
Provenance-Awareness in R

Chris A. Silles and Andrew R. Runnalls

School of Computing
University of Kent
Canterbury, UK

{C.A.Silles,A.R.Runnalls}@kent.ac.uk

Abstract. It is generally acknowledged that when, in 1988, John Cham-
bers and Richard Becker incorporated the S AUDIT facility into their S
statistical programming language and environment, they created one of
the first provenance-aware applications. Since then, S has been spiritually
succeeded by the open-source R project; however, R has no such facility
for tracking provenance. This paper looks at how provenance-awareness is
being introduced to CXXR (http://www.cs.kent.ac.uk/projects/cxxr),
a variant of the R interpreter designed to allow creation of experimental R
versions. We explore the issues surrounding recording, representing, and
interrogating provenance information in a command-line driven interac-
tive environment that utilises a lazy functional programming language.
We also characterise provenance information in this domain and evaluate
the impact of adding facilities for provenance tracking.

Keywords: provenance, S AUDIT, auditing, statistical, analysis

1 Introduction

The use of computer systems for recording information has proliferated in recent
years; however, facilities for recording how this data has come to be in its present
state have only recently started to catch up in the form of the provenance-aware
computing field. This discipline has developed quickly over the last decade, and
is now reaching maturity with the Open Provenance Model for the representation
and exchange of provenance information [1].

In this paper we look at how facilities for recording and retrieving provenance
have been introduced to the interactive statistical environment and programming
language, CXXR, which is based on the popular R project [2]. Recording process
documentation for the purpose of reproducible computing in R has previously
been researched in Sweave [3], a system based on concepts of literate program-
ming [4].

Making applications provenance-aware is not in itself a new concept [5]; how-
ever, CXXR presents some novel challenges, primarily to the way in which prove-
nance is represented conceptually, but also to the way in which provenance needs
to be presented to the user, and how the features of the language require mod-
elling in order to capture complete provenance.

The structure of this paper is as follows. Section 2 provides an introduction
to the software and describes the approach to handling provenance therein. We
then, in Section 3, detail the implementation steps we have taken. Section 4
evaluates the impact of provenance tracking in CXXR. We conclude with a
summary of findings and what we are looking forward to in Section 5.

2 CXXR

2.1 History

CXXR is a variant of R, which is an open-source implementation of S.

S. S is a language and interactive environment for statistical computing, graph-
ics, and exploratory data analysis [6]. It was developed during the mid-1970s
at Bell Laboratories by John Chambers and Richard Becker. S emerged from
Bell Labs at around the same time as the C programming language, and this is
reflected in both its syntax and name. Despite this, it uses the semantics of a
functional programming language, including employment of lazy evaluation.

S AUDIT. ‘New S’ was released in 1988 sporting a new feature entitled S AU-
DIT [7]. While a user operated a session within S, a record was maintained of
each top-level expression evaluated; as well as objects read from and written to
during the course of evaluation.

The accompanying S AUDIT program was able to process this record and
allow the user to interrogate it. S AUDIT was able to perform a number of
queries on the audit record, such as displaying the full sequence of statements;
those statements responsible for reading from, or writing to, a specific object; or
simply providing a list of all objects in the session.

A more intriguing feature of S AUDIT was its ability to create an audit plot,
which was a directed-acyclic graph with statements as nodes arranged on the
circumference of a circle (anti-clockwise in order of occurrence), and edges each
representing an object written by one statement, later being read by another.
Audit plots enabled users to visualise how objects were being used over their
lifetime.

New S, therefore, became one of the first provenance-aware software appli-
cations, and even featured visualisation of provenance: features that were at the
time innovative, and remain novel today.

R and CXXR. While S as an application continues life as a commercial prod-
uct called S+ retailed by TIBCO [8], the language, library and environment have
been reimplemented as part of the open-source R project [2]. The R distribution
comprises an interpreter and a number of packages for common functionality,
which have been written in a mixture of C, Fortran, and R itself. It is main-
tained by a nineteen-strong team of core developers, and enjoys a large and

Listing 1 Example R commands
> 1+2

[1] 3

> three <- 1+2

> square <- function(x) { x*x }

> nine <- square(three)

> nine

[1] 9

active userbase working in areas as diverse as retail strategy, genetics, educa-
tion, pharmacology, proteomics, and data and text mining.

CXXR is a project to reengineer the fundamental components of the R inter-
preter from C into C++, while fully preserving functionality of the standard R
distribution [9]. The primary objective of CXXR is to enable experimental ver-
sions of the R interpreter to be created, allowing new functionality to be easily
introduced.

2.2 How R Works

Data types. R has many data types, the most important of which is the vec-
tor. Vectors are homogenous arrays of data, and may be composed of elements
of types including integers, booleans, strings, and real and complex numbers.
Vectors are ubiquitous in R. Even a single value (e.g. 3.14) is treated as a vector
having only one element.

Example. Listing 1 shows the evaluation of some commands in R. The > char-
acter is the prompt, at which the user enters commands. The first statement
performs a simple addition, and R prints the result. The square brackets indi-
cate that the result is a vector, and the number signifies the index of the element
at the beginning of the line. The second and third statements show assignment
of a vector and a function to objects respectively.

Objects. When the user performs an assignment, a binding is created between
a symbol object and a value object. The space in which bindings are stored is
known as an environment. Environments are used, among other things, to define
scope. The two environments with which we are concerned here are the global and
base environments. The workspace the user operates in is the global environment,
and the standard library functions reside in the base environment. In the second
statement of Listing 1, a binding is created in the global environment between
the symbol three, and an integer vector containing the single element ‘3’, as
illustrated by Figure 1.

Garbage Collection. R — and CXXR likewise — is garbage collected, so
objects that can no longer be accessed by the user because they have either been
manually deleted or bindings to them have been reassigned to reference other
objects, will at some point be destroyed by the garbage collector, which then
releases unused memory.

2.3 Making CXXR Provenance-Aware

The principal objective of this work is to enable CXXR to identify the following
information of any given object: -

1. The process that led to it – the sequence of commands executed;
2. Its ancestors – which other objects it depends on;
3. Its descendants – which other objects depend on it.

2.4 What Provenance?

The use of the word ‘object’ in R is unfortunately ambiguous. As mentioned
above, what is commonly referred to as an ‘object’ in R is really a binding
in an environment between a symbol and an object representing a value. The
R language is dynamically typed, which means a variable (i.e. ‘object’) has no
intrinsic type, and simply takes on the type of the object assigned to it. When
referring to ‘object x’, what is often intended is the value of a binding referred
to by symbol x in a particular environment. So what exact provenance are we
interested in?

A binding allows an object to exist in an environment and be utilised in
expressions, but it also gives an object meaning.

Consider the following R code:

Global
 Environment

three [3]

Fig. 1. Bindings exist within environments and connect symbols to values. In this case,
the symbol ’three’ with a singleton integer vector ‘3’

> x <- 1:5
> y <- x

The first expression creates an integer vector composed of the values 1 to 5, and
establishes a binding between the symbol x and the newly created vector. The
second expression assigns x to y; or speaking more strictly, it binds y to a copy
of x’s vector. It’s a trivial example, but understanding what happens in a case
like this is critical to understanding how provenance is defined in this context.

The object referred to by x — in the strict sense, meaning the integer vector
1,2,3,4,5 — has not changed. All that has happened to it is that a clone of it has
been created. To understand where x and y have come from, we need to know
what has been bound to them in a particular environment.

Therefore, in order for provenance information to have meaning, it needs to
be associated not with an object, but with a binding.

3 Implementation

The fundamental addition to CXXR required for recording provenance is the
introduction of read and write monitors, which are attached to environments
and get triggered when a binding in that environment is either read from or is
created or overwritten.

3.1 Storing

Three C++ containers have been introduced to store various aspects of prove-
nance information.

The Provenance class is central to storing provenance for a binding. It is
composed of the timestamp of when the binding was created; the top-level ex-
pression that was being evaluated; the symbol that is bound; and references to
the parentage and children of the binding.

Binding B1 is a parent of binding B2 (and conversely B2 is a child of B1)
if binding B1 was read in the course of evaluating the top-level expression that
gave rise to binding B2. Parentage is represented by the Parentage class, which
inherits from the C++ Standard Template Library (STL) std::vector class,
and stores pointers to Provenance objects.

A ProvSet of provenance objects is used to store references to Provenance
objects. This collection is an std::set, and its members are ordered by time of
creation. It is used primarily for storing references to children.

The class collaboration diagram for the relationship between new classes and
existing CXXR classes is shown in Figure 2.

3.2 Recording

The mechanism responsible for reading commands from the standard input,
evaluating them, and printing the result is known as the Read-Evaluate-Print-
Loop (REPL). Provenance for each REPL iteration is recorded according to the
following algorithm: -

Parentage ProvSet

Provenance

Binding RObjectSymbol

Expression

Existing CXXR class

New class

Fig. 2. Class collaboration diagram

– Begin with the following empty collections:
• Seen set: Provenance of bindings either read from or written to;
• Parentage list: Provenance of bindings read from (in sequence).

– On read of binding to symbol x:
• If x is not in the Seen set, add it to Parentage and Seen.

– On write of binding to symbol y:
• Create a new Provenance object comprising:

∗ A reference to the current top-level expression;
∗ A reference to symbol y;
∗ A reference to the current Parentage;
∗ The current timestamp;
∗ An empty set of children;

• Register the new Provenance object as a child of each of its parents, as
recorded by the current Parentage list;

• Associate this Provenance object with the Binding of y;
• Add y to Seen.

3.3 Retrieval

In order for the user to be able to interrogate provenance information a couple of
new R commands have been introduced. The provenance(x) function returns
a list detailing the provenance of the current binding of x: the date and time
of its creation, the expression immediately responsible for its current state, its
symbol, and a list of both its parent and child Provenances.

The pedigree(x) function describes the full sequence of commands executed
that led to the current binding of x. A full ancestry is collated by recursively

Listing 2 Example of provenance inspection functions
> provenance(nine)

$command

nine <- square(three)

$symbol

nine

$timestamp

[1] "03/15/2010 03:34:27 PM.241776"

$parents

[1] "square" "three"

$children

NULL

> pedigree(nine)

three <- 1 + 2

square <- function(x) x*x

nine <- square(three)

looking at each Provenance’s parentage starting from x; ordering all ancestors
by time of binding creation; and printing their respective expressions, which are
by definition relevant and their order chronological.

Listing 2 shows the result of these functions applied to one of the bindings
resulting from evaluating the expressions shown in Listing 1. Firstly, the call to
the provenance function shows information about nine, most interestingly that
it has two parents: square, a function; and three, an integer vector of a single
element. Secondly, the sequence of commands resulting in the current state of
binding nine is detailed by the pedigree() function.

3.4 Issues

Loops. Although their use is not generally encouraged, loops are present in R.
Consider the following loop to compute the sum of integers 1 to 5 and store this
in object x:

> x <- 0 # Initialise x to zero
> for (n in 1:5) # n = {1..5}
+ x <- x + n # Increment x by n

There are two top-level expressions being evaluated here: The first initialises
x, and the second (split across two lines, as indicated by the continuation prompt
beginning with +) is a loop in which n iteratively takes the values from 1 to 5

Listing 3 Example illustrating how our initial implemention handled loops
> x<-0

> for (n in 1:5) x<-x+n

> provenance(x)

$command

for (n in 1:5) x <- x + n

$symbol

x

$timestamp

[1] "27/05/09 14:13:06.943834"

$parents

[1] "x" "n" "x" "n" "x" "n" "x" "n" "x" "n"

and gets added to x. During each iteration of the loop, bindings x and n are both
read and written.

Our initial implementation did not model this behaviour correctly because
for each iteration of the loop, Provenances of bindings to x and n were added to
the current parentage. Listing 3 shows the result of this strategy. $parents is a
string vector representation of the Symbols associated with Provenance objects
stored in a Parentage. In this case, it shows that Provenances of intermediate
versions of bindings x and y have been included as parents to the final x.

A more natural representation of this is, when a binding is read, to only add
the associated Provenance to the current Parentage if it has not previously been
written to or read from during the current top-level expression evaluation. This
is the purpose of the seen set. In the case of the above loop, this strategy records
only one parent for each x and n: the initial binding of x created by the first
expression. This is illustrated by Listing 4.

Promises. The R language is capable of lazy evaluation of expressions, meaning
they are not evaluated unless and until their value is required. The mechanism
at the heart of lazy evaluation in R is a promise, which comprises an expression
to be evaluated, and an environment in which the expression is to be evaluated.
As in other programming languages, lazy evaluation prevents expressions from
being evaluated unnecessarily in function bodies. R also installs the standard
library functions into the base environment as promises that only load the full
function definition when it is required. This practice is referred to as lazy loading.

When a promise is forced, that is to say its expression gets evaluated, its
original binding may be succeeded by a new one. According to the algorithm
outlined above, this would then get placed in the seen set and thus be excluded
from appearing in the current parentage. This meant that during the first invo-
cation of a lazily-loaded function, it could not appear as a parent to any object
written. Subsequent invocations worked as desired because no additional binding

Listing 4 Example illustrating how our refined implemention handles loops
> x<-0

> for (n in 1:5) x<-x+n

> provenance(x)

$command

for (n in 1:5) x <- x + n

$symbol

x

$timestamp

[1] "11/06/2009 11:39:11.230680"

$parents

[1] "x"

> pedigree(x)

x <- 0

for (n in 1:5) x <- x + n

> pedigree(n)

x <- 0

for (n in 1:5) x <- x + n

creation precluded attribution of parentage. We handle this by not including in
the seen set any binding created as a result of forcing a promise.

Source. R’s source(input) function reads expressions from file input and
evaluates each line in turn. This needs to be handled as a special case as these
evaluations fall outside of the main Read-Evaluate-Print-Loop (REPL) mecha-
nism.

For the purposes of provenance collection, we view source as a white box,
so that objects written are directly attributed to the precise statement within
the file that resulted in their creation. This is opposed to a black box approach,
which would simply describe a resulting object as having been created by a call
to source with a particular input.

This more precisely describes the sequence of commands responsible for the
current state of data, but not how that sequence came to be evaluated, since no
record of the input file usage is made.

4 Evaluation

4.1 Performance

The CXXR distribution — like R — has a comprehensive test suite, part of which
is a series of example scripts that intensively test all of the language’s functional-
ity. Each test was executed five times on both CXXR and its provenance-aware

counterpart, and the CPU time used and peak memory usage recorded. Table 1
shows the average overheads incurred by tracking provenance.

Table 1. Comparison between CXXR and PA-CXXR of mean execution time and
peak memory usage of tests

Mean overhead
Test No. Exprs. No. Reads No. Writes Time Memory

base 10,270 1,621,901 7,872 9.83% 3.65%
datasets 2,038 3,471,050 2,432 4.95% 153.35%
graphics 2,626 2,983,254 2,797 5.25% 130.56%
grDevices 1,640 1,976,567 1,921 0.93% 102.12%
grid 1,317 2,819,754 1,776 5.50% 124.68%
methods 2,262 5,846,097 2,635 10.91% 63.72%
splines 362 251,242 1,301 13.86% 116.29%
stats4 124 1,505,381 1,141 2.98% 141.83%
stats 9,205 19,070,665 37,125 3.63% 52.11%
tcltk 304 142,529 1,141 23.03% 140.10%
tools 481 5,768,890 1,282 10.68% 37.28%
utils 2,475 3,526,103 2,301 2.73% 82.20%

The intention of the example scripts is to test functionality, rather than
representing transcripts of real-world R data analysis sessions; however, they
demonstrate that the execution time overhead incurred is reasonable. There is
fairly strong linear correlation between the number of read and write operations
performed and increases in both execution time and memory usage. Memory
usage is significantly increased. This is because of the additional data structures
and collections that are attached to bindings. Expression and Symbol objects
will also persist in many cases where they would usually be taken out by the
garbage collector. Instead they are retained because they form part of the prove-
nance of objects that are still in use. This is particularly expensive for iterative
operations.

5 Conclusion

This work demonstrates how it is possible to introduce facilities for prove-
nance awareness into an interactive, command-line driven statistical environ-
ment. CXXR has provided a number of challenges, the most novel of which are
the necessity of attaching provenance to bindings rather than objects; facili-
ties for lazy loading; and evaluating expressions from a file as opposed to the
command line.

5.1 Further Work

Looking forward, one of our priorities is to enable cross-session provenance track-
ing. That is to say, when the user terminates a session, the objects are serialised
along with relevant provenance information so the user is then able to restore a
session with not only the object data, but also the pedigree of that data. This
will require modifying the serialisation formats of CXXR, and draws into ques-
tion how best the provenance information collected can be mapped to the Open
Provenance Model [1].

CXXR is currently only aware of provenance in the global and base environ-
ments. Other environments, such as local environments in user defined functions,
and those associated with attached data frames, will eventually have their prove-
nances tracked. This will present new challenges, in particular the user interface
will need to provide an effective method of allowing the user to inspect prove-
nance in different environments, and displaying the information in an intuitive
way.

References

1. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.: The
open provenance model — core specification (v1.1). Future Generation Computer
Systems (December 2009)

2. The R Foundation: The R Project for Statistical Computing. http://www.

r-project.org

3. Gentleman, R.: Reproducible research: A bioinformatics case study. Statistical
Applications in Genetics and Molecular Biology 4(1) (2005) Article 2

4. Knuth, D.E.: Literate programming. Comput. J. 27(2) (1984) 97–111
5. Callahan, S.P., Freire, J., Scheidegger, C.E., Silva, C.T., Vo, H.T.: Towards

provenance-enabling paraview. (2008) 120–127
6. Becker, R.A.: A brief history of S. Computational Statistics – Papers Collected on

the Occasion of the 25th Conference on Statistical Computing at Schlosz Reisens-
burg (1994) 81–110

7. Becker, R.A., Chambers, J.M.: Auditing of Data Analyses. SIAM Journal on Sci-
entific and Statistical Computing 8 (1988) 747–760

8. TIBCO Software Inc.: Spotfire S+. http://spotfire.tibco.com

9. Runnalls, A.R.: CXXR project. http://www.cs.kent.ac.uk/projects/cxxr

