REAL(SEXP x )
{

using namespace CXXR;
return &(∗SEXP_downcast<RealVector ∗>(x ) ) [ 0 ] ;

}
#endif

In RealVector.cpp

namespace CXXR {
namespace ForceNonIn l ine {

double∗ (∗REALp ) (SEXP) = REAL;
}

}

This forces the C++ compiler
to generate a non-inlined
embodiment of the function
REAL(), which is what C
source files will link to.



GCNode Lists
The live list

Live list

Moribund
list

Class GCNode arranges all
GCNode objects on a number of
lists, implemented as static class
members. Principal among these
are the live list, s_live, and the
moribund list, s_moribund.

Newly created GCNode objects are
placed on the live list.



GCNode Lists
The moribund list

Live list

Moribund
list
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m_refcount==0

When a GCNode’s reference count
falls to zero (having previously
been non-zero), it is transferred to
the moribund list.

It is quite common for the reference
count subsequently to rise back
above zero, so these nodes cannot
be immediately deleted.



GCNode Lists
GCNode::operator new

Live list

Moribund
list

When an object of a type derived
from GCNode is created, memory
for it is automatically obtained
using the function
GCNode::operator new()
(rather than the general-purpose
::operator new()).

This function carries out garbage
collection as explained next.



GCNode Lists
GCNode::operator new

Live list
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Operation of GCNode::operator
new():

1 Scan through the moribund list. Any
node whose reference count is still
zero is deleted; other nodes are
restored to the live list.

2 If, after Step 1,
MemoryBank::bytesAllocated()
exceeds a threshold value, initiate a
mark-sweep garbage collection.

3 Finally, allocate the requested
memory by calling
MemoryBank::allocate().



Protection Using GCRoot

GCStackRoot objects must be destroyed in the reverse order of their
creation, and are best suited to stack-based (automatic) variables.

Longer-term protection from garbage-collection is better achieved
using the GCRoot<T> smart pointer template, which works in the same
way, but is not subject to this restriction. For example entities such as
R_BlankString are permanently protected by GCRoots in CXXR.

However, construction and destruction of GCRoots is more
time-consuming than for GCStackRoot.
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A GC Problem in C++

Suppose that Foo is a class that
inherits from GCNode. Here’s how
creating a new Foo object would
naturally be written in C++:

Foo∗ f = new Foo ( . . . ) ;

Or perhaps:
GCStackRoot<Foo> f

= new Foo ( . . . ) ;

The new Foo(· · ·) expression gets
compiled into this:

1 GCNode::operator new is
called to allocate sufficient
memory to hold a Foo object;
may initiate mark-sweep.

2 A constructor of GCNode is called
to initialise the GCNode part of
the object;

3 Then Foo’s constructor initialises
the Foo part of the object;

4 Finally, a pointer to the
constructed object is returned
and assigned to f.

What happens if Foo’s constructor needs to create a subobject—also
a GCNode—and that results in a mark-sweep garbage collection?
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Solution: Infant Immunity

A solution to the problem is for each GCNode to be immune from
garbage collection while it is under construction. The completion of
construction is signalled using this idiom:

Foo∗ f = GCNode : : expose (new Foo ( . . . ) ) ;

(GCNode::expose() here is an identity function with the side effect
of exposing its argument to garbage collection.)



Implementations of Infant Immunity

1 Have the sweep phase ignore infant nodes.
Snag: Exposure needs to recurse to subobjects.

2 Regard infant nodes as reachable.
Snag: The mark phase may visit nodes that are still under
construction, and contain junk pointers.

3 Inhibit mark-sweep GC entirely while any GCNode is under
construction.
The solution currently favoured.
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